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Single-hole spectra of Kitaev spin liquids:
from dynamical Nagaoka ferromagnetism
to spin-hole fractionalization
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The dynamical response of a quantum spin liquid upon injecting a hole is a pertinent open question. In
experiments, the hole spectral function, measured momentum-resolved in angle-resolved
photoemission spectroscopy (ARPES) or locally in scanning tunnelingmicroscopy (STM), can be used
to identify spin liquid materials. In this study, we employ tensor network methods to simulate the time
evolution of a single hole doped into the Kitaev spin-liquid ground state. Focusing on the gapped spin
liquid phase, we reveal two fundamentally different scenarios. For ferromagnetic spin couplings, the
spin liquid is highly susceptible to hole doping: a Nagaoka ferromagnet forms dynamically around the
doped hole, even at weak coupling. By contrast, in the case of antiferromagnetic spin couplings, the
hole spectrumdemonstrates an intricate interplay between charge, spin, and flux degrees of freedom,
best described by a parton mean-field ansatz of fractionalized holons and spinons. Moreover, we find
a good agreement of our numerical results to the analytically solvable case of slow holes. Our results
demonstrate that dynamical hole spectral functions provide rich information on the structure of
fractionalized quantum spin liquids.

Quantum spin liquids have long captivated interest as strongly-correlated
systems due to their intriguing properties, such as long-range topological
entanglement and fractionalized excitations1–5. Theoretical models and
classifications have been developed to understand these exotic states6,7. The
Kitaev spin liquid provides a unique route to access spin liquids because of
its exact solvability8. However, more relevant descriptions of materials
include additional spin interactions spoiling exact solutions9–12. Thus,mean-
field analyses or numerical studies are required to explore their effects on the
stability of the quantum spin liquid phase or the formation of competing
magnetic orders13–16.

Doping holes into the Kitaev spin liquid introduces an additional layer
of complexity to the situation, enabling further fascinating phenomena. The
model can still be solved exactly for slow holes by associating flux, fermion,
and plaquette quantum numbers to the holes17,18. Moreover, previous stu-
dies analyzed the influence of afinite hole densitywith additional spin terms
in the form of Heisenberg interactions within mean-field theories19–23.
Remarkably, they found several superconducting states, including possible
topological superconductivity.

Anotherpendingproblemis thedynamics of holes in the limit of sparse
doping or even for a single hole inserted into the spin-liquid ground state.

This question is of particular interest for experimental probes such as angle-
resolved photoemission spectroscopy (ARPES) and scanning tunneling
microscopy (STM), which directly measure the hole dynamics. Multiple
plausible scenarios arise for the single-hole response. One possibility
involves the fractionalization of the hole into holon and spinon quasi-
particles. If these quasiparticles are deconfined, the hole spectral function
will exhibit broad features and the spinons will determine the shape at the
lowest energies at strong coupling. In a one-dimensional system, this sce-
nariooccursnaturally24–26, but is also relevant for spectral functions inhigher
dimensions27,28. This was directly confirmed numerically for the kagome
spin liquid29 and the chiral spin liquid on the triangular lattice30. On the
other hand, for confined spinons and holons, the spectrum shows a sharp,
possibly renormalized, dispersion at low energies, as observed for the square
lattice antiferromagnet31–40.

Conversely, inserting a single hole can significantly impact the ground
state of spin models. One famous example is the phenomenon of Nagaoka
ferromagnetism41,42, where the kinetic energy induced by the hole competes
with the spin fluctuations. For strong interactions or equivalently fast holes,
the ground statemay then favor ferromagnetic order. First directly observed
in quantum dot experiments43, this intriguing behavior has sparked recent
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explorations on frustrated lattices in the context of semiconductor
heterostructures44 and cold atoms45–47. However, this phenomenon does not
only affect single-hole ground states but can also emerge dynamically, as has
been demonstrated for states at infinite temperatures48,49. So far, dynamical
Nagaoka ferromagnetism from quenching a ground state with a hole has
remained unexplored.

Considering these possible scenarios, this work investigates the crucial
question of what happens to a quantum spin liquid state when a single hole
is dynamically inserted. Specifically, we focus on the hole dynamics in the
Kitaev spin liquid with both ferromagnetic and antiferromagnetic cou-
plings; Fig. 1. As exact solvability is lost, we employ tensor networkmethods
to simulate the time evolution after a hole quench and compute the hole
spectral functions. In contrast to previous ARPES studies and high-
temperature experiments of the Kitaev candidate materials α-RuCl3

50,51 and
Na2IrO3

52–54, we directly analyze the fate of the Kitaev spin-liquid ground
state upon sudden hole injection. Specifically, we show that for ferromag-
netic Kitaev couplings, even slow-moving holes can dynamically polarize
the ground state fromaKitaev spin liquid to a ferromagnetic state due to the
dynamical Nagaoka effect. Intriguingly, for antiferromagnetic Kitaev cou-
plings, the hole spectral function shows signatures of a spinon-holon frac-
tionalization that a parton mean-field theory can partly explain. However,
due to the complex interplay of spin, charge, and flux physics that renor-
malizes the energy scales of each other, the partonmean-field ansatz cannot
capture all phenomena correctly. By contrast, in the limit of slow holes, we
can directly confirm the contribution of fractionalized excitations17.

Results
Model
The exactly solvable Kitaevmodel8 is a paradigmatic example of a quantum
spin liquidhosting topological order and fractionalized excitations.Here,we
summarize someof itsmost importantproperties. TheKitaevmodel is given
by

HK ¼ �Jx
X
hi;jix

σxi σ
x
j � Jy

X
hi;jiy

σyi σ
y
j � Jz

X
hi;jiz

σzi σ
z
j ; ð1Þ

where the first, second, and third terms act on x-, y-, and z-bonds of a
honeycomb lattice, respectively, see Fig. 1. Throughout this work we will fix
∣Jx∣ = ∣Jy∣ ≡ ∣J∣ = 1. The system undergoes a phase transition from a gapped
Z2 topological phase for ∣Jz∣ > 2 to a gapless phase for ∣Jz∣ < 2. Remarkably,
these phases exist for both signs of the Kitaev couplings J. Here, we will
examine both ferromagnetic couplings J > 0 and antiferromagnetic cou-
plings J < 0 and focus on the gapped case. We find qualitatively similar
behavior for the gapless phase; see “Methods” section for additional data.

The Kitaev model hosts an extensive number of conserved quantities,
described by the flux operator around a plaquette; see inset in Fig. 2c:

W ¼ σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 ð2Þ

For each plaquetteW has eigenvalues ±1. The ground state is in the flux free
sector, where 〈W〉 =+1 for all plaquettes. Accordingly, we say that a flux is
introduced into the system if 〈W〉 =−1 for one of the plaquettes.

For the exact solution of Eq. (1), the spin operators are decomposed
into matter Majorana fermions χ0i and bond Majorana fermions χai
[a∈ (x, y, z)], such that fχαi ; χα

0
j g ¼ 2δijδαα0 [α∈ (0, x, y, z)]. Then, the spins

are written in terms of the Majorana fermions as

σai ¼ iχ0i χ
a
i ; a 2 ðx; y; zÞ: ð3Þ

Introducing directed bond operators ûhijia ¼ iχai χ
a
j from theA to theB

sublattice, we rewrite the Kitaev model

HK ¼ i
X
a;hijia

Jaûhijiaχ
0
i χ

0
j : ð4Þ

The gauge operators ûhijia commute with each other and with the matter
Majorana fermions. Thus, the Hamiltonian splits into separate sectors of
the bond operators, which have eigenvalues uhijia ¼ ± 1. Moreover, the
plaquette operator W can be expressed as a product of ûhijia around a
hexagon asW ¼ ûh12ix ûh23iy ûh34iz ûh45ix ûh56iy ûh61iz .

To introduce holes into the system, twodifferent approaches have been
discussed before. On the one hand, in refs. 19–22,55 holes are inserted in a
t− Jmodel formalism, similarly to the description of cuprates from a spin
Hamiltonian on a square lattice56. On the other hand, refs. 17,18 introduce
holes as spin sites, where the interactions to all other sites aremissing.While
the second approach gives exact results for very slow holes, we will focus on
the first one, which captures the experimentally relevant finite hopping

Fig. 1 | Response of Kitaev spin liquids upon single-hole doping.When inserting a
single hole into the Kitaev spin liquid, the hole either dynamically reorders the spin
background into aNagaoka ferromagnet for ferromagnetic (FM) spin couplings J > 0
or fractionalizes into spinon and holon quasiparticles for antiferromagnetic (AFM)
spin couplings J < 0.

Fig. 2 | Dynamically emerging Nagaoka ferromagnetism in a doped Kitaev spin
liquid with FM spin couplings. a Typical examples for snapshots of the Fock
configurations occurring with large probability in the wave function; see Eq. (6);
obtained from matrix product states (MPS) at times τ = 0 [1/J] and τ = 10 [1/J] are
shown. We identify the FM cluster size NC by connecting all spins pointing up
(purple dots) or down (orange dots) starting from the hole site (green dots).
b Extracted from 10,000 snapshots of the state at each time, a large ferromagnetic
(FM) cluster of spins forms around the hole. Of the N = 160 sites in the system, the
cluster has a size of Nc ≈ 35 (40) sites for hopping constants t/J = 3 (6). The speed of
the FM cluster expansions is set by the hopping constant t; see dashed lines fitted to
the snapshot data. c While the FM cluster size increases, the flux operator average
〈W〉 decays with time. All data shown is for ferromagnetic couplings J > 0 and
anisotropy Jz/J = 2.5.
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regime. Later,we compare it to the slow-hole limit aswell. Therefore,we add
a kinetic term for nearest-neighbor hole hopping to theKitaevHamiltonian:

H ¼ Ht þ HK

¼ �t
P
hiji;σ

PGW cyiσcjσ þ h:c:
� �

PGW � P
a;hijia

Jaσ
a
i σ

a
j :

ð5Þ

cyjσ (cjσ) create (annihilate) fermionswith spin σ and theGutzwiller projector
PGW excludes doubly occupied sites. The holes are related to the spin
operators by σai ¼ ðcyi"; cyi#Þσaðci"; ci#ÞT , where σa are the corresponding
Pauli matrices. The spin anisotropy in the Kitaevmodel originates from the
strong spin-orbit coupling of electrons to the d-orbitals, for example, in
Iridate materiales9. Therefore, the spins above are not electron spins but
rather hybridized pseudo-spins. Nevertheless, they can directly be related to
the electron operators at low energy as in Eq. (5), which have an isotropic
hopping; see derivation in the “Methods” section.

When including the term Ht, the Hamiltonian is no longer exactly
solvable and also yields different behavior for AFM couplings J < 0 and FM
couplings J > 0. Note that we stick to the usual Kitaev conventions with a
minus sign in front of the spin Hamiltonian. Mean-field approaches offer
convenientmeans to obtain results in this limit19–22,57; however, they possess
inherent limitations and dependence on physical assumptions. Therefore,
we will resort to numerical techniques to solve the dynamics of Eq. (5). We
note that exact diagonalization studies of a similar system have been per-
formed earlier55. These are restricted to small system sizes and can hence
only access a limited number of momenta for the hole spectral function.
Here we use tensor networks in the form of matrix product states (MPS),
which allow us to study larger systems on a cylinder with length Lx and
circumference Ly. Details on the numerical methods are provided in the
“Methods” section.

Dynamical Nagaoka ferromagnetism
The presence of a ferromagnetic (FM) Kitaev coupling constant (J > 0) is
expected to be realized in some prominent Kitaev materials, such as
Na2IrO3

58 or α-RuCl3
59. This motivates us to investigate the behavior of a

single hole that is inserted into the spin-liquid ground state with FM
couplings.

We first look at snapshots of the state during the time evolution and
analyze these to shed light on the underlying dynamics. With the perfect-
sampling algorithm introduced in ref. 60, we can extract typical product-
state configurations of the MPS and the corresponding probabilities in the
computational basis, which is either a spin-up, spin-down, or hole state for
the t-J model. For this basis f∣si � ∣s1s2 . . .

�
; si 2 ð";#; °Þg, the wave

function is given by

∣ψ
� ¼ X

s

cs∣si: ð6Þ

Then the probability for a snapshot (i.e., the Fock space configuration ∣si) is
p(s) = ∣cs∣2.We canuse this for sampling the expectation value of an operator
O with a subset S of basis states, where O is diagonal in the corresponding
basis,

ψ
�

∣O∣ψ
�
≈
X
s2S

pðsÞ sh ∣O∣si: ð7Þ

Note that particle number conservation enforces precisely one hole per
snapshot. Examples of such snapshots are displayed in Fig. 2a. For the initial
state at τ = 0 [1/J], some small FMclusters are found, which are formed only
from the spin background of the Kitaev spin liquid due to quantum fluc-
tuations. At late times, e.g., τ = 10 [1/J], we observe larger FM clusters
around the site where the hole is located. The anisotropic spin interactions
Jz/J = 2.5 used in our simulations favor FM correlations in z-basis, which is
used as theFockbasis to sample the snapshots.Hence, the snapshots directly
depict the fluctuating FM order.

The system undergoes a complex evolution over time. We define the
FMcluster sizeNc around a hole as the number of aligned spins that directly
connect to the site where the hole is for a given snapshot. Note that for the
initial state, the hole will always be at the origin, where it was inserted.
However, after some time, it will have spread to different lattice sites.
Therefore, we cannot capture the emergent cluster size with (local) expec-
tation values but have to resort to the analysis of snapshots. The average of
10,000 snapshots reveals that the cluster size increases linearly in time; see
Fig. 2b. The velocity of this increase depends on the hopping parameter t, as
demonstrated by the presented fits (dashed lines). Notably, for fixed system
size, themaximumsize of theFMclusters is proportional to the ground state
magnetization M0 ¼

P
ihψ0;1hjσzi jψ0;1hi in the presence of one hole,

which also is approximately proportional to t61. However, due to the energy
constraints within unitary time evolution, the FM clusters cannot reach the
ground-statemagnetization valueM0 as the hole excites the system. Instead,
we find NC ~M0/2, with M0 determined numerically. We also find that
increasing t or doping a finite but small hole density instead of a single hole
leads to the same magnetization for larger system sizes.

The dynamical formation of the FM cluster can be understood from
the same argument as in Nagaoka’s theorem for ground states with a single
hole. For a hole that hops on a bipartite lattice, the kinetic energy is mini-
mized when the interference of different hopping paths is constructive. In
particular, this is the case when all spins are aligned, and hence the hole
motion does not change the spin pattern. The minimization of kinetic
energy usually competes with antiferromagnetic spin interactions, which
prefer anti-aligned spins. For example, for the square lattice AFM, a large
hopping strength is required to establish Nagaoka ferromagnetism. There,
numerical computations find a large FM polarization around the hole for
tNagaoka/J≳ 3062. In contrast, for the Kitaevmodel, the local spin interaction
is already ferromagnetic and frustration only arises between the different
x−, y−, and z−spin directions. Thus, a small hole hopping t/J and aniso-
tropy Jz can easily favor the ferromagnetism through kinetic energy mini-
mization. This is the reason for the formation of large FM clusters around
the hole, already for the moderate hopping strength of t/J = 3(6) considered
in Fig. 2.

The flux average 〈W〉 over all plaquettes of the system, Fig. 2c, quickly
decreases with time which indicates the disappearance of the Kitaev spin
liquid. This observation highlights the transformative nature of the system
as it transitions from a spin liquid to a ferromagnetic state. However, finite
flux 〈W〉 can still be present simultaneously with large FM clusters, which is
a remnant of the Kitaev spin liquid. Even though the spins get dynamically
polarized, information remains about the initial flux configuration. The
same phenomenon occurs in the ground state of the one-hole dopedKitaev
model, where both the magnetization and the flux expectation value 〈W〉
can be non-zero simultaneously61.

The hole spectral function, as measured by ARPES, provides energy-
andmomentum-resolved information about the response of the spin-liquid
state. It gives insights into the fractionalization of quasiparticles in terms of
spinons and holons28–30,63. Concretely, we are interested in calculating

Aðk;ωÞ ¼
X
σ¼";#

Z
dτeiτω ψ0

�
∣cykσðτÞckσð0Þ∣ψ0

�
; ð8Þ

where ∣ψ0

�
denotes the Kitaev spin-liquid ground state. For numerical

details and additional data regarding convergence in bond dimension, we
refer to the “Methods” section. We shift all energies by a constant μ that is
computed from the energy difference between the ground state without a
hole and with a single hole. Therefore, it corresponds to theMott gap of the
insulator, and all hole excitations have to be outside that gap. In our
convention, we plot−ω+ μ, which hence must be a positive energy.

InpreviousX-ray scattering studies64, the bond-depending interactions
could be directly observed by measuring different spin components sepa-
rately. Similarly, a spin-resolved response of the hole spectrum is experi-
mentally feasible65. We derive the connection between the spectrum for all
physical electrons in a d5 orbital and the low-energy effective electrons as in
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Eq. (8) in the “Methods” section. However, in our numerical computations,
we observe the same responses for spin up and down for all spectral func-
tions below, corresponding to the symmetry of cyj" and cyj# in Eq. (5).
Therefore, we cannot gain additional insights from looking at the spin-
resolved spectra numerically. However, spin-asymmetry may be used in
experiments to characterize perturbations to the considered model.

The resulting spectrum for J > 0 with a Kitaev anisotropy Jz/J = 2.5 and
ahopping constant of t/J = 3.0 is shown inFig. 3.Weobserve thatmost parts
of the spectral function resemble that of a free hole (green line), meaning
that it follows the dispersion fromonlyHt in Eq. (5). This is consistentwith a
large FM cluster formation, where the hole can hop ballistically without
distorting the spin background. Notably, both the energy dispersion and
distribution of spectral weight Zk, obtained from this simple model, exhibit

good agreement with the full spectrum of the Kitaev t− J model. For the
spectral weight, we fit a Gaussian to the low energy (−ω+ μ < 3t) and high
energy (−ω+ μ > 3t) branch of the MPS spectrum and integrate over the
energies. The direct comparison of the spectral weight shows that indeed
there are two branches in the spectrum, as for the free hopping case, but at
each momentum, most of the weight is found in only one of them. Addi-
tionally, a more careful look at the spectral weight reveals missing weight in
the sum of low and high energy branches for the MPS data,
Zð�ωþμ > 3tÞ
k þ Zð�ωþμ < 3tÞ

k <1, even though the sum rule ∫dωA(k,ω) = 1 is
fulfilled, when numerically integrating over the whole spectrum. This
indicates that the spectrum also has some contributions from a continuum,
which is especially visible in the M2-M3 cut of the spectrum. There, the
broadening is much wider than the applied Gaussian broadening for the
numerical algorithm.Hence, even though the free-hole picture accounts for
most features in the spectrum, it does not fully describe all the details, where
the continuum suggests further interactions between several individual
constituents. Although a broad continuum is expected when the hole
separates into fractional quasiparticles, these features here are too fragile to
infer the spin-liquid nature of the ground state from the hole spectrum. By
contrast, the hole spectrum directly uncovers the dynamically emerging
ferromagnetism induced by dynamically doping the hole, which is an
interesting phenomenon on its own.

To further investigate the connection between the flux decay, as shown
in Fig. 2c, and the hole motion, we look at the correlation functions 〈nrWp〉
for a fixed hole position r six sites away from the original site of the hole
insertion at time τ0 = 0 [1/J]. Initially, the hole is positioned at a fixed site in
the middle of the cylinder, resulting in an expectation value of zero for the
hole everywhere else and hence leads to a vanishing correlator. As time
progresses, the hole propagates towards site r along various paths, as illu-
strated in Fig. 4a. After a short time τ1 ≈ 0.5 [1/J], the shortest path that is a
direct connection from the initial sites reaches site r, leading to the reduction
of 〈Wp〉 on plaquettes p along that particular path. Subsequently, at longer
times τ2 and τ3, additional paths become accessible, resulting in the decay of
〈Wp〉 on more plaquettes in a wider range around the sites involved. Since
thefluxWpdecays in a large area between the hole and its initial position,we
can disregard the possibility of a composite quasiparticle, such as bound
flux-hole states, that could move around freely but restores the spin back-
ground after propagating further.

To summarize, for ferromagnetic Kitaev couplings J > 0, the hole does
not separate into fractionalizedquasiparticles. Instead, the spin liquid state is
destroyed, paving the way for a dynamically emerging ferromagnetic state.
In the thermodynamic limit, only an infinitely fast hole is expected to give
rise to an extensive FM polarization of the system. Our analysis, however,

Fig. 3 | Hole spectral function for ferromagnetic Kitaev couplings. The spectral
function A(k, ω) for ferromagnetic J > 0, Jz/J = 2.5 and t/J = 3.0 along the three dis-
tinct cuts in the Brillouin zone (see inset in the bottom row) shows significant

resemblance with the spectrum of a free hole hopping on a honeycomb lattice (green
lines). Both the energy dispersion (top row) and the spectral weight (bottom row)
agree well with the free hole.

Fig. 4 | Flux dynamics after hole insertion. aWhen hopping from the initial site to
the response site r, the hole can move along different paths contributing to the
dynamics at the corresponding times. b The correlations 〈nrWp〉 between a hole at a
fixed site r and all plaquettes p get destroyed along the paths as time evolves from τ1
to τ3. Shown data is for ferromagnetic Kitaev couplings J > 0, Jz/J = 2.5 and t/J = 3.0.
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shows that already for intermediate hopping strength significant FM
polarization clouds can be observed. Above, we focus on the specific gapped
case of Jz/J = 2.5 and t/J = 3.0. The same phenomena also occur for other
ratios of t/J; data are shown in the “Methods” section.

Antiferromagnetic Kitaev couplings: Fast holes
Antiferromagnetic (AFM) Kitaev couplings J < 0, which are predicted to be
relevant for a recently explored class of Kitaev materials66, exhibit distinct
behavior upon doping compared to ferromagnetic (FM) couplings, as
demonstrated at the mean-field level21,22. Thus, we also investigate the
dynamics of a hole inserted into a Kitaev spin-liquid ground state with
antiferromagnetic couplings. For very large values t/∣J∣→∞, Nagaoka’s
theorem is also applicable in this case, and an FM state will arise. However,
as for the square lattice Heisenberg AFM, the hopping constant t required
for that may be very large because the gain in the kinetic energy of the hole
has to be balancedwithAFMspinfluctuations.Here, we focus on the strong
coupling regime t > ∣J∣but avoid theNagaokaFMfor all considered values of
the hopping strength.

In contrast to the FM case, the spectrum for AFM couplings exhibits a
strikingly different character, Fig. 5a. There is no clear signature of free hole
hopping. Instead, the presence of several flat bands suggests the importance
of Kitaev physics and the localization of excitations. At low energies
(−ω+ μ) < 1.5t, the spectrum reveals a rich structure of dispersionless as
well as dispersive bands; Fig. 5b.

Analytically understanding the dynamics of AFM couplings proves to
be challenging due to the intricate interplay between the hole, spin, and flux
physics. A possible approach to handle these different degrees of freedom is
by fractionalizing the hole into a spinon and holon. Spinons couple to the
spin degrees of freedom and hence contribute to the low-energy physics,
while holons, carrying the charge quantum numbers, exhibit faster motion
and contribute tohigh-energy features. The spectral function arises from the
convolution of these two contributions27,28:

Aðk;ωÞ ¼
Z

dνdqAspðk � q;ω� νÞAhðq; νÞ: ð9Þ

On a one-dimensional lattice, the factorization of the spectral functions
comes intrinsically from the spin-charge separation by mapping the t-J
Hamiltonian to independent spinon andholonparts in squeezed space63. By

contrast, in two dimensions, the decoupling of spinons and holons from the
hopping term generally can only be applied on a mean-field level. This
approach yielded promising results for the chiral spin liquid30. There, the
lowest edge of the spectrum directly agrees with the dispersion of
the corresponding spinon mean-field theory. Applying the same ansatz to
theKitaev spin liquid,wefirst rewrite the hole-dopedHamiltonianEq. (5) in
terms of holons and spinons, which interact with each other. Then, we
perform a mean-field decoupling to extract the separate spectra of these
fractionalized excitations; see “Methods” section for more details.

The convolution of spinons and holons features several flat bands
similar to the MPS spectrum. These can be identified from the flat spinon
bands corresponding to bond excitations of the χ x,y,zMajorana fermions. For
the anisotropic case Jz/J = 2.5, the z-bands are at higher energy than the x-
and y-bands. The holon contributes to the convolution with a renormalized
free hopping, which has the most spectral weight at the two van Hove
singularities. Therefore, the most prominent signatures in the combined
spectrum are flat bands at energies of the spinon bands plus holons at the
vanHove singularities. As a reference, we also put these energy lines into the
low energy spectrum obtained from MPS; see dashed and dotted lines in
Fig. 5b for the x-/y-spinons and z-spinon, respectively.

Overall, the parton mean-field theory captures the correct energies at
which responses in the low-energy part of the hole spectrum are expected
but fails to predict the spectral weight distribution; see Fig. 11 in the
“Methods” section. Therefore, themean-field ansatz does not encompass all
the relevant correlations and interplay between the charge and spin degrees
of freedom. This shortcoming may be associated with the strong holon
renormalization leading to effective hoppings tzeff ≈ 0:18 t along the z-bonds
and tx;yeff ≈ 0:11 t along the x- and y-bonds; see “Methods” section for more
details.Hence, the energy scales of spinons andholons aremixed butmay be
separated for evenmore extreme ratios t/∣J∣, whichwe cannot reliably access
numerically.

To further compare the AFM couplings with FM couplings, we define
the spectral density by integrating the spectrum over momentum
DðωÞ ¼ 1

LxLy

P
kAðk;ωÞ; see Fig. 5c. Each of the spectra is cut off at the edge

of the free holemotion at 6 t up toGaussian broadening.However, while for
FM couplings, the free hole dominates in the spectrum directly as a clear
branch, for AFM couplings there are also flat bands in the high-energy
regime of the spectrum, suggesting interactions of the free hole part with the
flat band spinons, similarly to the renormalized holon at low energies.

Fig. 5 | Hole spectral function for antiferromagnetic Kitaev couplings. a The
spectral function A(k, ω) for antiferromagnetic couplings, J < 0, Jz/J = 2.5 and
t/∣J∣ = 3.0 along the three distinct cuts in the Brillouin zone (see inset on the top
right). b Zoom-in on the low-energy part of the spectrum shows several flat dis-
persions, which agree with the parton mean-field description (green dashed and

dotted lines). c The spectral density DðωÞ ¼ 1
LxLy

P
kAðk;ωÞ, for antiferromagnetic

(AFM J < 0) and ferromagnetic (FM J > 0) Kitaev couplings. dThe FM cluster sizeNc

increases for FM couplings but stays constant for AFM couplings, as further illu-
strated by the fits (dashed lines).

https://doi.org/10.1038/s41535-024-00641-7 Article

npj Quantum Materials |            (2024) 9:32 5



Another striking difference is that for AFMcouplings, a part of the weight is
shifted towards lower energies, where there is almost no spectral weight in
the FM case. The absence of weight for FM couplings is consistent with the
free-hopping picture. Nevertheless, the total spectral density has some
deviations from the one expected from only the free hole. Instead of
expected sharp peaks at the vanHove points,−ω+ μ = 2t and−ω+ μ = 4t,
the signal is much more broadened, possibly due to further interactions
between the hole and other constituents. The low-energy features present
for the AFM couplings indicate that here the free hole does not describe the
spectrum.To further support the absence of aFMpolarization cloudaround
the hole, we conduct the same snapshot analysis as for the FM couplings. As
shown in Fig. 5d, the cluster size increases over time in the case of FM
couplings. However, the cluster size remains constant at a low value for
AFM couplings.

In the “Methods” section we present data for different hopping
amplitudes t/∣J∣. The spectra look very similar for different hoppings and
only differ slightly in the distribution of spectral weight. Similar to FM
couplings, also for AFM couplings the overall energy scaling of all detected
signatures is proportional to t rather than J. This suggests a hole-dependent
nature of these features and not only spin physics. By contrast, for the chiral
spin liquid on the triangular lattice, the main energy scaling was found to
be∝ J30. These observations let us conclude that for AFM couplings, holes,
spins, and fluxes mutually influence each other, leading to the intricate
dynamical interplay between the (fractionalized) excitations. The main
reason for that is the strong renormalization of the hopping strength teff,
which is no longer larger than the spin energy scales. Nevertheless, the hole
spectrum shows signatures of flat spinon bands that are a direct con-
sequence of the underlying Kitaev spin liquid and can therefore be used as a
characteristic of this phase in ARPES experiments.

Antiferromagnetic Kitaev couplings: Slow-hole limit
Previous works have focused on the slow-hole limit t≪ ∣J∣ as well17,18.
For a stationary hole t = 0, one can think of it as a vacancy site, where
holes are described within the spin Hamiltonian Eq. (1), i.e., the spin
is not removed from the “hole site”, but all interactions with
neighboring spins are just turned off. We now want to investigate this
limit to understand the limitations and merits compared to our
numerical simulations.

We start with the description of a stationary hole t = 0 and solve the
quadratic Hamiltonian Eq. (4) by doubling the number of Majorana fer-
mions to obtain complex fermions:

f i2A ¼ 1
2

χ0i þ iχ0
i

� �
; f i2B ¼ i

2
χ0i þ iχ0

i

� �
; ð10Þ

where χ0
i
are copies of the original Majorana fermions18. From this, we

obtain the doubled Hamiltonian,

Hd ¼ HK þHK ¼ i
X
a;hijia

Jaûhijia χ0i χ
0
j þ χ0

i
χ0
j

� �
; ð11Þ

¼
X
a;hijia

2Jaûhijia f yi f j þ h:c:
� �

: ð12Þ

We introduce a hole at site j0 by switching off all interactions at the corre-
sponding bonds,

~H
j0
d ¼ Hd �

X
a;j2hj0 jia

2Jaûhj0 jia f yj0 f j þ h:c:
� �

: ð13Þ

Let ∣Ωi and ∣~Ω�
denote the ground states of the pure Kitaev model and the

onewith a stationary hole, respectively.We can compute the corresponding
quasiparticle weight of the hole spectrum Z ¼ j ~ΩjΩ� �j2 directly on the
same cylinder geometry that we use for the MPS time evolution. To obtain
the full spectrum for a stationary hole, we expand the hole Hamiltonian in

the eigenbasis at half-filling, ~H
j0
d ¼ P

i~εi∣~αi
�
~αi
�

∣,

AðωÞ ¼
X
i

δðω� ~εiÞj ~αijΩ
� �j2: ð14Þ

The spectral function ismomentum independent since the hole is localized.
In general, the sumabove runs over exponentiallymany states. However, by
evaluating the sum rule ∫dωA(ω) = 1, we estimate that including only one-
particle excitationson topof the groundstate already account formost of the
spectral weight67, e.g., for Jz/J = 2.5, we find ∫dωA1(ω) = 0.997. Therefore,
when comparing this exact result to the MPS spectral function, we find
excellent agreement up to little numerical deviations for the immobile hole;
see Fig. 6. This serves as a stringent benchmark for our numerical approach.

To include afinite but small hopping amplitude t for theholes,we focus
on the gapped phase Jz/J > 2. In that limit, the effective hole hopping was
derived in ref. 17. This derivation is strictly valid as long as the hole exci-
tations do not couple to any bulk excitations of the undoped Kitaev model,
i.e., for t=jJj≪ ðJ=JzÞ4 (thefluxgap).Then theholes are associatedwithflux,
fermion, and plaquette quantum numbers. In our case of a single hole, the
former two have to be trivial, while the plaquette quantum number p = 0, 1
implies a degeneracy for the ground state ∣~Ω

�
.Wefind, however, that all the

calculations presented below yield identical results for both values. In
the anisotropic limit, the hopping amplitude gets renormalized along the

Fig. 6 | Slow-hole approximation. The spectral density DðωÞ ¼ 1
LxLy

P
kAðk;ωÞ

obtained from MPS time evolution (purple) is compared with the slow-hole approx-
imation (green) as described in the main text and sketched in the inset of the last panel.
We fix antiferromagnetic couplings J < 0, Jz/J = 2.5 and vary t/∣J∣ from 0.0 (exact sta-
tionaryhole limit) to 3.0 (fastholes). For t/∣J∣ = 3.0, a different energy scale of thex-axis is
used in order to show the whole spectrum.
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different bonds as following tx = t/2, ty = t/2, and tz = t17. This can be intui-
tively understood from the isolated dimer limit Jz/J→∞, where the ground
state consists of dimers on the z-bonds ð∣ "#�z þ ∣ #"�zÞ= ffiffiffi

2
p

. Inserting
either an up- or down-hole on one lattice site will break up the corre-
sponding dimer, e.g., ∣ " ° iz . The hole can hop freely back and forth along

the same dimer on the z-bond ∣ " ° iz ! ∣°"iz . Hopping along the x- or y-
bonds requires hopping to a neighboring dimer

∣ " ° iz � ð∣ "#i~z þ ∣ #"i~zÞ=
ffiffiffi
2

p

! ð∣ ""iz � ∣°#i~z þ ∣ "#iz � ∣°"i~zÞ=
ffiffiffi
2

p

and therefore, effectively reduces the hopping amplitude by a factor of 1/2,
because of the strong ferromagnetic energypenalty Jz/J→∞ in thefirst term
after hopping. Away from the isolated dimer limit, the renormalization
changes little as long as Jz/J > 2

17.
The doped Hamiltonian Eq. (13) is only exactly solvable for a

specific hole configuration. To interpolate between the limit of a
completely stationary hole and a free moving one in the translational
invariant Kitaev ground state, a variational ansatz was put forward18,
HðρÞ ¼ ρHd þ ð1� ρÞ~Hj0

d ; sketched in the inset of Fig. 6. Here, we
modify this ansatz and allow for the bond strength to vary over all
lattice sites ρ↦ ρ({j}). The interpretation follows straightforwardly
from the stationary picture. As the hole moves through the system, at
different times, different bonds will be modified depending on the
probability of finding the hole at the corresponding site. According to
the hole expectation value 〈nj〉, we choose ρj = 1− 〈nj〉.

To describe a local hole that spreads dynamically, we approximate the
time evolution by step-wise adjusting 〈nj(τ)〉 and, hence, also ρj(τ), where
〈nj(τ)〉 is determined by a free hopping hole with tx = t/2, ty = t/2, and tz = t
according to the slow hole prediction. Therefore, we get a Trotterized time
evolution for the response function with step-size δ = τ/N,

CijðτÞ≈ eiE0τ Ωh ∣aie
�iHNδe�iHN�1δ . . . e�iH2δe�iH1δayj ∣Ωi; ð15Þ

where we introduce hole operators aðyÞj which locally switch off the
couplings. Here, E0 is the ground state energy of the undoped Kitaev
model and for each Hn (n = 1,…, N) we modify ρ as described before
according to the corresponding hole expectation at time n ⋅ δ. Since all
Hn are quadratic fermionic Hamiltonians, we can diagonalize them
Hn ¼

P
iε
ðnÞ
i ∣αðnÞi

E
αðnÞi

D
∣. By insertion of identities after each time step,

the correlation function simplifies to a product of overlaps,

CijðτÞ≈ eiE0τ
P

i1 ;...iN

Ω∣ai∣α
ðNÞ
iN

� �
e�iδεðNÞ

iN αðNÞ
iN

∣αðN�1Þ
iN�1

� �

. . . αð2Þi2
∣αð1Þi1

� �
e�iδεð1Þi1 αð1Þi1

∣ayj ∣Ω
� �

:

ð16Þ

In practice, again we do not need to sum over all eigenstates ∣αðnÞin

E
: Because

the Hamiltonians change only slightly from one time step to the other, it is
sufficient to take the overlapwith only the ground states ∣ΩðnÞ�.Wefind that
indeed the overlaps are very close to one. Thus, we can simplify the time-
dependent correlations to

CijðτÞ≈ hΩ∣ai∣Ω
ðNÞi

YN�1

n¼1

ðe�iδεðnÞ0 hΩðnþ1ÞjΩðnÞiÞhΩð1Þ∣ayj ∣Ωi: ð17Þ

The spectral function A(k,ω) is then computed by spatial and temporal
Fourier transformations of the time-dependent correlation functions,
similar to the evaluation of the data from the MPS time evolution.

We compare the slow-hole approximations to the spectra
obtained from the full MPS time evolution in Fig. 6. For t/∣J∣ = 0.0,
the analytic description of stationary holes is exact, and we find that

the spectra indeed are almost identical; demonstrating that our
numerical results are well converged as discussed above. When
increasing the hopping strength, we see a remarkable resemblance
between the slow-hole limit and the MPS data. Note that the formally
required limit for the approximation to be valid is
t=jJj≪ ðJ=JzÞ4 ≈ 0:025. This ensures that the hole does not couple to
the flux excitation of the bulk. Yet, our numerics agree well up to t/
∣J∣ ≈ 0.5. This indicates that even at higher energy, the hole-flux
interactions are not relevant to the shape of the spectrum. Instead,
the hole is best described by vacancy sites that spread slowly over the
whole system and modify the Kitaev spin-liquid ground state only
slightly. Upon increasing the hopping strength t/∣J∣ ≳ 0.8, the general
shape between both curves is still similar, but small deviations
between peak positions occur. Furthermore, for t/∣J∣ ≳ 1.0 additional
peaks in the MPS spectrum appear. This suggests that further modes
in the model with significant spectral weight are excited. Since this
can include complex interactions between the hole and flux or matter
excitations in the Kitaev model, the simple ansatz for the slow holes
cannot capture these features anymore. Eventually, at even faster
hopping t/∣J∣ ≳ 3.0, the spectra look very different, meaning that the
slow-hole picture breaks down, as expected. We find that the overall
bandwidth is not given by the renormalized hoppings t/2 as predicted
from the slow hole ansatz but by the full bandwidth ~t. Moreover, we
see a shift of spectral weight towards low energies, where distinct
peaks are visible, which transition into a broad continuum at high
energies, and the parton ansatz becomes more reasonable.

Local scanning tunneling microscopy spectra
So far, we focused on the momentum-resolved and energy-resolved hole
spectrum as measured by ARPES experiments, Eq. (8) or their sum rules.
Here, we will consider the spatially averaged local hole spectrum, that is
measurable with scanning tunneling microscopy (STM):

SðωÞ ¼ 1
LxLy

X
σ¼";#

X
j

Z
dτeiτω ψ0

�
∣cyjσðτÞcjσð0Þ∣ψ0

�
: ð18Þ

Although for lattices with a single site per unit cell S(ω) is equal to the
spectral density DðωÞ ¼ 1

LxLy

P
kAðk;ωÞ, this is not the case for the hon-

eycomb lattice, which has a two-sublattice structure; seemethods for details.
Recent experimental proposals suggest that tunneling through aKitaev spin
liquid layer into a metal beneath will lead to a distinct response of the
underlying spin liquid68–70. Here, we consider a different scenario, where
tunneling occurs directly in and out of the spin liquid layer by injecting
mobile holes.

The local spectra for both FM and AFM couplings stretch over a
broad continuum bounded by the free-hole bandwidth of 6 t; see
Fig. 7. In contrast to the ARPES results, the local spectra S(ω) of the
FM possesses additional structure at low energies. These additional
peaks cannot be explained with the free hole alone but indicate the
additional dressing by local dynamical spin correlations. For AFM
couplings, the low-energy peak agrees reasonably with the parton
mean-field ansatz derived in the “Methods” section; see the green line
in the inset of Fig. 7. This supports the concept of fractionalized
quasiparticles in this energy region of the spectrum and offers a
different probe to detect signatures of the Kitaev spin liquid.

Discussion
Our results reveal an intriguing behavior of a mobile hole doped into the
Kitaev spin-liquid ground state.We looked at the real-time dynamics of the
hole spreading and studied the energy and momentum resolved hole
spectra, as measured by ARPES as well as the local spectral function, as
obtained fromSTMexperiments.Our simulationswere carried out onfinite
cylinder geometries using tensor network methods, however, we expect at
least qualitatively similar behavior for the 2D limit.
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The ARPES response is drastically different for ferromagnetic (FM)
and antiferromagnetic (AFM)Kitaev couplings between neighboring spins.
The FM case is characterized by the formation of clusters of aligned spins
leading to a dynamical Nagaoka ferromagnet that allows for coherent hole
hopping. Intriguingly, the STM spectra show coherent dynamical features
even at low energies, which are not present in ARPES. Conversely, AFM
couplings robustly showmultiple dispersionless features at low energies. In
the slow-hole limit, we find that the hole does not couple to any other
excitations and is described as a vacancy that modifies the spin liquid.
However, when increasing the hopping strength,flux andmatter excitations
of the Kitaev model become relevant and significantly alter the spectral
function. Understanding these modifications is challenging since the exact
solution of the Kitaev model is lost and the hole interacts non-trivially with
the spin background. A parton mean-field ansatz gives some insights into
the spectral responses for AFM couplings but fails to reproduce the proper
spectral weight along the different momentum cuts in the Brillouin zone.
Thus, interactions beyond a parton mean-field theory are required in the
considered parameter regime and may be investigated in more detail in
future studies.

Our work shows that doping a spin-liquid ground state with a single
hole can have several different outcomes. In one scenario, the hole can
fractionalize into a slow spinon and a fast holon. In that case, the low-energy
spectrum directly probes the spinon dynamics of spin liquids27,28,30. In the
other scenario, the hole significantlymodifies the spin-liquid ground state in
its vicinity and dynamically forms a Nagaoka ferromagnet around the hole.
Both scenarios are realized in the dopedKitaevmodel dependingon the sign
of spin interactions. This behavior should be contrasted to the spectral
functions of Mott insulating states with magnetic order as, for example,
described by the t− J model on the square lattice. On the one hand, the
AFMhole spectrumexhibits a quasi-particle peak at lowenergies that canbe
effectively described by a bound state of a holon and a spinon39. In contrast,
for theKitaev spin liquid,we assume the holon and spinon to be deconfined.
On the other hand, a FM spin exchange J results in a FMground state on the
square lattice. The single-hole problem can be solved exactly since hole
hopping leaves the spin background unmodified and describes the hopping
of a free hole. This is in sharp contrast to our results for the Kitaev spin
liquid, where the ground state does not have any order initially. Instead, the
FM forms dynamically and, along with it, the effective free-hole-like
response in the spectral function.

It will be interesting to see in which category the response of other
slightly doped spin liquids may fall. This also raises the question of the

general stability of quantum spin liquids upon hole doping. Tensor network
methods for ground states as well as dynamical response functions offer one
possible route to study the structure of the phases that could be realized in
the doped Kitaev model61,71. Furthermore, they may shed light on which
perturbations can stabilize topological superconductivity beyond themean-
field approach.

Methods
Physical spins and form factor
In the promising candidate materials exhibiting strong Kitaev interactions,
such as 5d iridate compoundsNa2IrO3 and 4dα-RuCl3, the partially filled d

5

orbital is split into eg and t2g (∣xy
�
, ∣yz

�
, and ∣zxi) orbitals. Because of the

strong spin-orbit coupling, the t2gmultiplet is further divided into a Jeff = 3/2
quartet and a Jeff = 1/2 Kramers doublet. The low-energy physics is domi-
nated by the Jeff = 1/2 doublet with a reduced bandwidth. Here, we would
like to demonstrate the relation between hybridized pseudo-spins and
physical spins in realistic materials such as Na2IrO3.

The Kramers doublet, ðcy"; cy#Þ, can be expressed in terms of t2g orbitals
as72

cy" ¼ 1ffiffi
3

p dyxy;" þ dyyz;# þ idyzx;#
� �

cy# ¼ 1ffiffi
3

p �dyxy;# þ dyyz;" � idyzx;"
� �

;
ð19Þ

where dym;σ is an electron for orbitalm∈ (xy, yz, zx) and spin σ∈ (↑, ↓) and
the lattice site index has been omitted. We can introduce a vector of elec-
trons dy ¼ dyxy;"; d

y
xy;#; d

y
yz;"; d

y
yz;#; d

y
zx;"; d

y
zx;#

� �
and define a projector P

P ¼ 1ffiffiffi
3

p 1 0 0 1 i

0 �1 1 0 �i 0

	 
T

: ð20Þ

Then we obtain a compact form of ðcy"; cy#Þ ¼ dyP.
The physical spin operators at site j are defined as

Saj ¼
X

m¼ðxy;yz;zxÞ

X
s;s0

dyj;m;sσ
a
ss0d

y
j;m;s0 : ð21Þ

Nowwe would like to project the spin to the low-energy Jeff = 1/2 bands. In
order to do this, we first need to find the null space corresponding to the
projector P, dubbed P⊥. Note that P⊥, whose explicit form is not important,
can be obtained by extracting the eigenstates of zero modes of PP†. Indeed,
those zeromodes of PP† correspond to the basis of the high-energy Jeff = 3/2
quartet, and we denote those modes as ðcy1; :::; cy4Þ. Using P and P⊥, one can
express the electrons as dy ¼ cyðP þ P?Þy where cy � ðcy"; cy#; cy1; :::; cy4Þ.
Therefore, we can rewrite the physical spin operators in terms of c-fermions,
and after projecting into the low-energy doublet sector, we find that

Saj ! � 1
3

X
s;s0

cys σ
a
ss0cs0 ¼ � 1

3
σaj : ð22Þ

The tensor of the dynamical hole spectral function is thus defined as

Ams;m0s0 ðk;ωÞ ¼
Z

dτeiτωhψ0jdyk;msðτÞdk;m0s0 ð0Þjψ0i: ð23Þ

By viewing Aðk;ωÞ as a 6 × 6 matrix, it is related to the spectral
function for c-fermions by a unitary transformation as
Aðk;ωÞ ¼ ðP þ P?Þ�F ðk;ωÞðP þ P?ÞT , where,

F μ;νðk;ωÞ ¼
Z

dτeiτωhψ0jcyk;μðτÞck;νð0Þjψ0i ð24Þ

with H the Hamiltonian and E0 the ground-state energy. We mainly
focus on the excitations with energy being within EW, the bandwidth
of the Jeff = 1/2 band. Within the frequency regime of ω < EW (ℏ = 1),

Fig. 7 | Local spectra. The local spectral function S(ω), Eq. (18), as measured by
scanning tunneling microscopy (STM), is shown for ferromagnetic couplings J > 0
and antiferromagnetic couplings J < 0; both with Jz/J = 2.5 and t/∣J∣ = 3.0. The inset
focuses on the low energy regime that is compared to the parton ansatz (green line).
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we approximately have

F ≈

F";" F";# 0

F#;" F#;# 0

0 0 04× 4

0
B@

1
CA: ð25Þ

Consequently, the orbital and spin resolved hole spectral function can be
obtained by only computing the 2 × 2 spectral function for the pseudo spins
Fσ;σ 0 , as

A ¼ 1
3

F";" �F";# F";# F";" �iF";# iF";"
�F#;" F#;# �F#;# �F#;" iF#;# �iF#;"
F#;" �F#;# F#;# F#;" �iF#;# iF#;"
F";" �F";# F";# F";" �iF";# iF";"
iF#;" �iF#;# iF#;# iF#;" F#;# �F#;"
�iF";" iF";# �iF";# �iF";" �F";# F";"

0
BBBBBBBB@

1
CCCCCCCCA
:

ð26Þ
In the end, the energy- and momentum-resolved spectral function defined
in the main text Eq. (8) is just the trace of the above matrix, as

Aðk;ωÞ ¼ F";"ðk;ωÞ þ F#;#ðk;ωÞ: ð27Þ

Hence, the only contributions come from terms that do not mix the
different spins. Numerically, we find that F↑,↑(k,ω) = F↓,↓(k,ω) for all
investigated parameters. Therefore, spin-resolved spectra provide only
additional information when the material breaks spin-symmetry.

Details on the numerical methods
We use MPS methods for computing the time evolution of the state after
hole injection. All simulations were performed with the Python library
TeNPy73. Numerical costs grow linearly in Lx but exponentially in Ly. Thus,
we restrict ourselves to cylinders with Ly = 4 unit cells (i.e., eight sites) and
Lx = 20. To reach the large bond dimensions of up to χ = 1000 required to
obtain converged results,wehaveutilizedUð1Þ×Z2 symmetries for particle
number and spin parity conservation, respectively.

To study the hole dynamics, we first find the approximate ground state
of the pure spin model Eq. (1) with DMRG. Several flux sectors are
degenerate on the chosen cylindrical geometry with open boundary con-
ditions along the x-direction. We favor the flux-free sector explicitly as a
ground state in our simulation by adding plaquette terms∝−∑pWp. For a
periodic or infinite system, it is known that the ground state has to be flux-
free74.

The time evolutionwas realized via anMPO representation of the time
evolution operator, theWII operator from ref. 75. To apply the operator to
the state, we have first to use the more costly zip-upmethods for a few time
steps to avoid being stuck in a local minima before continuing with a
variational truncation scheme with fixed MPS bond dimension χ.
Dependingon the hole hoppingwe choose step size δτ = 0.05/ t for fast holes
t/∣J∣ > 1.0 and δτ = 0.025/ ∣J∣ otherwise.

In this way, we compute a time evolution after injecting a hole into the
ground state ∣ψ0

�
of the pure Kitaev model

∣ψðτÞ� ¼ e�iHτcjσ ∣ψ0

�
; ð28Þ

where j is a site in the middle of the cylinder. We check that the cylinder is
long enough (Lx = 20) such that excitations do not reach the boundaries on
the simulated time scales to limit the boundary effects.

To access the spectral function, we employ establishedMPSmethods76.
Initially, we obtain anMPSapproximation for the ground statewithout hole
∣ψ0

�
through theDMRGalgorithm.The calculation is performed on afinite

Ly × Lx system, with Ly = 4 and Lx = 20. For that state, we compute the time-

dependent correlation function

CijðτÞ ¼
X
σ

ψ0jeiτHcyjσe�iτHciσ jψ0

D E
; i; j 2 fA;Bg: ð29Þ

Using translational invariance of the ground state, we only need to compute
two time evolutions after hole insertionat one site in eachof the sublatticesA
and B of the honeycomb lattice. For ARPES, the hole can be ejected by the
photon on any of the sublattices. Therefore, the measured spectral weight is
only periodic in an extended Brillouin zone55,77 and the corresponding
Fourier transformation of the annihilation operator is given by

ckσ ¼
1ffiffiffiffi
N

p
X

i2fA;Bg
eikri ciσ : ð30Þ

Here, the sum includes all lattice sites. This has to be contrasted to the usual
definition of the sublattice Fourier transformation, which is for instance
used to compute the dispersion relations for the parton mean-field ansatz
below

ck;AðBÞσ ¼
1ffiffiffiffi
N

p
X
i2AðBÞ

eikri ci;AðBÞσ : ð31Þ

For Eq. (31), a unique inverse Fourier transformation exists. In contrast, for
the operator in Eq. (30), we have to distinguish between k∈ 1.BZ and
k∉ 1.BZ. These two cases are related to the sublattice Fourier transforma-
tion by:

ckσ ¼
ck;Aσ þ ck;Bσ for k 2 1:BZ

ck;Aσ þ eigrAB ck;Bσ for k � g 2 1:BZ

(
; ð32Þ

where g is the reciprocal lattice vector that brings k back to thefirst Brillouin
zone and rAB is the vector connecting the two sites in the unit cell. We use
these conventions to compute the spatial Fourier transformation of Eq. (29).
The subtlety of contributions from both sublattices also leads to the dif-
ference between the local hole spectrum and the integrated spectral density
S(ω) ≠D(ω), see Eq. (18) in the main text. Furthermore, we can define a
sublattice spectral function similar as in Eq. (8), but restrict the hole crea-
tion/ annihilation operator to one sublattice, Eq. (31). Although this spec-
trum can not be measured experimentally, it can be computed numerically
and yields additional insights, as demonstrated for the Kitaev–Heisenberg
model55. In this sublattice spectral function, the lowerbranchof the free-hole
spectrum has finite spectral weight. By contrast, in the experimentally
accessible hole spectrum Fig. 3, the lower branch remains dark due to
cancellations from phase factors in Eq. (32).

To improve the finite time restrictions due to limited entanglement
with a fixed bond dimension, we use linear prediction78 combined with a
Gaussian envelope after taking the spatial Fourier transform but before the
temporal Fourier transform to obtain the spectral function, Eq. (8) in the
main text. On the other hand, for the local spectrum, Eq. (18), we use i = j
and sum over the contributions from the two sublattices without the spatial
Fourier transformation but still keeping the linear prediction and Gaussian
envelope.

To check convergence with bond dimension χ, we compute the time
evolution with several values of χ∈ {300, 500, 1000}. As seen in Fig. 8, some
qualitative features already develop correctly for a small bond dimension
χ = 300. However, the spectral weight still changes when increasing χ. From
χ = 500 to χ = 1000, the spectral function remains unchanged, indicating
convergence. Data shown in all other figures are obtained for bond
dimensions χ = 500.

Additional data for spectral functions
We present additional spectra for different parameters. First, we investigate
the spectra for different hopping parameters t when considering
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ferromagnetic (J > 0) and antiferromagnetic (J < 0) coupling constants. The
resulting spectra are shown in Fig. 9.

For the ferromagnetic case, Fig. 9a, b, we observe only slight changes in
the distribution of spectral weight with varying hopping parameters t. The
general picture remains, further supporting that the spectrum is dominated
by free hole hopping. All energy scales are given in units of t. Increased
hopping leads to a higher contribution from the kinetic energy, which
further stabilizes the ferromagnetic order and the associated free coherent
hole motion.

Next, we consider the antiferromagnetic spin coupling, J < 0, and
focus on the low-energy scales for different hopping parameters. We
find that despite a small redistribution of spectral weight for different
t, similar features are present throughout the spectra; see Fig. 9c, d.We
compare the MPS data to the flat bands obtained from the parton
construction. The energy difference between the anisotropic flat spi-
non bands scales with Jz/J. Thus, the difference becomes smaller in
units of t as we increase the hopping strength. Furthermore, for t/
∣J∣ = 12, the flat bands in Fig. 9d are shifted towards slightly higher
energies than predicted from the parton mean-field ansatz. This could
indicate an additional interplay between spinons and holons. We note
that even for these comparatively large values of the hopping, the
effective hopping scale, which is renormalized down by a factor of five
to ten, is still in the same order as the exchange. Thus, it is very difficult
to numerically reach a true strong coupling limit in which the hole
dynamics is effectively much faster than the spin dynamics.

Furthermore, we study the case of isotropic Kitaev couplings Jz/
J = 1 in Fig. 10. This corresponds to the gapless phase of the Kitaev spin
liquid8. A larger MPS bond dimension is needed to faithfully represent
even the ground state at half-filling. The subsequent time evolution is
also more challenging, and we thus expect small deviations by further
increasing the bond dimension beyond the accessible bond dimension
of χ = 1000, which we used for these simulations. However, qualita-
tively, we can already see in Fig. 10 that the general behavior in the
gapless phase is the same as in the gapped phase: the free-hole
response dominates the spectrum for FM Kitaev couplings J > 0, while
in the AFM case, J < 0 dispersionless features according to the parton
picture are dominating. These features emerge from the flat spinon
band together with the dominant holon spectral weight at the van
Hove singularity. Here, we would expect a difference between the
gapless and gapped phases.While the gapped phase is characterized by
flat spinon bands at different energies along the x-/y-bonds and z-
bonds, they should have the same energy for isotropic couplings in the
gapless phase. Unfortunately, we do not see this difference clearly in
our numerical spectra, which could be due to the finite energy reso-
lution or possible mixing of the spinons and holons when including
further interactions. Moreover, similar to the gapped case, the flat

spinons contribute dominantly to the spectrum, and the dispersive
gapless spinon does not possess any significant matrix elements. We
also do not see any other contributions in the MPS data that could be
directly attributed to dispersive spinons.

Parton mean-field theory
When we add a hole hopping term Ht to the Kitaev model, the whole
Hamiltonian Eq. (5) is no longer exactly solvable. A general approach to
describe spin liquids in the presence of doping is a partonmean-field ansatz.
To compute the spectral function using this ansatz, we follow Ref. 19 and
consider the splitting of a hole into a charge degree of freedom, the holonby,
and a spin degree of freedom, the spinonf yσ ,

ci" ¼ 1ffiffiffi
2

p byi1f i" � byi2f
y
i#

� �
; ci# ¼ 1ffiffiffi

2
p byi1f i# þ byi2f

y
i"

� �
: ð33Þ

Here, the holons fulfill the bosonic commutation relations ½bin; byjm� ¼
δijδnm and the spinons obey fermionic anticommutation relations
ff iσ ; f yj~σg ¼ δijδσ~σ . By introducing two holon species byi1, b

y
i2 we retain the

SU(2) gauge redundancy. At each site we must impose the constraint
f yi"f i" þ f yi#f i# þ byi1bi1 � byi2bi2 ¼ 1. The spinons can be related to the
Majorana fermion description of the pure Kitaev model Eq. (4) by fixing a
SU(2) gauge14,79,

f i" ¼ 1ffiffiffi
2

p χ0i þ iχzi
� �

; f i# ¼ 1ffiffiffi
2

p iχxi � χyi
� �

: ð34Þ

Therefore, we can rewrite the Kitaev model in terms of these spinons:

HK ¼ �
X
α;σ

X
hi;jiα

~J
σ
αf

y
i;σ f j;σ þ Δσ

αf
y
i;σ f

y
j;σ þ h:c:

� �
; ð35Þ

where the parameters ~J , Δ are determined self-consistently79.
Next, we include the hole hopping term in our description. In our

ansatz, we assume that the holon and the spinon are deconfined27,28 and
carry out a mean-field decoupling19

Ht ¼ �t
P
hi;ji;σ

cyiσcjσ þ h:c:
� �

¼ � t
2

P
hi;ji;σ

bi1b
y
j1f

y
iσ f jσ � σbi1b

y
j2f

y
iσ f

y
j�σ

�

� σbi2b
y
j1f i�σ f jσ þ bi2b

y
j2f i�σ f

y
j�σ þ h:c:

�
≈� t

2

P
hi;ji;σ

hbi1byj1if yiσ f jσ þ bi1b
y
j1hf yiσ f jσi

�
� σhbi1byj2if yiσ f yj�σ � σbi1b

y
j2hf yiσ f yj�σi

� σhbi2byj1if i�σ f jσ � σbi2b
y
j1hf i�σ f jσi

þ hbi2byj2if i�σ f
y
j�σ þ bi2b

y
j2hf i�σ f

y
j�σi þ h:c:

�
¼ � t

2

P
hi;ji

Wijbi1b
y
j1 �W�

ijbi2b
y
j2 þ h:c:

� �
;

ð36Þ

where we defined Wij ¼
P

σhf yiσ f jσi and take the expectation value of
the undoped Kitaev spin-liquid ground state. Moreover, we used that
hbiμbyjμi ¼ 0 because after the creation of a holon at site j in the ground
state, there cannot be another hole at site i for i ≠ j. Furthermore, we
have hf yiσ f yj�σi ¼ 0 since these pairing terms do not conserve spin
parity. Thus, the full Hamiltonian decomposes into H = Ht+HK,
where the first part only acts on the holon and the second part
describes the spinon dynamics. Accordingly, for the spectral function,
we can employ the spectral building principle similar to the one-
dimensional t-J model63. Concretely, the time-dependent correlation
function Eq. (29), factorizes into a product of the holon and the spinon

Fig. 8 | Convergence of the spectral function. The spectral function A(k, ω) for
ferromagnetic couplings, J > 0, Jz/J = 2.5 and t/J = 3.0 at the Γ point is converged for
larger values of the maximal MPS bond dimension χ > 500, but still shows con-
siderable deviations for χ = 300.
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part.

CijðτÞ ¼
P
σ

ψ0∣eiHK τ f yiσe
�iHK τ f jσ ∣ψ0

� �
0∣eiHtτbi1e

�iHtτbyj1∣0
� �	

þ ψ0∣eiHKτ f iσe
�iHKτ f yjσ ∣ψ0

� �
0∣eiHtτbi2e

�iHtτbyj2∣0
� �


ð37Þ

After Fourier transformation tomomentum space, the spectrum is given by
the convolution of the individual holon and spinon spectral functions
Ah(k,ω) and Asp(k,ω), respectively.

Aðk;ωÞ ¼ R
dνdqAspðk � q;ω� νÞAhðq; νÞ

¼ P
α;β

R
dqZα

spðk � qÞZβ
hðqÞδðω� εαspðk � qÞ � εβhðqÞÞ; ð38Þ

with labels α, β for the multiple bands of the holon and spinon mean-field
Hamiltonians corresponding to different dispersions ε(k) and quasiparticle
weightsZ(k). As discussed in the previous section, the periodicity in ARPES
experiments extends to a larger BZ because of the two-site unit cell of the

honeycomb lattice. InEq. (38), the internal integration overq runs only over
the first BZ, while k has to be computed for the larger BZ. The dispersion
relations are periodic in the 1.BZ, but the quasiparticle weights must be
calculated according to Eq. (32).

The convolution above generally leads to a broad distribution of
spectral weight. For large t/∣J∣, the charge degree of freedom is assumed to
have a considerable dispersion, whereas the spins have possible low energy
modes. Therefore, typically, we expect that spinons and holons appear at
different energy scales and the lower edge of the spectrum is given by the
spinon dispersion30,63. However, from Eq. (36), we see that the effective
hopping constant is strongly renormalized.Concretely, for Jz/J = 2.5,wefind
∣Wij∣ ≈ 0.23 on x- and y- bonds and ∣Wij∣ ≈ 0.36 on z-bonds.Hence, the spin
anisotropy directly results in an anisotropic hopping for the holon.With the
prefactor 1/2 in Eq. (36), the hopping gets renormalized to quite small
effective values. Thus, the spinons and holons no longer have separate
energy scales, preventing a clear distinction between the two in the spectrum
for reasonable parameters.

In Fig. 11, we compare the resulting spectra from the parton con-
struction to the MPS data. The parton mean-field theory only gives pre-
dictions for the low-energy part of the spectrum. As can be seen in Fig. 11b
the convolution of holon and spinon according to Eq. (38) gives rise to

Fig. 9 | Additional data for hole spectral functions with hopping amplitudes t/
∣J∣= 6, and 12. a, b For ferromagnetic Kitaev couplings (J > 0), the spectrummainly
consists of the response of a free hole (green lines). c, d Antiferromagnetic Kitaev
couplings (J < 0) show only slight changes at low energies for different values for t/∣J∣.

Spectra are compared to the parton ansatz; dashed and dotted lines for spinon
excitations along x- or y-bonds and z-bond, respectively. Note that all energy scales
are in units of t, and we fix Jz/J = 2.5.
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several flat bands. This is expected from the spinon component, where flat
bands arise from the bondMajorana fermions. Focusing on the anisotropic
case Jz/J = 2.5, we get distinct bands for the x- and y-bonds (dashed lines)
compared to the z-bonds (dotted lines). Importantly, the holon dispersion
has a van Hove singularity, at which many states with the same energy will
contribute to the spectral function convolution leading to an intense spectral
peak. This gives rise to the flat band structure seen in the parton spectrum at
energies εhðkvHÞ þ εx;y;zsp . At energies above the vanHove singularities of the
holon, there are dispersing bands with very weak spectral weight, which
originate from the convolution of the holon with the dispersive matter
Majorana modes.

TheMPS spectrum features similar flat bands as well; see Fig. 11a. The
lower one is at the same energy as the parton construction and may be
interpreted as the lowest spinon mode plus the van Hove singularity of the
holon. However, the spectral weight distribution shows qualitatively dif-
ferent behavior, indicating that there are complex interactions between

holon and spinon that must be treated beyond the simple mean-field level.
At larger energies (−ω+ μ) ~ 1.0t, the MPS spectrum shows dispersive
features as well, which have some resemblance of the parton ansatz, espe-
cially for the Γ-M momentum cut. However, the MPS spectra carry much
more spectral weight at these energies than the parton predictions.

Data availability
All data are available on Zenodo upon reasonable request80.

Code availability
The MPS code for generating the data and code for data analysis are
available on Zenodo upon reasonable request80.
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Fig. 10 | Additional data for hole spectral functions with isotropic Kitaev cou-
plings Jz/J= 1. a For ferromagnetic Kitaev couplings (J > 0), the main contribution
to the spectrum resembles the response of a free hole (green lines). b For

antiferromagnetic Kitaev couplings (J < 0), the first flat features can be described by
the parton ansatz (dashed green lines). We fix t/∣J∣ = 3.0.

Fig. 11 |Hole spectral functions fromMPSandpartonmean-field theory. Spectral
function A(k, ω) at low energies for antiferromagnetic J < 0, Jz/J = 2.5 and t/∣J∣ = 3.0
(a) fromMPS time evolution and (b) from parton convolution; see Eq. (38). Dashed/

dotted lines correspond to energies of spinons for bond excitations along x- and y-
bonds/ z-bonds, respectively, added to the van Hove points of the holons, which are
expected to dominate the spectral response.
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