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The definition of self-similarity and scale invariance1,2 in com-
plex networks has been limited by the lack of a valid source 
of geometric length-scale transformations. Previous efforts to 

study these symmetries are based on topology and include spectral 
coarse-graining3 or box-covering procedures based on shortest path 
lengths between nodes4–9. However, the collection of shortest paths 
is a poor source of length-based scaling factors in networks due to 
the small-world10 or even ultrasmall-world11 properties, and the 
problem remained open. Other studies have approached the mul-
tiscale structure of network models in a more geometric way12,13, 
but their findings cannot be directly applied to real-world networks.

Models of complex networks based on hidden metric spaces14–17 
open the door to a proper geometric definition of self-similarity and 
scale invariance and to an unfolding of the different scales present 
in the structure of real networks. These models are able to explain 
universal features shared by real networks—including the small-
world property, scale-free degree distributions and clustering—and 
also fundamental mechanisms, such as preferential attachment in 
growing networks18 and the emergence of communities19.

Naturally, the geometricalization of networks allows a reservoir 
of distance scales so that we can borrow concepts and techniques 
from the renormalization group in statistical physics20,21. By recur-
sive averaging over short-distance degrees of freedom, renormal-
ization has successfully explained, for instance, the universality 
properties of critical behaviour in phase transitions22. In this study, 
we introduce a geometric renormalization group for complex net-
works (RGN). The method, inspired by the block spin renormal-
ization group devised by L. P. Kadanoff20, relies on a geometric 
embedding of the networks to coarse-grain neighbouring nodes 
into supernodes and to define a new map that progressively selects 
long-range connections.

Evidence of geometric scaling in real networks
Hidden metric space network models couple the topology of a net-
work to an underlying geometry through a universal connectivity 

law depending on distances on such space, which combine popu-
larity and similarity dimensions14,17,18, such that more popular and 
similar nodes have more chance to interact. Popularity is related to 
the degrees of the nodes14,23, and similarity stands as an aggregate 
of all other attributes that modulate the likelihood of interactions. 
These two dimensions define a hyperbolic plane as the effective 
geometry of networks, and their contribution to the probability of 
connection can be explicit or combined into an effective hyperbolic 
distance. This gives rise to the two isomorphic geometric models, 
S1 and H2. In the S1 model14, the popularity of a node i is associated 
with a hidden degree κi, complemented by its angular position in the 
one-dimensional sphere (or circle) as a similarity measure, such that 
the probability of connection increases with the product of the hid-
den degrees and decreases with their distance along the circle (equa-
tion (5) in Methods). Reciprocally, in the equivalent H2 model16,17, 
the hidden degree is transformed into a radial coordinate, such that 
higher degree nodes are placed closer to the centre of the hyperbolic 
disk, while the angular coordinate remains as in the S1 circle, and the 
probability of connection decreases with the hyperbolic distance. In 
their scale-free version, both models have only three parameters μ, 
γ and β, which control the average degree ⟨ ⟩k , the exponent of the 
degree distribution γ and the local clustering coefficient ̄c , respec-
tively. The radius R of the S1 circle is adjusted to maintain a constant 
density of nodes equal to one.

The renormalization transformation is defined on the basis of 
the similarity dimension represented by the angular coordinate of 
the nodes. We present here the formulation for the S1 model, as it 
makes the similarity dimension explicit and is mathematically more 
tractable. The transformation zooms out by changing the minimum 
length scale from that of the original network to a larger value.  
It proceeds by, first, defining non-overlapping blocks of consecu-
tive nodes of size r along the circle and, second, by coarse-graining 
the blocks into supernodes. Each supernode is then placed within 
the angular region defined by the corresponding block so that the 
order of nodes is preserved. All the links between some node in 
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one supernode and some node in the other, if any, are renormalized 
into a single link between the two supernodes. This operation can 
be iterated starting from the original network at layer l =​ 0. Finally, 
the set of renormalized network layers l, each rl times smaller than 
the original one, forms a multiscale shell of the network. Figure 1 
illustrates the process.

In this study, we apply the RGN to eight different real scale-free 
networks from very different domains: technology (Internet24), 
transportation (Airports25,26), biology (Metabolic27, Proteome28 
and Drosophila29), social (Enron30,31) and languages (Music32 and 
Words33) (section I in the Supplementary Information). First, their 
geometric maps are obtained by embedding the nodes in the under-
lying geometry using statistical inference techniques, which iden-
tify the hidden degrees and angular coordinates, maximizing the 
likelihood that the topology of the network is reproduced by the 
model15,34. Second, we apply the coarse-graining by defining blocks 
of size r =​ 2, and iterate the process. In the limit N →​ ∞​, where N 
is the number of nodes, the RGN can be applied up to any desired 
scale of observation, whereas it is bounded to order O N(log ) itera-
tions in finite systems.

The resulting topological features of three of the renormalized 
networks are shown in Fig. 2 (see Supplementary Fig. 1 for the 
others). We observe that the degree distributions, degree–degree 
correlations, clustering spectra and community structures (see 

Methods) show self-similar behaviour. The last property suggests 
a new and efficient multiscale community detection algorithm for  
complex networks35–37.

Geometric renormalization of the S H∕1 2 model
The self-similarity exhibited by real-world networks can be under-
stood in terms of their congruency with the hidden metric space 
network model. As we show analytically, the S1 and H2 models 
are renormalizable in a geometric sense. This means that if a real 
scale-free network is compatible with the model and admits a good 
embedding, as it is the case for the real networks analysed in this 
study, the model will be able to predict its self-similarity and geo-
metric scaling.

We demonstrate next the renormalizability of the S1 model (see 
section II in the Supplementary Information for mathematical 
details and also for the definition of the RGN in hyperbolic space). 
The renormalized networks remain maximally congruent with the 
hidden metric space model by assigning a new hidden degree κ +

i
l( 1) 

to supernode i in layer l +​ 1 as a function of the hidden degrees of 
the nodes it contains in layer l according to:
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The global parameters need to be rescaled as μ(l+1) =​ μ(l)/r, 
β(l+1) =​ β(l), and R(l+1) =​ R(l)/r. This implies that the probability +pij

l( 1) 
for two supernodes i and j to be connected in layer l +​ 1 maintains 
its original form (equation (5) and Fig. 3a). This applies both to the 
model and to real networks as long as they admit a good embedding 
(Supplementary Fig. 2). In addition, notice that the renormaliza-
tion transformations of the geometric layout also have the Abelian 
semigroup structure.

As the networks remain congruent with the S1 model, hidden 
degrees κ(l) remain proportional to observed degrees k(l), which 
allows us to explore the degree distribution of the renormalized 
layers analytically. It can be shown that, if the original distribu-
tion of hidden degrees is a power law with characteristic exponent 
γ, the renormalized distribution is also a power law with the same 
exponent asymptotically, as long as (γ −​ 1)/2 <​ β (section II in the 
Supplementary Information), with the only difference being the 
average degree. Interestingly, the global parameter controlling the 
clustering coefficient, β, does not change along the flow, which 
explains the self-similarity of the clustering spectra. Finally, the 
transformation for the angles (equation (2)) preserves the order-
ing of nodes and the heterogeneity in their angular density and, 
as a consequence, the community structure is preserved in the 
flow15,19,27,38, as shown in Fig. 3b. The model is therefore renormaliz-
able, and RGN realizations at any scale belong to the same ensemble 
with a different average degree, which should be rescaled to produce 
self-similar replicas.

A good approximation of the behaviour of the average degree 
for very large networks can be calculated by taking into account 
the transformation of hidden degrees along the RGN flow (equa-
tion (1) and section II in the Supplementary Information). We 
obtain ⟨ ⟩ = ⟨ ⟩ν+k r kl l( 1) ( ), with a scaling factor ν depending on the  

l = 0

l = 1

l = 2

r = 2

r = 2

r = 4

Fig. 1 | Geometric renormalization transformation for complex networks. 
Each layer is obtained after a renormalization step with resolution r 
starting from the original network in l =​ 0. Each node i in red is placed at 
an angular position θi

l( ) on the S1 circle and has a size proportional to the 
logarithm of its hidden degree κi

l( ). Straight solid lines represent the links 
in each layer. Coarse-graining blocks correspond to the blue shadowed 
areas, and dashed lines connect nodes to their supernodes in layer l +​ 1. 
Two supernodes in layer l +​ 1 are connected if and only if, in layer l, some 
node in one supernode is connected to some node in the other (blue links 
give an example). The geometric renormalization transformation has 
Abelian semigroup structure with respect to the composition, meaning 
that a certain number of iterations of a given resolution are equivalent to 
a single transformation of higher resolution. For instance, in the figure, 
the same transformation with r =​ 4 goes from l =​ 0 to l =​ 2 in a single step. 
Whenever the number of nodes is not divisible by r, the last supernode 
in a layer contains less than r nodes, as in the example at l =​ 1. The RGN 
transformations are valid for uneven supernode sizes as well; one could 
divide the circle into equally sized sectors of a certain arc length such 
that they contain on average a constant number of nodes. The set of 
transformations parametrized by r does not include an inverse element to 
reverse the process.
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connectivity structure of the original network. If < ≤γ
β
−0 11 , the 

flow is dominated by the exponent of the degree distribution γ, and 
the scaling factor is given by:

ν
γ

=
−

−2
1

1 (3)

whereas the flow is dominated by the strength of clustering if 
≤ <γ

β
−1 21  and

ν
β

= −2 1 (4)

Therefore, if γ <​ 3 or β <​ 2 (phase I in Fig. 3c), then ν >​ 0 and the 
model flows towards a highly connected graph; the average degree 
is preserved if γ =​ 3 and β ≥​ 2 or β =​ 2 and γ ≥​ 3, which indicates that 
the network is at the edge of the transition between the small-world 
and non-small-world phases; and ν <​ 0 if γ >​ 3 and β >​ 2, causing 
the RGN flow to produce sparser networks approaching a unidi-
mensional ring structure as a fixed point (phase II in Fig. 3c). In 
this case, the renormalized layers eventually lose the small-world 
property. Finally, if β <​ (γ −​ 1)/2, the degree distribution becomes 
increasingly homogeneous as r →​ ∞​ (phase III in Fig. 3c), revealing 
that degree heterogeneity is only present at short scales.

In Fig. 3c, several real networks are shown in the connectivity 
phase diagram. All of them lay in the region of small-world net-
works. Furthermore, all of them, except the Internet, Airports and 
Drosophila networks, belong to the β-dominated region. The inset 
shows the behaviour of the average degree of each layer l, ⟨ ⟩k l( ) ; as 
predicted, it grows exponentially in all cases.

Interestingly, global properties of the model, such as those 
reflected in the spectrum of eigenvalues of both the adjacency and 
Laplacian matrices, and quantities such as the diffusion time and 
the restabilization time39, show a dependence on γ and β, which 
is in consonance with the one displayed by the RGN flow of the 
average degree (Supplementary Figs. 10–12). The S1 model seems 
to be more sensitive to small changes in degree heterogeneity in 
the region < ≤γ

β
−0 11 , whereas changes in clustering are better 

reflected when ≤ ≤γ
β
−1 21 .

Finally, the RGN transformation can be reformulated for the 
model in D dimensions. We have recalculated the connectivity 
phase diagram in Fig. 3c, obtaining qualitatively the same transi-
tions and phases, including region III. Interestingly, the high clus-
tering coefficient observed in real networks poses an upper limit 
on the potential dimension of the similarity space. We have tested 
the renormalization transformation using the one-dimensional 
embedding of networks generated in higher dimensions for which 
the clustering is realistic, that is, D ≲​ 10, and found the same results 
as in the D =​ 1 case. The agreement is explained by the fact that 
the one-dimensional embedding provides a faithful representation 
for low-dimensional similarity-space networks (section II in the 
Supplementary Information).

Applications
Next, we propose two specific applications. The first one, the pro-
duction of downscaled network replicas, singles out a specific scale 
while the second one, a multiscale navigation protocol, exploits 
multiple scales simultaneously.

The downscaling of the topology of large real-world complex 
networks to produce smaller high-fidelity replicas can find useful 
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Fig. 2 | Self-similarity of real networks along the RGN flow. Each column shows the RGN flow with r =​ 2 of different topological features of the Internet 
autonomous systems (AS) network (left), the human Metabolic network (middle) and the Music network (right). a, Complementary cumulative 
distribution Pc of rescaled degrees ⟨ ⟩= ∕k k kl l l
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, are shown in the insets. c, RGN flow of the community 

structure. Q(l) is the modularity in layer l, Q(l,0) is the modularity that the community structure of layer l induces in the original network and nMI(l,0) is the 
normalized mutual information between the latter and the community structure detected directly in the original network (see Methods). The number of 
layers in each system is determined by their original size. The horizontal dashed lines indicate the modularity in the original networks.
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applications, for instance, as an alternative or guidance to sampling 
methods in large-scale simulations and, in networked communica-
tion systems like the Internet, as a reduced testbed to analyse the 
performance of new routing protocols40–43. Downscaled network 
replicas can also be used to perform finite size scaling of critical 
phenomena in real networks, so that critical exponents could be 
evaluated starting from a single size instance network. However, the 
success of such programmes is based on the quality of the down-
scaled versions, which should reproduce not only local properties 
of the original network but also its mesoscopic structure. We now 
present a method for their construction that exploits the fact that, 
under renormalization, a scale-free network remains self-similar 
and congruent with the underlying geometric model in the whole 
self-similarity range of the multilayer shell.

The idea is to single out a specific scale after a certain number of 
renormalization steps. Typically, the renormalized average degree of 
real networks increases in the flow (see inset in Fig. 3c), so we apply 
a pruning of links to reduce the density to the level of the original 
network (see Methods). Basically, we re-adjust the average-degree 
parameter μ(l) in the S1 model and then keep only the renormalized 
links that are consistent with the readjusted connection probabili-
ties to obtain a statistically equivalent but reduced version.

To illustrate the high-fidelity that downscaled network rep-
licas can achieve, we use them to reproduce the behaviour of 

dynamical processes in real networks. We selected three different 
dynamical processes, the classic ferromagnetic Ising model, the 
susceptible–infected–susceptible (SIS) epidemic spreading model 
and the Kuramoto model of synchronization (see Methods). We 
test these dynamics in all the self-similar network layers of the real 
networks analysed in this study. Results are shown in Fig. 4 and 
Supplementary Fig. 13. Quite remarkably, for all dynamics and all 
networks, we observe very similar results between the original and 
downscaled replicas at all scales. This is particularly interesting as 
these dynamics have a strong dependence on the mesoscale struc-
ture of the underlying networks.

Next, we introduce a new multiscale navigation protocol for 
networks embedded in hyperbolic space, which improves sin-
gle-layer results15. To this end, we exploit the quasi-isomorphism 
between the S1 model and the H2 model in hyperbolic space16,17 to 
produce a purely geometric representation of the multiscale shell  
(see Methods).

The multiscale navigation protocol is based on greedy routing, 
in which a source node transmitting a packet to a target node sends 
it to its neighbour closest to the destination in the metric space. 
As performance metrics, we consider the success rate (fraction of 
successful greedy paths), and the stretch of successful path (ratio 
between the number of hops in the greedy path and the topologi-
cal shortest path). Notice that greedy routing cannot guarantee the 
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existence of a successful path among all pairs of nodes; the packet 
can get trapped into a loop if sent to an already visited node. In 
this case, the multiscale navigation protocol can find alternative 
paths by taking advantage of the increased efficiency of greedy for-
warding in the coarse-grained layers. When node i needs to send a 
packet to some destination node j, node i performs a virtual greedy 
forwarding step in the highest possible layer to find which super-
node should be next in the greedy path. Based on this, node i then 
forwards the packet to its physical neighbour in the real network, 
which guarantees that it will eventually reach such supernode. The 
process is depicted in Fig. 5a (full details in Methods). To guaran-
tee navigation inside supernodes, we require an extra condition in 
the renormalization process and only consider blocks of connected 
consecutive nodes (a single node can be left alone forming a super-
node by itself). Notice that the new requirement does not alter the 
self-similarity of the renormalized networks forming the multiscale 
shell nor the congruency with the hidden metric space (section IV 
in the Supplementary Information).

Figure 5b shows the increase of the success rate as the number of 
renormalized layers L used in the navigation process is increased for 
the different real networks considered in this study. Interestingly, the 
success rate always increases, even in systems with very high naviga-
bility in l =​ 0 like the Internet, and this improvement increases the 
stretch of successful paths only mildly (Fig. 5c). Counterintuitively, 
the slight increase of the stretch reduces the burden on highly con-
nected nodes (Fig. 5d). As the number of renormalized layers L 
increases, the average fraction of successful paths passing through 
the most connected hubs in the network decreases. The improve-
ments come at the expense of adding information about the super-
nodes to the knowledge needed for standard greedy routing in 
single-layered networks. However, the trade-off between improve-
ment and information overload is advantageous, as for many sys-

tems the addition of just one or two renormalized layer produces 
already a notable effect.

Discussion
It is a very well stablished empirical fact that most real complex 
networks share a very special set of universal features. Among the 
most relevant ones, networks have heterogeneous degree distribu-
tions, strong clustering and are small world. Our hidden metric 
space network model14,17,18, independent of its S1 or H2 formulation, 
provides a very natural explanation of these properties with a very 
limited number of parameters and using an effective hyperbolic 
geometry of two dimensions. Even if the model and the renormal-
ization group can be formulated in D dimensions, the high cluster-
ing coefficient observed in real networks poses an upper limit on 
the potential dimension of the similarity space so that networks can 
be faithfully embedded in the one-dimensional representation. This 
is in line with the accumulated empirical evidence, which unam-
biguously supports the one-dimensional similarity plus degrees as 
an extremely good proxy for the geometry of real networks.

Interestingly, the existence of a metric space underlying complex 
networks allows us to define a geometric renormalization group that 
reveals their multiscale nature. Our geometric models of scale-free 
networks are shown to be self-similar under the RGN transforma-
tion. Even more important is the finding that self-similarity under 
geometric renormalization is a ubiquitous symmetry of real-world 
scale-free networks, which provides new evidence supporting the 
hypothesis that hidden metric spaces underlie real networks.

The renormalization group presented in this work is simi-
lar in spirit to the topological renormalization studied in refs 4–9 
and should be taken as complementary. Instead of using shortest 
paths as a source of length scales to explore the fractality of net-
works, we use a continuum geometric framework that allows us to 
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Fig. 4 | Dynamics on the downscaled replicas. Each column shows the order parameters versus the control parameters of different dynamical processes 
on the original and downscaled replicas of the Internet AS network (left), the human Metabolic network (middle) and the Music network (right) with 
r =​ 2, that is, every value of l identifies a network 2l times smaller than the original one. All points show the results averaged over 100 simulations. Error 
bars indicate the standard deviations of the order parameters. a, Magnetization ⟨∣ ∣⟩m l( ) of the Ising model as a function of the inverse temperature 1/T. 
b, Prevalence ⟨ ⟩ρ l( ) of the SIS model as a function of the infection rate λ. c, Coherence ⟨ ⟩r l( ) of the Kuramoto model as a function of the coupling strength σ. 
In all cases, the curves of the smaller-scale replicas are extremely similar to the results obtained on the original networks.
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unveil the role of degree heterogeneity and clustering in the self-
similarity properties of networks. In our model, a crucial point is 
the explicit contribution of degrees to the probability of connection, 
allows us to produce both short-range and long-range connections 
using a single mechanism captured in a universal connectivity law. 
The combination of similarity with degrees is a necessary condi-
tion to make the model predictive of the multiscale properties of  
real networks.

From a fundamental point of view, the geometric renormaliza-
tion group introduced here has proven to be an exceptional tool to 
unravel the global organization of complex networks across scales 
and promises to become a standard methodology to analyse real 
complex networks. It can also help in areas such as the study of 
metapopulation models, in which transportation fluxes or popu-
lation movements occur on both local and global scales44. From a 
practical point of view, we envision many applications. In large-scale 
simulations, downscaled network replicas could serve as an alter-
native or guidance to sampling methods, or for fast-track explora-
tion of rough parameter spaces in the search of relevant regions. 
Downscaled versions of real networks could also be applied to per-
form finite size scaling, which would allow for the determination 
of critical exponents from single snapshots of their topology. Other 
possibilities include the development of a new multilevel com-
munity detection method45–47 that would exploit the mesoscopic  
information encoded in the different observation scales.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0072-5.
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Methods
Renormalization flow of the community structure. To asses how the community 
structure of the network changes with the RGN flow, we obtained a partition into 
communities of every layer l, P(l), using the Louvain method48; Fig. 2c shows their 
modularities Q(l). We also defined the partition induced by P(l) on the original 
network, P(l,0), obtained by considering that two nodes i and j of the original 
network are in the same community in P(l,0) if and only if the supernodes of i and 
j in layer l belong to the same community in P(l). Both the modularity Q(l,0) of P(l,0) 
and the normalized mutual information nMI(l,0) between both partitions P(0) and 
P(l,0) are shown in Fig. 2c.

Connection probability in the S H∕1 2 geometric model. The S1 model14 places 
the nodes of a network into a one-dimensional sphere of radius R and connects 
every pair i, j with probability

χ
=

+
=

+
β

μκ κ

β







p 1
1

1

1
(5)ij

ij dij

i j

where μ controls the average degree of the network, β its clustering, and dij =​ RΔ​θij 
is the distance between the nodes separated by an angle Δ​θij; R is, without loss of 
generality, always set to N/2π​, where N is the number of nodes, so that the density 
of nodes along the circle is equal to 1. The hidden degrees κi and κj are proportional 
to the degrees of nodes i and j, respectively.

The S1 model is isomorphic to a purely geometric model, the H2 model17, in 
which nodes are placed in a two-dimensional hyperbolic disk of radius:

H μκ
=


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R R2ln 2
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where κ0 =​ min{κi}. By mapping every mass κi to a radial coordinate ri according to:

H
κ
κ

= −r R 2ln (7)i
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2

the connection probability, equation (5), becomes

H

=
+ −βp

e

1

1
(8)ij x R( )ij2 2

where = + +
θΔ

x r r 2lnij i j 2
ij  is a good approximation to the hyperbolic distance 

between two points with coordinates (ri, θi) and (rj, θj) in the native representation 
of hyperbolic space. The exact hyperbolic distance Hd 2 is given by the hyperbolic 
law of cosines:

H θ= − Δd r r r racosh(cosh cosh sinh sinh cos ) (9)i j i j ij2

Adjusting the average degree of downscaled network replicas. To reduce the 
average degree in a renormalized network to the level of the original network, 
we apply a pruning of links using the underlying metric model with which the 
networks in all layers are congruent. The procedure is detailed in this section.

The renormalized network in layer l has an average degree ⟨ ⟩k l( )  generally 
larger (in phase I) from the original network’s ⟨ ⟩k(0) . Moreover, the new network 
is congruent with the underlying hidden metric space with a parameter μ(l) =​ μ(0)/rl 
controlling its average degree. The main idea is to decrease the value of μ(l) to a new 
value μ l

new
( ) —which implies that the connection probability of every pair of nodes (i,j),  

pij
l( ), decreases to pij

l
,new

( ) . We then prune the existing links by keeping them with 
probability

=q
p

p
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l

ij
l

( ) ,new
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Therefore, the probability for a link to exist in the pruned network reads:
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whereas the probability for it not to exist is:
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that is, the pruned network has a lower average degree and is also congruent with 
the underlying metric space model with the new value of μ l

new
( ) . Hence, we only need 

to find the right value of μ l
new
( )  so that ⟨ ⟩ = ⟨ ⟩k knew

l( ) (0) . In the thermodynamic limit, 
the average degree of an S1 network is proportional to μ, so we could simply set

μ μ= ⟨ ⟩
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k
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However, as we consider real-world networks, finite-size effects play an 
important role. Indeed, we need to correct the value of μ l

new
( )  in equation (13). To 

this end, we use a correcting factor c, initially set to c =​ 1, and use μ μ= ⟨ ⟩
⟨ ⟩

cl k
k

l
new
( ) ( )

l

(0)

( ) ;  

for every value of c, we prune the network. If ⟨ ⟩ > ⟨ ⟩k kl
new
( ) (0) , we give c the new 

value c −​ 0.1u →​ c, where u is a random variable uniformly distributed between 
0 and 1. Similarly, if ⟨ ⟩ < ⟨ ⟩k kl

new
( ) (0) , c +​ 0.1u →​ c. The process ends when 

∣⟨ ⟩−⟨ ⟩∣k kl
new
( ) (0)  is below a given threshold (in our case, we set it to 0.1).

Simulation of dynamical processes. The Ising model is an equilibrium model of 
interacting spins49. Every node i is assigned a variable si with two possible values 
si =​ ±​1, and the energy of the system is, in the absence of external field, given by  
the Hamiltonian

∑= −
<

H J a s s (14)
i j

ij ij i j

where aij are the elements of the adjacency matrix and Jij are coupling constants, 
which we set to one. We start from an initial condition with si =​ 1 for all i and 
explore the ensemble of configurations using the Metropolis-Hastings algorithm: 
we randomly select one node and propose a change in its spin, −​si →​ si. If Δ ≤H 0,  
we accept the change; otherwise, we accept it with probability −Δ ∕He T , where T is 
the temperature acting as a control parameter. The order parameter is the absolute 
magnetization per spin ∣ ∣m , where = ∑m s

N i i
1 ; if all spins point in the same 

direction, ∣ ∣ =m 1, whereas ∣ ∣ =m 0 if half the spins point in each direction.
In the SIS dynamical model of epidemic spreading50, every node i can present 

two states at a given time t, susceptible (ni(t) =​ 0) or infected (ni(t) =​ 1). Both 
infection and recovery are Poisson processes. An infected node recovers with rate 1,  
whereas infected nodes infect their susceptible neighbours at rate λ. We simulate 
this process using the continuous-time Gillespie algorithm with all nodes initially 
infected. The order parameter is the prevalence or fraction of infected nodes 
ρ = ∑t n t( ) ( )

N i i
1 .

The Kuramoto model is a dynamical model for coupled oscillators. Every node 
i is described by a natural frequency ωi and a time-dependent phase θi(t). A node’s 
phase evolves according to:

∑θ ω σ θ θ
∘ = + −

<

a t tsin( ( ) ( )) (15)i i
i j

ij j i

where aij are the adjacency matrix elements and σ is the coupling strength. We 
integrate the equations of motion using Heun’s method. Initially, the phases θi(0) 
and the frequencies ωi are randomly drawn from the uniform distributions U(−​π​, π​) 
and U(−​1/2, 1/2) respectively, as in ref. 51. The order parameter = ∑ θr t e( )

N i
i t1 ( )i  

measures the phase coherence of the set of nodes; if all nodes oscillate in phase, 
r(t) =​ 1, whereas r(t) →​ 0 if nodes oscillate in a disordered manner.

In every realization, we compute an average of the order parameter in 
the stationary state. In the case of the SIS model, the single-realization mean 
of prevalence values is weighted by time. The curves presented in this work 
correspond to statistics over 100 realizations.

Multiscale navigation. Given a network and its embedding (layer 0), we merge 
pairs of consecutive nodes only if they are connected, which guarantees navigation 
inside supernodes; this process generates layer 1. We repeat the process to generate 
L renormalized layers. The multiscale navigation protocol requires every node i to 
be provided with the following local information:

1. The coordinates θr( , )i
l

i
l( ) ( )  of node i in every layer l.

2. The list of (super)neighbours of node i in every layer as well as their 
coordinates.

3. Let SuperN(i, l) be the supernode to which i belongs in layer l. 
If SuperN(i, l) is connected to SuperN(k, l) in layer l, at least one of the (super)
nodes in layer l −​ 1 belonging to SuperN(i, l) must be connected to at least one 
of the (super)nodes in layer l −​ 1 belonging to SuperN(k, l); such node is called 
‘gateway’. For every superneighbour of node SuperN(i, l) in layer l, node i knows 
which (super)node or (super)nodes in layer l −​ 1 are gateways reaching it. Notice 
that both the gateways and SuperN(i,l −​ 1) belong to SuperN(i, l) in layer l so, in 
layer l −​ 1, they must either be the same (super)node or different but connected 
(super)nodes.

4. If SuperN(i, l −​ 1) is a gateway reaching some supernode s, at least one of its 
(super)neighbours in layer l −​ 1 belongs to s; node i knows which.

This information allows us to navigate the network as follows. Let j be the 
destination node to which i wants to forward a message, and let node i know j’s 
coordinates in all L layers θr( , )j

l
j
l( ) ( ) . To decide which of its physical neighbours 

(that is, in layer 0) should be next in the message-forwarding process, node i must 
first check if it is connected to j; in that case, the decision is clear. If it is not, it must:

1. Find the highest layer lmax in which SuperN(i, lmax) and SuperN(j, lmax) still 
have different coordinates. Set l =​ lmax.

2. Perform a standard step of greedy routing in layer l: find the closest 
neighbour of SuperN(i, l) to SuperN(j, l). This is the current target SuperT(l).
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3. While l >​ 0, look into layer l −​ 1:
Set l =​ l −​ 1.
If SuperN(i, l) is a gateway connecting to some (super)node within 

SuperT(l +​ 1), node i sets as new current target SuperT(l) its (super)neighbour 
belonging to SuperT(l +​ 1) closest to SuperN(j, l).

Else node i sets as new target SuperT(l) the gateway in SuperN(i, l +​ 1) 
connecting to SuperT(l +​ 1) (its (super)neighbour belonging to SuperN(i, l +​ 1)).

4. In layer l =​ 0, SuperT(0) belongs to the real network and she is a neighbour of i,  
so node i forwards the message to SuperT(0).

Data availability. The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon reasonable request.
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