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Approximating outcome probabilities of linear optical circuits
Youngrong Lim 1✉ and Changhun Oh2✉

Quasiprobability representations are important tools for analyzing a quantum system, such as a quantum state or a quantum circuit.
In this work, we propose classical algorithms specialized for approximating outcome probabilities of a linear optical circuit using
quasiprobability distributions. Notably, we can reduce the negativity bound of a circuit from exponential to at most polynomial for
specific cases by modulating the shapes of quasiprobability distributions thanks to the symmetry of the linear optical
transformation in the phase space. Consequently, our scheme provides an efficient estimation of outcome probabilities within an
additive-error whose precision depends on the classicality of the input state. When the classicality is high enough, we reach a
polynomial-time estimation algorithm of a probability within a multiplicative-error by an efficient sampling from a log-concave
function. By choosing appropriate input states and measurements, our results provide plenty of quantum-inspired classical
algorithms for approximating various matrix functions beating best-known results. Moreover, we give sufficient conditions for the
classical simulability of Gaussian Boson sampling using our approximating algorithm for any (marginal) outcome probability under
the poly-sparse condition.
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INTRODUCTION
Quantum computers are believed to provide significant
advantages in solving computational problems beyond classical
power1,2. Despite the potential advantage, determining which
types of quantum circuits are classically simulable is still a
longstanding open problem. A viable approach for the problem
is to examine quasiprobability distributions in the phase space,
a standard method in quantum optics3. Specifically, on the one
hand, if the output distributions of a quantum circuit can be
described by non-negative quasiprobability distributions, there
is a classically efficient simulation of the circuit4. On the other
hand, one can estimate the outcome probabilities of a quantum
circuit with the convergence rate depending on the negativity
bound of the circuit, a measure of negativity in the phase
space5. In both cases, the negativity of quasiprobability
distributions plays a crucial role, which has been extensively
studied6–9.
Meanwhile, boson sampling has recently attracted lots of

attention due to its feasible quantum advantage using a linear
optical circuit10–14. Also, there have been numerous studies of
boson sampling using quasiprobability distributions15–19. In
particular, while Fock-state and Gaussian Boson sampling (GBS)
are believed to be hard to classically simulate10,20, boson
sampling with a classical state input, represented by a
nonnegative P-function, is efficiently simulated because its
output distribution can be expressed by nonnegative quasi-
probability distributions16. Interestingly, this quantum optical
observation leads to the fact that the permanent of Hermitian
positive-semidefinite (HPSD) matrices can be approximated
within a multiplicative-error more easily (in BPPNP) than that of
arbitrary matrices (#P-hard)15,21. In addition, a quantum-
inspired algorithm using quasiprobability distributions has
been proposed for estimating the permanent of an HPSD
matrix within an additive-error, which outperforms Gurvits’
algorithm under certain eigenvalue conditions22,23. Thus,

studying the quasiprobability representation of quantum
circuits often provides new insight into computational
problems.
However, previous studies are limited to the cases of classical

input states with no negativity15,16,18,23 or negativity bound that
is polynomial in the system size5, which cannot cover typical
quantum circuits with exponential negativity bound. A central
question is how to generalize the quasiprobability methods to
handle cases of exponential negativity bound. Such a general-
ization can also lead to improved quantum-inspired algorithms
for approximating matrix functions, e.g., permanent and
hafnian. Moreover, it is still open to finding an efficient
algorithm for the multiplicative-error approximation of a matrix
function beyond the method using sampling from nonnegative
quasiprobability distributions15. Since a multiplicative-error
approximation is significantly more powerful than an additive-
error one and only a few examples have been known24–26, such
findings have interesting applications in computational
complexity.
In this work, we provide algorithms specialized for approximat-

ing the outcome probabilities of a linear optical circuit. First, we
choose the s-parameterized quasiprobability distributions (s-
PQDs), a generalization of P-, Q-, and Wigner distributions27. An
advantage of adopting s-PQDs over previous approaches is that
we can always obtain a nonnegative representation for a Gaussian
input state by choosing an appropriate parameter s. Conse-
quently, for a GBS circuit, we can significantly reduce the
negativity bound of the circuit, which depends only on the
maximum peak of the s-PQDs of measurement operators.
Furthermore, the negativity bound is determined by the
maximum possible s, called classicality of the input Gaussian
state28, which has a clear physical meaning: the more classicality
in the input state, the lower negativity bound.
Our main technical contribution is to provide a way of

manipulating the shape of s-PQDs using the symmetry of the
circuit transformation in the phase space. This method can
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considerably lower the negativity bound, from exponential to at
most polynomial in several cases, which renders efficient
estimations of outcome probabilities within 1/poly additive-error.
Strikingly, when the classicality of the input state is high enough,
we introduce a fully polynomial-time randomized approximation
scheme (FPRAS) by an efficient sampling from a log-concave
function26,29, which can efficiently (in BPP) approximate the
corresponding outcome probability within a multiplicative-error.
Our results have several intriguing applications to problems in

computational complexity. First, we give estimating algorithms
with additive-errors for matrix functions represented by the
outcome probabilities of a linear optical circuit, beating the best-
known classical algorithms, e.g., the hafnian of a complex
symmetric matrix and the permanent of an HPSD matrix. Second,
we provide efficient multiplicative-error algorithms for those
matrix functions with certain structured matrices, which are not
considered in the literature to the best of our knowledge. Last but
not least, we present sufficient conditions on the classical
simulability of GBS, by applying our estimation scheme to any
(marginal) outcome probability of a GBS circuit with 1/poly
additive-error under a poly-sparsity condition.
Let us consider the Born rule probabilities of a quantum optical

circuit using quasiprobability distributions in the phase space. For
an M-mode input state ρin, a quantum channel E, and a
measurement Πν, the probability for a measurement outcome
ν≔ (ν1,…, νM) can be written as16

pðνÞ ¼ πM
Z

d2Mαd2MβWðtÞ
ρin
ðαÞT ðt;sÞE ðβjαÞWð�sÞ

Πν
ðβÞ; (1)

where WðtÞ
ρinðαÞ;Wð�sÞ

Πν
ðβÞ, and T ðt;sÞ

E ðβjαÞ are s-PQDs of the input
state, measurement, and the transition function of the circuit
channel, respectively. Here, α is a quadrature variable in the 2M-
dimensional phase space and β is a transformed quadrature
variable by the transition function T ðt;sÞ

E ðβjαÞ. Specifically, WðsÞ
ρ ðαÞ

is the s-PQD for a Hermitian operator ρ defined by

WðsÞ
ρ ðαÞ ¼

Z
d2Mα0

π2M
Tr ½ρDðα0Þ�eα0sα0y=2eαα0y�α0αy ; (2)

where Dðα0Þ ¼ eα
0 ây�âα0y

is the M-mode displacement operator.
Note that s=− 1, 0, 1 of s-PQDs correspond to the Q-, Wigner, and
P-distribution, respectively. Also, (− s)-PQDs of the measurement
operators satisfy the normalization condition such that
πM
P

νW
ð�sÞ
Πν

ðβÞ ¼ 1 for any β. The transition function of a quantum
channel E is defined by16

T ðt;sÞ
E ðβjαÞ ¼

Z
d2Mζ
π2M

eζsζ
y=2eβζ

y�ζβy

´
Z

d2Mξ
πM

e�ξtξy=2eξα
y�αξy Tr EðDyðξÞÞDðζÞ� �

;

(3)

where

EðDyðξÞÞ ¼ eξξ
y=2
Z

d2Mγ
πM

eγξ
y�ξγyEð γj i γh jÞ; (4)

for a coherent state γj i. In this work, we are concerned with a
linear optical circuit represented by a unitary matrix U with a
product input state ρin ¼ �M

i¼1ρi and a product measurement
Πν ¼ �M

j¼1 νjihνj
�� ��. In that case, if we choose t= s, then the

transition function becomes a simple form such as
TEðβjαÞ ¼ δðβ� UαÞ. Consequently, Eq. (1) can be written in the
simpler form

pðνÞ ¼ πM
Z

d2Mα
YM
i¼1

WðsÞ
ρi
ðαiÞ

YM
j¼1

Wð�sÞ
Πνj

ðβjÞ; (5)

where βi ¼
PM

j¼1 Ujiαj by the transition function. Suppose we have
a product Gaussian input state with the covariance matrix Vi and a

product photon number measurement Πmj . The s-PQD of a single-
mode Gaussian state with zero-displacement having covariance
matrix V is given by30

WðsÞ
V ðαÞ ¼ exp �αðV � sI2=2Þ�1αT

� �
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðV � sI2=2Þ

p : (6)

Note that for any physical covariance matrix V, there exists a
critical value smax such that WðsÞ

V ðαÞ is a proper Gaussian
distribution for s<smax and has a delta function singularity for
s ¼ smax

18. We call smax “classicality” of the Gaussian input state28.
Meanwhile, the (−s)-PQD for the photon number measurement
operator mj i mh j can be represented9,31 as

Wð�sÞ
Πm

ðβÞ ¼ 2
πðsþ 1Þ

s� 1
sþ 1

� �m

Lm
4jβj2
1� s2

 !
e�

2jβj2
sþ1 ; (7)

where Lm(x) is the mth Laguerre polynomial and s >− 1.
The first method is to estimate the Born rule probability within

an additive-error. From the result in ref. 5, one can estimate the
outcome probability p(ν) within error ϵ with success probability
1− δ for a given number of samples N ¼ 2M2

!
ϵ2 log 2

δ. Here, M! is
the (forward) negativity bound of the circuit defined as

M! ¼
YM
i¼1

Mρi

YM
j¼1

max
βj

Wð�sÞ
Πνj

ðβjÞ
���

���; (8)

whereMρi ¼
R
d2αi jWðsÞ

ρi ðαiÞj is the negativity of the state ρi in the
phase space. When the negativity bound M! increases at most
polynomially in the number of modes M, we can efficiently
estimate the corresponding outcome probability with additive-
error ϵ within running time T ¼ poly ðM; 1=ϵ; log δ�1Þ.
Although this method is generally applicable for circuits having

negativity, we usually encounter exponential negativity bound,
i.e., M! ¼ cM with c > 1, due to the input state negativity or a
high maximum peak of the quasiprobability distribution of the
measurement part. To circumvent this problem, finding a good
quasiprobability representation for a given circuit with a small
negativity is critical32. For instance, let us consider a GBS circuit
with the input of a pure squeezed vacuum state and photon
number measurement. By choosing s-PQDs, the negativity of the
input state is removed when s � smax. However, the negativity
bound is still exponential in the number of modes because of the
high peaks of s-PQDs for the measurement operators except for a
small squeezing parameter.
Remarkably, for special cases, we can reach a much stronger

approximation, namely FPRAS. An FPRAS can estimate the target
function p(ν) within a multiplicative-error ϵ, which means for any
0 < ϵ < 1, 0 < δ < 1, the algorithm outputs μ such that

Pr ½ð1� ϵÞpðνÞ � μ � ð1þ ϵÞpðνÞ� � 1� δ; (9)

with the running time poly ðM; 1=ϵ; log δ�1Þ. A sufficient condition
for FPRAS is that the target function can be written as an integral
of a log-concave function f(t), i.e., log f ðθx þ ð1� θÞyÞ �
θ log f ðxÞ þ ð1� θÞ log f ðyÞ for all x, y and 0 < θ < 1, such that
pðνÞ ¼ RR2M f ðtÞdt26,29. Let us consider a linear optical circuit as in
Eq. (5). Since a multivariate Gaussian distribution is log-concave, s-
PQD of a Gaussian input state fulfills the condition of log-
concavity. If we choose a Gaussian measurement, the integrand
satisfies the log-concavity but it is a trivial case. In this work, we
develop a technique for making the quasiprobability of a non-
Gaussian measurement log-concave, by manipulating quasiprob-
ability in the phase space. The main results are the following:

● Our key technique for manipulating quasiprobability distribu-
tion in the phase space

● Scheme for additive/multiplicative-errors approximations of
outcome probabilities of a linear optical circuit depending on
the parameter regime
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● Providing additive-error approximation algorithms for various
matrix functions beating best-known classical algorithms, such
as the hafnian of a complex symmetric matrix (Theorem 1)
and the permanent of HPSD matrix (Theorem 2)

● Providing multiplicative-error approximation algorithms for
various matrix functions, such as the hafnian of a structured
matrix (Theorem 3)

● Sufficient conditions for the efficient simulability of lossy GBS
under a poly-sparsity assumption (Theorem 4)

We summarize additive- and multiplicative-errors quantum-
inspired algorithms for various matrix functions including
Torontonian in Supplementary Table I.

RESULTS
Manipulating quasiprobability in the phase space
In the previous section, we introduced two approximation
schemes for the Born rule probability of an optical circuit. Those
methods themselves do not seem to give powerful results for
physically relevant situations. To obtain more interesting results,
we propose a method manipulating the shapes of quasiprob-
ability distributions using the symmetry of circuit transformation
in the phase space.
In a general situation, one can rewrite the Born rule probability

Eq. (1) as

pðνÞ ¼ πM
Z

d2Mαd2MβWðtÞ
ρin
ðαÞT ðt;sÞE ðβjαÞWð�sÞ

Πν
ðβÞ

¼ πM
Z

d2Mαd2MβWðtÞ
ρin
ðαÞhðαÞT 0ðt;sÞ

U ðβjαÞ
(10)

´ gðβÞWð�sÞ
Πν

ðβÞ (11)

:¼ πM
Z

d2Mαd2MβW
0 ðtÞ
ρin

ðαÞT 0ðt;sÞ
U ðβjαÞW 0ð�sÞ

Πν
ðβÞ; (12)

where W 0ðtÞ
ρin ðαÞ ¼ WðtÞ

ρinðαÞhðαÞ and W 0ð�sÞ
Πν

ðβÞ ¼ Wð�sÞ
Πν

ðβÞgðβÞ with
appropriate functions h(α) and g(β). For the second equality, the
transition function should satisfy a condition resulting by a
symmetry in the phase space, which is given by

T ðt;sÞ
E ðβjαÞ ¼ hðαÞT 0ðt;sÞ

U ðβjαÞgðβÞ; (13)

Here, the auxiliary functions h(α) and g(β) have to be chosen so

that the modified functions W
0 ðtÞ
ρin ðαÞ; T

0ðt;sÞ
U ðβjαÞ, and W 0ð�sÞ

Πν
ðβÞ are

well behaved in the phase space. An important point is that the
modified functions do not need to be proper quasiprobability
distributions of physical operators because we only need to
exploit their shapes in the phase space. Consequently, these
additional degrees of freedom allow us to further optimize the
shapes of s-PQDs for our purposes.
Let us consider the linear optical setting. For t= s, with

transition function TU(β∣α)= δ(β− Uα), one can choose the
modified function T 0

UðβjαÞ ¼ TUðβjαÞ with hðαÞ ¼ eγjαj
2
; gðβÞ ¼

e�γjβj2 with an appropriate constant γ. For this choice, we exploit
the norm-preserving symmetry of linear optical transformation in
the phase space, i.e., ∣α∣2= ∣β∣2, and the product form of s-PQDs.

As a result, the Born rule probability is rewritten as

pðνÞ ¼ πM
Z

d2Mαd2Mβ
YM
i¼1

WðsÞ
Vi
ðαiÞδðβ� UαÞ

´
QM
j¼1

Wð�sÞ
Πmj

ðβjÞ

¼ πM
Z

d2Mαd2Mβ
YM
i¼1

WðsÞ
Vi
ðαiÞeγjαj

2

δðβ� UαÞ

(14)

´ e�γjβj2 YM
j¼1

Wð�sÞ
Πmj

ðβjÞ (15)

¼ πM
Z

d2Mα
YM
i¼1

WðsÞ
Vi
ðαiÞeγjαi j

2 YM
j¼1

e�γjβj j2Wð�sÞ
Πmj

ðβjÞ (16)

:¼
Z

d2Mα
YM
i¼1

Piðαi ; Vi; s; γÞ
YM
j¼1

f jðβj;Πmj ; s; γÞ; (17)

where Piðαi; Vi; s; γÞ ¼ 1
N i

WðsÞ
Vi
ðαiÞeγjαi j2 with appropriate normal-

ization constants N i satisfying ∫ d2αiPi(αi, Vi, s, γ)= 1, and
f jðβj ;Πmj ; s; γÞ ¼ N je�γjβj j2Wð�sÞ

Πmj
ðβjÞ with N i ¼ N j , for i= j.

Improved approximations of outcome probabilities
Let us first focus on improving the approximation scheme with
additive-error using our method. Since Pi(αi, Vi, s, γ)’s are non-
negative distributions for a Gaussian input state, the modified
negativity bound is given by M0

! ¼QM
j¼1 maxβj f jðβj ;Πmj ; s; γÞ

�� ��.
The advantage of our method is manifest especially when M!
grows exponentially in the number of modes whereas M0

! grows
at most polynomially in the number of modes (see Fig. 1b). Let us
present a simple example for which our method works well.
Consider an M-mode identical pure squeezed vacuum states input
with squeezing parameter r > 0 and all single-photon outcomes
m= (1,…, 1). Since the negativity of the photon number
measurement operator is monotonically decreasing with growing
s, we choose s ¼ smax ¼ e�2r 28. Then the negativity bound M! is
exponential in M when the squeezing is high, i.e.,
r > 1

2 logð2þ
ffiffiffi
5

p Þ, because of maxβj jWð�smaxÞ
Π1

ðβjÞj>1. However, we
can shift the Gaussian factor by choosing γ as (see Supplementary
Note 1)

γ� ¼ ð1þ tanh rÞ ð1þ coth rÞWð1=eÞ � 1½ �; (18)

where W(x) is the Lambert W function. Note that γ* < 0, which
means an inverse Gaussian function acts on the s-PQD of the
measurement operator. From the fact that
maxβj f jðβj ;Π1; smax; γ

�Þ�� ��<1, the modified negativity bound M0
!

is exponentially small in M for any squeezing r, which renders an
efficient approximation with additive-error ϵ within running time
T ¼ poly ðM; 1=ϵ; log δ�1Þ.
Furthermore, our method provides a stronger approximation

scheme with multiplicative-error (see Fig. 1c). For instance, we
consider an M-mode identical squeezed thermal state (r, nth)
having high enough classicality smax>1 and all single-photon
outcomes m= (1,…, 1). In this case, an appropriate γ > 0 can
make s-PQD of the measurement operator a log-concave function
by adding Gaussian smoothing.

Quantum-inspired algorithms for matrix functions
Permanent and hafnian are important matrix functions in
computational complexity. Although computing these matrix
functions is generally hard21,33–35, there are still efficient methods
for matrices that have specific structures or restrictions24,25,36,37.
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Developing algorithms for estimating matrix functions of parti-
cular classes of matrices is a highly nontrivial problem and might
enable us to understand the hardness of the problem better.
One approach is using quasiprobability representations of

matrix functions. In general, there can be several ways to match
the matrix functions with the outcome probability of quantum
circuits (Fig. 1a). For example, an outcome probability of a linear
optical circuit with photon number measurements and a Gaussian
input state with zero-displacement having covariance matrix V can
be written using a hafnian as20

pðmÞ ¼ Haf ðASÞ
m!

ffiffiffiffiffiffiffiffiffijVQj
p ; (19)

where VQ ¼ V þ I2M=2;A ¼ 0 IM
IM 0

� �
I2M � V�1

Q

� 	
and AS is a

submatrix of A with repeated rows and columns depending on the
detected photons. Meanwhile, if the measurements are threshold
detectors, i.e., Πoff ¼ 0j i 0h j and Πon ¼ 1� 0j i 0h j, the correspond-
ing probability is given in terms of Torontonian as38

pðm0Þ ¼ 1ffiffiffiffiffiffiffiffiffijVQj
p Tor ðOSÞ; (20)

where O ¼ I2M � V�1
Q and m0 is an M-element binary vector

representing on/off measurement outcomes. Therefore, our
approximating methods for an outcome probability p(m) are
closely related to estimating the above matrix functions with
additive- or multiplicative-errors.
Suppose we have a Gaussian input state as a squeezed thermal

state. When the thermal part is absent, corresponding to the
standard GBS circuit, we can obtain an algorithm for estimating
the absolute square of the hafnian of a complex symmetric matrix:

Theorem 1. (Estimating hafnian) For an M ×M complex symmetric
matrix R, one can approximate ∣Haf(R)∣2 with a success probability
1− δ using the number of samples Oðlog δ�1=ϵ2Þ within the
additive-error

ϵ
λmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2Wð1=eÞp
 !M

’ ϵð1:502λmaxÞM; (21)

where λmax is the largest singular value of R.

Proof. First, we embed the hafnian of a complex symmetric matrix
to an outcome probability of a GBS circuit after rescaling the

matrix so that its singular values are on the interval 0; 1½ Þ. More
specifically, when the input is an M-mode product of pure
squeezed states with the squeezing parameters frigMi¼1, the
probability of a GBS circuit with all single-photon outcome
m= (1,…, 1) is psq ¼ 1

Z HafðRÞj j2 with Z ¼QM
i¼1 cosh ri; R ¼ UDUT ,

and D ¼ �M
i¼1 tanh ri

20. Since any complex symmetric matrix can
be decomposed as UDUT39 with a unitary matrix U, our algorithm
can be applied to general complex symmetric matrices. Mean-
while, this probability can be also written by using s-PQDs in the
form of Eq. (14) such as

psq ¼
Z

d2Mα
YM
i¼1

1

N sq
i

WðsÞ
Vsq;i

ðαiÞeγjαi j
2

´
QM
j¼1

N sq
j

8jβj j2þ2ðs2�1Þ
ðsþ1Þ3 e�

2
sþ1þγð Þjβj j2

:¼
Z

d2Mα
YM
i¼1

Psq;iðαi; ri ; s; γÞ
YM
j¼1

f sq;jðβj; rj ; s; γÞ

(22)

where Vsq,i is the covariance matrix of the squeezed state on the
ith mode and N sq

i ’s are the normalization factors for Psq,i(αi, ri, s,
γ)’s. Note that γ 2 ð� 2

sþ1 ;
2

e2rmax�sÞ for a given s and rmax :¼ max
i

ri .
An appropriate choice of γ (see Supplementary Note 1) gives an
upper bound on ∣fsq,j(βj, rj, γ, s)∣:

f sq;jðβj; rj ; γ; sÞ
�� �� � λ2max

ffiffiffiffiffiffiffiffi
1�λ2j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2maxð1�Wð1=eÞÞ2�λ2j Wð1=eÞ2

p ; (23)

where λj ¼ tanh rj , and λmax :¼ maxj λj . Then by Hoeffding
inequality40,

PrðjjHaf ðRÞj2 �Zμj � ZϵÞ � 2 exp � Nϵ2

2C2M

� �
; (24)

where Z ¼QM
i¼1 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1� λi

p
and C ¼ maxj jf sq;jðβj ; rj; γ; sÞj. Given

the success probability of the estimation 1− δ and the number of
samples Oðlog δ�1=ϵ2Þ, we arrive at the result by substituting λj ¼
λmax to obtain an upper bound. □

Note that the above algorithm gives the finest precision, to the
best of our knowledge, i.e., ϵðeλmaxÞM in Ref. 41. However, the error
is still larger than what we need for the hardness conjecture in
GBS42, so it does not lead to a contradiction. Next, if the input of
the GBS circuit is a thermal state, we have an algorithm for the
permanent of an HPSD matrix:

Fig. 1 Schemes of quantum-inspired algorithms for approximating matrix functions. For a given matrix function, a find an embedding of
the matrix function onto an outcome probability of a quantum circuit (ρ, U,Π) and choose a quasiprobability representation of the probability.
bWe depict an example of a linear optical circuit, for the approximation scheme with additive-error. Using s-PQDs for the linear optical circuit,
one can significantly reduce the negativity bound by appropriately choosing γ < 0. c Approximation scheme with multiplicative error. When
the classicality of the input state is large, one can make the s-PQDs of the measurement operator a log-concave function by choosing a
suitable γ0 > 0.

Y. Lim and C. Oh

4

npj Quantum Information (2023)   124 Published in partnership with The University of New South Wales



Theorem 2. (Estimating permanent of HPSD matrices) For an
M ×M HPSD matrix B, one can approximate Per(B) with a success
probability 1− δ using the number of samples Oðlog δ�1=ϵ2Þ
within the error

ϵ
YM
i¼1

4λ2max

eð2λmax � λiÞ ; (25)

where λi are singular values of the matrix B and λmax is the
largest one.

Proof. This corresponds to the case where the input is an M-mode
product of thermal states with the average photon numbers fnigMi¼1.
The probability of all single-photon outcomes matches the
permanent of an HPSD matrix B such as pth ¼ 1

Z0 Per ðBÞ; where

Z0 ¼QM
i¼1ð1þ niÞ; B ¼ UDUy, and D ¼ diag f n1

n1þ1 ; ¼ ; nM
nMþ1g. Then

we obtain the result by a similar procedure in the hafnian case. A
detailed derivation is given in Supplementary Note 1. □

The precision of our result outperforms the best-known one23

because the latter is a special case of ours when s= 1 and γ= 0
(see Fig. 1b). Specifically, when λmax 2 ð0; 1=2Þ, our method’s
precision is better than the previous one (see Supplementary Note
1). Moreover, when the input is a squeezed thermal state, we
obtain an algorithm for the hafnian of a structured matrix.
Similarly, we provide algorithms for the Torontonian of some
structured matrices within additive-error by substituting the
photon number measurement with a threshold detector. The
detailed results are in Supplementary Note 1.
Recall that we have an FPRAS when the estimate function is log-

concave. Thus our goal is to make the estimate function log-
concave by controlling the parameters s and γ in our scheme. For
the permanent of an HPSD matrix, this is possible when
λmax=λmin � 2 (a proof in Supplementary Note 2), which repro-
duces the existing result of ref. 26 in the case 1 ≤ λi ≤ 2 after a
normalization. Especially for an HPSD matrix with λmin ¼ 0,
estimating the permanent within a multiplicative-error is NP-
hard43; thus λi > 0 is the crucial condition for the efficient
approximation. We emphasize that our formulation comes from
a physical setup, which is essentially different from the method in
ref. 26, where the technique is restricted to the properties of the
permanent of a positive definite matrix. Thus our result can be
readily extended to a more general situation other than the
permanent of a positive definite matrix. When the input state is a
product of squeezed thermal states fri ; nigMi¼1, we have an FPRAS
for the hafnian of a matrix having a specific form, such that 2 × 2
block matrix whose diagonal elements are symmetric matrices
and off-diagonal elements are HPSD matrices.

Theorem 3. (FPRAS for hafnian) Suppose we have a block matrix

A ¼ R B
BT R�

� �
with an M ×M complex symmetric matrix R and

an M ×M HPSD matrix B, which have decompositions by a unitary
matrix U as UDUT and UD0Uy, respectively, with

D ¼
MM
i¼1

ð1þ 2nÞ sinh 2ri
1þ 2nð1þ nÞ þ ð1þ 2nÞ cosh 2ri ; (26)

D0 ¼
MM
i¼1

2nð1þ nÞ
1þ 2nð1þ nÞ þ ð1þ 2nÞ cosh 2ri ; (27)

where n= ni for all i and n, ri ≥ 0. Then Haf(A) can be approximated
by FPRAS when the parameters satisfy a condition as

n � 1
4

6 sinhð2rmaxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18 coshð4rmaxÞ � 14

p
� 2


 �
; (28)

where rmax ¼ maxi ri .

Proof. See Supplementary Note 2. □

We also consider an on/off measurement instead of the photon
number measurement, which corresponds to the Torontonian
(detailed analysis is given in Supplementary Note 2).
Moreover, we give nontrivial lower and upper bounds on the

values of various matrix functions including the permanent and
hafnian by adjusting the parameter s, which have independent
interests (Supplementary Note 3)44.

Sparse GBS
Our algorithm has an interesting application to the simulation of
GBS. Recall that if the input is a classical state, the corresponding
GBS can be efficiently simulated16. In our language, this is the case
when smax � 1. For a non-classical input state (smax<1), however, a
classically efficient simulation may not be possible from the
hardness of GBS. Nevertheless, we can approximate any (marginal)
outcome probability of the circuit using our algorithm under
certain conditions. Then one can simulate the GBS when its output
distribution is poly-sparse, in which a probability distribution with
polynomially many of the most likely outcomes well approximates
the true distribution45,46.

Theorem 4. (Estimating outcome probabilities of GBS) For a lossy
GBS circuit with squeezing frigMi¼1 and a transmissivity η, one can
efficiently approximate any (marginal) outcome probability within
1/poly(M) additive-error when ηe�2rmax þ 1� η � ffiffiffi

5
p � 2 with

rmax ¼ maxi ri .

Proof. Let us first consider a GBS circuit with a product of lossy
squeezed input states with a transmissivity η having

the covariance matrix on ith mode as Vη;i ¼
1
2

ηe2ri þ 1� η 0
0 ηe�2ri þ 1� η

� �
and a photon number mea-

surement Πmj ¼ mj

�� �
mj

 ��. Then an outcome probability of

m= (m1, . . . ,mM) is given by

pðmÞ ¼ πM
Z

d2Mα
YM
i¼1

WðsÞ
Vη;i

ðαiÞ
YM
j¼1

Wð�sÞ
Πmj

ðβjÞ: (29)

We take s ¼ smax ¼ ηe�2rmax þ 1� η. If we examine the probability
of all single-photon outcomes m= (1,…, 1), a condition for an
efficient estimation is maxβj jπWð�smaxÞ

Π1
ðβjÞj � 1, which leads the

restriction smax �
ffiffiffi
5

p � 2. Now we must check whether this
condition is valid for other outcomes. From the behavior of
Wð�sÞ

Πm
ðβÞ, we can find out that

max
β

jWð�sÞ
Πm

ðβÞj � max
β

jWð�sÞ
Π1

ðβÞj; (30)

for n ≥ 2 and s ≥ 0. Lastly, we consider πWð�sÞ
Π0

ðβjÞ for zero-photon
detection and

P
mj
πWð�sÞ

Πmj
ðβjÞ for the marginalized probability on

mode j, where the latter sum equals to one by the normalization
condition. In both cases, the integrals for βj’s can be easily
computed because βj components in WðsÞ

Vη
ðαÞ constitute a

multivariate normal distribution. Therefore, we can first perform
the integrals on βj’s corresponding to zero-photon or marginalized
ones and estimate the remaining terms. □

Note that the condition in Theorem 4 yields rmax � 1
2 logð2þffiffiffi

5
p Þ ’ 0:722 for an ideal GBS (η= 1). However, under photon loss,
any squeezed input state is possible when η � 3� ffiffiffi

5
p ’ 0:764,

which is much higher transmissivity than those used in current
experiments12,13.
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We also consider GBS with threshold detectors38, whose s-PQD
for “click” is given by

πWð�sÞ
on ðβÞ ¼ 1� 2

sþ 1
e�

2
sþ1jβj2 : (31)

Since the range of πWð0Þ
on ðβÞ ¼ 1� 2e2jβj

2
is [− 1, 1] in the Wigner

representation (s= 0), it allows any squeezing of the input state
even for the lossless case (η= 1). Then we can estimate any
(marginal) probability by the same argument of the photon-
number measurement case. We give a detailed analysis in
Supplementary Note 4.
In both cases, those algorithms of estimating (marginal)

probability with inverse-polynomial additive-error precision with
the poly-sparsity condition imply classically efficient simulations of
GBS. Since it is difficult to expect the sparsity condition for current
experiments, our results do not lead to a direct simulation of them.
However, it can be useful for application-targeted GBS experi-
ments whose outcomes might satisfy the poly-sparsity condition.
Furthermore, we might consider an additional source of noise to

allow smax>1 by introducing thermal noise with the
average photon number nth. In that case, the covariance
matrix of ith mode input state is Vη;nth;i ¼ 1

2

ηe2ri þ ð1� ηÞð2nth þ 1Þ 0
0 ηe�2ri þ ð1� ηÞð2nth þ 1Þ

� �
. By the

log concavity condition, we can compute any (marginal) probability
within a multiplicative-error if the following condition is satisfied:

nth � e�rmaxη sinh rmax þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η sinh 2rmax

p
1� η

>1: (32)

For instance, if η= 0.5 and rmax ¼ 1, then nth � n�th ’ 3:79, and
the minimum value of n�th is 1 when η→ 0.
In Fig. 2, we depict our results of approximating probability and

simulation for GBS circuits with threshold detectors via the
classicality smax. Remarkably, there are two transition points of
complexities via the classicality smax. (i) smax ¼ 1: This point
indicates the transition from ϵ-simulation with the sparse
condition to exact simulation. Whether ϵ-simulation without
sparse condition can exist when smax<1 is an interesting open
question. (ii) smax ¼ sm: Note that sm is the point saturating the
inequality Eq. (32), which indicates the transition of complexities
from BPPNP to BPP for approximating the probability within a
multiplicative error.

DISCUSSION
We propose a method for calculating the outcome probability of a
linear optical circuit, by introducing modified functions with a
lower negativity bound than the quasiprobability distribution. This
leads to various improved approximating algorithms for the
outcome probabilities of the circuit. Furthermore, we suggest an

FPRAS using our method modulating s-PQDs and the efficient
sampling of log-concave functions with multiplicative-error. Our
results provide a helpful tool for controlling the negativity of the
circuit in the phase space and interesting quantum-inspired
algorithms in computational complexity.
Although we focus on Gaussian input states and photon

number or threshold measurements in a linear optical circuit in
this work, our scheme can be also applied to other systems, for
example, Clifford circuits47 with a dimension of odd prime d. If one
exploits the symmetry of the transition function in the phase
space, a nontrivial approximation algorithm can be rendered for
the corresponding matrix function. Since there can be several
equivalent choices of circuits for the same matrix function, e.g.,
permanent of a unitary matrix48,49, finding the optimal circuit is
still an interesting open problem. After a proper circuit choice,
there are other optimization problems, such as choosing
quasiprobability representation and optimizing parameters for
manipulating them in the phase space. Therefore, there might be
more improvements for quantum-inspired algorithms for approx-
imating corresponding matrix functions.
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