Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum computation and quantum simulation with ultracold molecules

Abstract

Ultracold molecules confined in optical lattices or tweezer traps can be used to process quantum information and simulate the behaviour of many-body quantum systems. Molecules offer several advantages for these applications. They have a large set of stable states with strong transitions between them and long coherence times. Molecules can be prepared in a chosen state with high fidelity, and the state populations can be measured efficiently. Control over their long-range dipole–dipole interactions can enable the entanglement of pairs of molecules, generating interesting and technologically useful many-body states. This Review covers the advances made so far in the field of quantum simulation and computation with ultracold molecules and the challenges still to overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rotational energies and dipole moments of a simple diatomic molecule in an electric field.
Fig. 2: Quantum simulation with ultracold polar molecules.
Fig. 3: Entangling gate between CaF molecules using dipolar spin-exchange interactions.
Fig. 4: Future research directions.

Similar content being viewed by others

References

  1. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  Google Scholar 

  2. Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    ADS  Google Scholar 

  3. Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    ADS  Google Scholar 

  4. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of Fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    ADS  Google Scholar 

  5. Molony, P. K. et al. Production of ultracold 87Rb133Cs in the absolute ground state: complete characterisation of the stimulated Raman adiabatic passage transfer. ChemPhysChem 17, 3811–3817 (2016).

    Google Scholar 

  6. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    ADS  Google Scholar 

  7. Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    ADS  Google Scholar 

  8. Seeßelberg, F. et al. Modeling the adiabatic creation of ultracold polar 23Na40K molecules. Phys. Rev. A 97, 013405 (2018).

    ADS  Google Scholar 

  9. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    ADS  Google Scholar 

  10. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    ADS  Google Scholar 

  11. Voges, K. K. et al. Ultracold gas of bosonic 23Na39K ground-state molecules. Phys. Rev. Lett. 125, 083401 (2020).

    ADS  Google Scholar 

  12. Cairncross, W. B. et al. Assembly of a rovibrational ground state molecule in an optical tweezer. Phys. Rev. Lett. 126, 123402 (2021).

    ADS  Google Scholar 

  13. Stevenson, I. et al. Ultracold gas of dipolar NaCs ground state molecules. Phys. Rev. Lett. 130, 113002 (2023).

    ADS  Google Scholar 

  14. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    ADS  Google Scholar 

  15. Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Google Scholar 

  16. Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    ADS  Google Scholar 

  17. Collopy, A. L. et al. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).

    ADS  Google Scholar 

  18. Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    ADS  Google Scholar 

  19. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Google Scholar 

  20. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Google Scholar 

  21. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Google Scholar 

  22. Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).

    ADS  Google Scholar 

  23. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    ADS  Google Scholar 

  24. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Google Scholar 

  25. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Google Scholar 

  26. Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Google Scholar 

  27. Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).

    ADS  Google Scholar 

  28. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Google Scholar 

  29. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    ADS  Google Scholar 

  30. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    ADS  Google Scholar 

  31. Lemeshko, M., Krems, R. V., Doyle, J. M. & Kais, S. Manipulation of molecules with electromagnetic fields. Mol. Phys. 111, 1648–1682 (2013).

    ADS  Google Scholar 

  32. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    ADS  MathSciNet  Google Scholar 

  33. Softley, T. P. Cold and ultracold molecules in the twenties. Proc. R. Soc. A 479, 20220806 (2023).

    ADS  Google Scholar 

  34. Langen, T., Valtolina, G., Wang, D. & Ye, J. Quantum state manipulation and cooling of ultracold molecules. Nat. Phys. [DOI TO COME] (2024).

  35. Karman, T., Tomza, M. & Perez-Rios, J. Ultracold chemistry as a testbed for few-body physics. Nat. Phys. [DOI TO COME] (2024).

  36. DeMille, D., Hutzler, N., Rey, A.-M. & Zelevinsky, T. Quantum sensing and metrology with cold and ultracold molecules. Nat. Phys. [DOI TO COME] (2024).

  37. Deiß, M., Willitsch, S. & Hecker-Denschlag, J. Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nat. Phys. [DOI TO COME] (2024).

  38. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    ADS  Google Scholar 

  39. Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

    ADS  Google Scholar 

  40. Barnett, R., Petrov, D., Lukin, M. & Demler, E. Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006).

    ADS  Google Scholar 

  41. Wall, M. L., Hazzard, K. R. A. & Rey, A. M. in From Atomic to Mesoscale (eds Malinovskaya, S. A & Novikova, I.) Ch. 1 (World Scientific, 2015).

  42. Sachdev, S. Quantum magnetism and criticality. Nat. Phys. 4, 173–185 (2008).

    Google Scholar 

  43. Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018).

    Google Scholar 

  44. Žnidarič, M. Spin transport in a one-dimensional anisotropic Heisenberg model. Phys. Rev. Lett. 106, 220601 (2011).

    ADS  Google Scholar 

  45. Ljubotina, M., Žnidarič, M. & Prosen, T. Kardar–Parisi–Zhang physics in the quantum Heisenberg magnet. Phys. Rev. Lett. 122, 210602 (2019).

    ADS  Google Scholar 

  46. Gopalakrishnan, S. & Vasseur, R. Kinetic theory of spin diffusion and superdiffusion in XXZ spin chains. Phys. Rev. Lett. 122, 127202 (2019).

    ADS  Google Scholar 

  47. De Nardis, J., Medenjak, M., Karrasch, C. & Ilievski, E. Anomalous spin diffusion in one-dimensional antiferromagnets. Phys. Rev. Lett. 123, 186601 (2019).

    ADS  Google Scholar 

  48. Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X 10, 031002 (2020).

    Google Scholar 

  49. Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    ADS  Google Scholar 

  50. Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022).

    ADS  Google Scholar 

  51. Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).

    ADS  Google Scholar 

  52. Manmana, S. R., Stoudenmire, E. M., Hazzard, K. R. A., Rey, A. M. & Gorshkov, A. V. Topological phases in ultracold polar-molecule quantum magnets. Phys. Rev. B 87, 081106 (2013).

    ADS  Google Scholar 

  53. Syzranov, S. V., Wall, M. L., Gurarie, V. & Rey, A. M. Spin–orbital dynamics in a system of polar molecules. Nat. Commun. 5, 5391 (2014).

    ADS  Google Scholar 

  54. Lienhard, V. et al. Realization of a density-dependent Peierls phase in a synthetic, spin–orbit coupled Rydberg system. Phys. Rev. X 10, 021031 (2020).

    Google Scholar 

  55. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS  MathSciNet  Google Scholar 

  56. Gorshkov, A. V., Hazzard, K. R. A. & Rey, A. M. Kitaev honeycomb and other exotic spin models with polar molecules. Mol. Phys. 111, 1908–1916 (2013).

    ADS  Google Scholar 

  57. Yao, N. Y. et al. Realizing fractional Chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013).

    ADS  Google Scholar 

  58. Schuster, T. et al. Realizing Hopf insulators in dipolar spin systems. Phys. Rev. Lett. 127, 015301 (2021).

    ADS  Google Scholar 

  59. Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Google Scholar 

  60. Sundar, B., Gadway, B. & Hazzard, K. R. A. Synthetic dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).

    ADS  Google Scholar 

  61. Homeier, L. et al. Antiferromagnetic bosonic tJ models and their quantum simulation in tweezer. Preprint at https://doi.org/10.48550/arXiv.2305.02322 (2023).

  62. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Google Scholar 

  63. Brennen, G. K., Micheli, A. & Zoller, P. Designing spin-1 lattice models using polar molecules. New J. Phys. 9, 138 (2007).

    ADS  Google Scholar 

  64. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    ADS  Google Scholar 

  65. Zhu, B. et al. Suppressing the loss of ultracold molecules via the continuous quantum zeno effect. Phys. Rev. Lett. 112, 070404 (2014).

    ADS  Google Scholar 

  66. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    ADS  Google Scholar 

  67. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    ADS  Google Scholar 

  68. Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144 (2021).

  69. González-Martínez, M. L., Bohn, J. L. & Quéméner, G. Adimensional theory of shielding in ultracold collisions of dipolar rotors. Phys. Rev. A 96, 032718 (2017).

    ADS  Google Scholar 

  70. Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules. Phys. Rev. Lett. 121, 163401 (2018).

    ADS  Google Scholar 

  71. Lassablière, L. & Quéméner, G. Controlling the scattering length of ultracold dipolar molecules. Phys. Rev. Lett. 121, 163402 (2018).

    ADS  Google Scholar 

  72. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    ADS  Google Scholar 

  73. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    ADS  Google Scholar 

  74. Chen, X.-Y. et al. Field-linked resonances of polar molecules. Nature 614, 59–63 (2023).

    ADS  Google Scholar 

  75. Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579–1584 (2023).

    Google Scholar 

  76. Qin, M., Schäfer, T., Andergassen, S., Corboz, P. & Gull, E. The Hubbard model: a computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275–302 (2022).

    ADS  Google Scholar 

  77. Arovas, D. P., Berg, E., Kivelson, S. A. & Raghu, S. The Hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).

    ADS  Google Scholar 

  78. Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).

    MathSciNet  Google Scholar 

  79. Manmana, S. R., Möller, M., Gezzi, R. & Hazzard, K. R. A. Correlations and enlarged superconducting phase of t − J chains of ultracold molecules on optical lattices. Phys. Rev. A 96, 043618 (2017).

    ADS  Google Scholar 

  80. Kuns, K. A., Rey, A. M. & Gorshkov, A. V. d-wave superfluidity in optical lattices of ultracold polar molecules. Phys. Rev. A 84, 063639 (2011).

    ADS  Google Scholar 

  81. Baranov, M. A., Mar’enko, M. S., Rychkov, V. S. & Shlyapnikov, G. V. Superfluid pairing in a polarized dipolar Fermi gas. Phys. Rev. A 66, 013606 (2002).

    ADS  Google Scholar 

  82. Cooper, N. R. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).

    ADS  Google Scholar 

  83. Shi, T., Zhang, J.-N., Sun, C.-P. & Yi, S. Singlet and triplet Bardeen–Cooper–Schrieffer pairs in a gas of two-species fermionic polar molecules. Phys. Rev. A 82, 033623 (2010).

    ADS  Google Scholar 

  84. Wu, Z., Block, J. K. & Bruun, G. M. Liquid crystal phases of two-dimensional dipolar gases and Berezinskii–Kosterlitz–Thouless melting. Sci. Rep. 6, 19038 (2016).

    ADS  Google Scholar 

  85. Schmidt, M., Lassablière, L., Quéméner, G. & Langen, T. Self-bound dipolar droplets and supersolids in molecular Bose–Einstein condensates. Phys. Rev. Res. 4, 013235 (2022).

    Google Scholar 

  86. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    ADS  Google Scholar 

  87. Micheli, A., Pupillo, G., Büchler, H. P. & Zoller, P. Cold polar molecules in two-dimensional traps: tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007).

    ADS  Google Scholar 

  88. Rabl, P. & Zoller, P. Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing. Phys. Rev. A 76, 042308 (2007).

    ADS  Google Scholar 

  89. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    ADS  Google Scholar 

  90. Kotochigova, S. & DeMille, D. Electric-field-dependent dynamic polarizability and state-insensitive conditions for optical trapping of diatomic molecules. Phys. Rev. A 82, 063421 (2010).

    ADS  Google Scholar 

  91. Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    ADS  Google Scholar 

  92. Gregory, P. D., Blackmore, J. A., Aldegunde, J., Hutson, J. M. & Cornish, S. L. ac Stark effect in ultracold polar 87Rb133Cs molecules. Phys. Rev. A 96, 021402 (2017).

    ADS  Google Scholar 

  93. Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    ADS  Google Scholar 

  94. Damski, B. et al. Creation of a dipolar superfluid in optical lattices. Phys. Rev. Lett. 90, 110401 (2003).

    ADS  Google Scholar 

  95. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  Google Scholar 

  96. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  Google Scholar 

  97. Reichsöllner, L., Schindewolf, A., Takekoshi, T., Grimm, R. & Nägerl, H.-C. Quantum engineering of a low-entropy gas of heteronuclear bosonic molecules in an optical lattice. Phys. Rev. Lett. 118, 073201 (2017).

    ADS  Google Scholar 

  98. Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015).

    ADS  Google Scholar 

  99. Zhou, Q. & Ho, T.-L. Universal thermometry for quantum simulation. Phys. Rev. Lett. 106, 225301 (2011).

    ADS  Google Scholar 

  100. Hartke, T., Oreg, B., Jia, N. & Zwierlein, M. Doublon-hole correlations and fluctuation thermometry in a Fermi–Hubbard gas. Phys. Rev. Lett. 125, 113601 (2020).

    ADS  Google Scholar 

  101. Pasqualetti, G. et al. Equation of state and thermometry of the 2D SU (N) Fermi–Hubbard model. Phys. Rev. Lett. 132, 083401 (2024).

  102. Trivedi, R., Rubio, A. F. & Cirac, J. I. Quantum advantage and stability to errors in analogue quantum simulators. Preprint at https://arxiv.org/abs/2302.10161 (2022).

  103. Müller, M. M., Said, R. S., Jelezko, F., Calarco, T. & Montangero, S. One decade of quantum optimal control in the chopped random basis. Rep. Prog. Phys. 85, 076001 (2022).

    ADS  MathSciNet  Google Scholar 

  104. Hazzard, K. R. A., Manmana, S. R., Foss-Feig, M. & Rey, A. M. Far-from-equilibrium quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 110, 075301 (2013).

    ADS  Google Scholar 

  105. Hazzard, K. R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    ADS  Google Scholar 

  106. Rosenberg, J. S., Christakis, L., Guardado-Sanchez, E., Yan, Z. Z. & Bakr, W. S. Observation of the Hanbury Brown–Twiss effect with ultracold molecules. Nat. Phys. 18, 1062–1066 (2022).

    Google Scholar 

  107. Li, J.-R. et al. Tunable itinerant spin dynamics with polar molecules. Nature 614, 70–74 (2023).

    ADS  Google Scholar 

  108. Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    ADS  Google Scholar 

  109. Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    ADS  Google Scholar 

  110. Tobias, W. G. et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science 375, 1299–1303 (2022).

    ADS  Google Scholar 

  111. Park, A. J. et al. Extended rotational coherence of polar molecules in an elliptically polarized trap. Phys. Rev. Lett. 131, 183401 (2023).

    ADS  Google Scholar 

  112. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    ADS  Google Scholar 

  113. Derevianko, A. & Katori, H. Colloquium: physics of optical lattice clocks. Rev. Mod. Phys. 83, 331–347 (2011).

    ADS  Google Scholar 

  114. Kotochigova, S. & Tiesinga, E. Controlling polar molecules in optical lattices. Phys. Rev. A 73, 041405 (2006).

    ADS  Google Scholar 

  115. Zelevinsky, T., Kotochigova, S. & Ye, J. Precision test of mass-ratio variations with lattice-confined ultracold molecules. Phys. Rev. Lett. 100, 043201 (2008).

    ADS  Google Scholar 

  116. Guan, Q., Cornish, S. L. & Kotochigova, S. Magic conditions for multiple rotational states of bialkali molecules in optical lattices. Phys. Rev. A 103, 043311 (2021).

    ADS  Google Scholar 

  117. Bause, R. et al. Tune-out and magic wavelengths for ground state 23Na40K molecules. Phys. Rev. Lett. 125, 023201 (2020).

    ADS  Google Scholar 

  118. Gregory, P. D. et al. Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nat. Phys. https://doi.org/10.1038/s41567-023-02328-5 (2024).

  119. Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    ADS  MathSciNet  Google Scholar 

  120. Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    ADS  MathSciNet  Google Scholar 

  121. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    ADS  Google Scholar 

  122. Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

    ADS  Google Scholar 

  123. Guttridge, A. et al. Observation of Rydberg blockade due to the charge-dipole interaction between an atom and a polar molecule. Phys. Rev. Lett. 131, 013401 (2023).

    ADS  Google Scholar 

  124. Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).

    ADS  Google Scholar 

  125. Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).

    Google Scholar 

  126. Yelin, S. F., Kirby, K. & Côté, R. Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006).

    ADS  Google Scholar 

  127. Zhu, J., Kais, S., Wei, Q., Herschbach, D. & Friedrich, B. Implementation of quantum logic gates using polar molecules in pendular states. J. Chem. Phys. 138, 024104 (2013).

    ADS  Google Scholar 

  128. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Google Scholar 

  129. Hughes, M. et al. Robust entangling gate for polar molecules using magnetic and microwave fields. Phys. Rev. A 101, 062308 (2020).

    ADS  Google Scholar 

  130. Caldwell, L. & Tarbutt, M. R. Enhancing dipolar interactions between molecules using state-dependent optical tweezer traps. Phys. Rev. Lett. 125, 243201 (2020).

    ADS  Google Scholar 

  131. Caldwell, L. & Tarbutt, M. R. Sideband cooling of molecules in optical traps. Phys. Rev. Res. 2, 013251 (2020).

    Google Scholar 

  132. Lu, Y., Li, S. J., Holland, C. M. & Cheuk, L. W. Raman sideband cooling of molecules in an optical tweezer array. Nat. Phys. https://doi.org/10.1038/s41567-023-02346-3 (2024).

  133. Bao, Y. et al. Raman sideband cooling of molecules in an optical tweezer array to the 3-D motional ground state. Preprint at https://arxiv.org/abs/2309.08706 (2023).

  134. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    ADS  Google Scholar 

  135. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    ADS  Google Scholar 

  136. Ye, X., Guo, M., González-Martínez, M. L., Quéméner, G. & Wang, D. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4, 0083 (2018).

    ADS  Google Scholar 

  137. Guo, M. et al. Dipolar collisions of ultracold ground-state bosonic molecules. Phys. Rev. X 8, 041044 (2018).

    Google Scholar 

  138. Gregory, P. D. et al. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 (2019).

    ADS  Google Scholar 

  139. Bause, R., Christianen, A., Schindewolf, A., Bloch, I. & Luo, X.-Y. Ultracold sticky collisions: theoretical and experimental status. J. Phys. Chem. A 127, 729–741 (2023).

    Google Scholar 

  140. Mayle, M., Ruzic, B. P. & Bohn, J. L. Statistical aspects of ultracold resonant scattering. Phys. Rev. A 85, 062712 (2012).

    ADS  Google Scholar 

  141. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    ADS  Google Scholar 

  142. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    ADS  Google Scholar 

  143. Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    ADS  Google Scholar 

  144. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    ADS  Google Scholar 

  145. Lin, J. et al. Microwave shielding of bosonic NaRb molecules. Phys. Rev. X 13, 031032 (2023).

    Google Scholar 

  146. Bigagli, N. et al. Observation of Bose–Einstein condensation of dipolar molecules. Preprint at https://arxiv.org/abs/2312.10965 (2023).

  147. Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    ADS  Google Scholar 

  148. Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).

    Google Scholar 

  149. Sundar, B., Thibodeau, M., Wang, Z., Gadway, B. & Hazzard, K. R. A. Strings of ultracold molecules in a synthetic dimension. Phys. Rev. A 99, 013624 (2019).

    ADS  Google Scholar 

  150. Feng, C., Manetsch, H., Rousseau, V. G., Hazzard, K. R. A. & Scalettar, R. Quantum membrane phases in synthetic lattices of cold molecules or Rydberg atoms. Phys. Rev. A 105, 063320 (2022).

    ADS  Google Scholar 

  151. Dasgupta, S., Feng, C., Gadway, B., Scalettar, R. T. & Hazzard, K. R. A. Finite-temperature quantum matter with Rydberg or molecule synthetic dimensions. Preprint at https://arxiv.org/abs/2307.16269 (2023).

  152. Kuznetsova, E., Rittenhouse, S. T., Sadeghpour, H. R. & Yelin, S. F. Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability. Phys. Chem. Chem. Phys. 13, 17115–17121 (2011).

    Google Scholar 

  153. Kuznetsova, E., Rittenhouse, S. T., Sadeghpour, H. R. & Yelin, S. F. Rydberg-atom-mediated nondestructive readout of collective rotational states in polar-molecule arrays. Phys. Rev. A 94, 032325 (2016).

    ADS  Google Scholar 

  154. Zeppenfeld, M. Nondestructive detection of polar molecules via Rydberg atoms. Europhys. Lett. 118, 13002 (2017).

    ADS  Google Scholar 

  155. Wang, K., Williams, C. P., Picard, L. R. B., Yao, N. Y. & Ni, K.-K. Enriching the quantum toolbox of ultracold molecules with Rydberg atoms. PRX Quantum 3, 030339 (2022).

    ADS  Google Scholar 

  156. Zhang, C. & Tarbutt, M. R. Quantum computation in a hybrid array of molecules and Rydberg atoms. PRX Quantum 3, 030340 (2022).

    ADS  Google Scholar 

  157. Dobrzyniecki, J. & Tomza, M. Quantum simulation of the central spin model with a Rydberg atom and polar molecules in optical tweezers. Phys. Rev. A 108, 052618 (2023).

    ADS  Google Scholar 

  158. Isaev, T. A. & Berger, R. Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts. Phys. Rev. Lett. 116, 063006 (2016).

    ADS  Google Scholar 

  159. Hallas, C. et al. Optical trapping of a polyatomic molecule in an -type parity doublet state. Phys. Rev. Lett. 130, 153202 (2023).

    ADS  Google Scholar 

  160. Augenbraun, B. L. et al. Direct laser cooling of polyatomic molecules. Adv. At. Mol. Opt. Phys. 72, 89–182 (2023).

  161. Barbé, V. et al. Observation of Feshbach resonances between alkali and closed-shell atoms. Nat. Phys. 14, 881–884 (2018).

    Google Scholar 

  162. Green, A. et al. Feshbach resonances in p-wave three-body recombination within Fermi–Fermi mixtures of open-shell 6Li and closed-shell 173Yb atoms. Phys. Rev. X 10, 031037 (2020).

    Google Scholar 

  163. Franzen, T. et al. Observation of magnetic Feshbach resonances between Cs and 173Yb. Phys. Rev. Res. 4, 043072 (2022).

    Google Scholar 

  164. Soave, E. et al. Optically trapped Feshbach molecules of fermionic 161Dy and 40K. Phys. Rev. Res. 5, 033117 (2023).

    Google Scholar 

  165. Ciamei, A. et al. Exploring ultracold collisions in 6Li–53Cr Fermi mixtures: Feshbach resonances and scattering properties of a novel alkali-transition metal system. Phys. Rev. Lett. 129, 093402 (2022).

    ADS  Google Scholar 

  166. Yang, H. et al. Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures. Nature 602, 229–233 (2022).

    ADS  Google Scholar 

  167. Quéméner, G., Bohn, J. L. & Croft, J. F. E. Electroassociation of ultracold dipolar molecules into tetramer field-linked states. Phys. Rev. Lett. 131, 043402 (2023).

    ADS  Google Scholar 

  168. Chen, X.-Y. et al. Ultracold field-linked tetratomic molecules. Nature 626, 283–287 (2024).

    Google Scholar 

  169. Wei, Q., Kais, S., Friedrich, B. & Herschbach, D. Entanglement of polar symmetric top molecules as candidate qubits. J. Chem. Phys. 135, 154102 (2011).

    ADS  Google Scholar 

  170. Zhang, Z.-Y. & Liu, J.-M. Quantum correlations and coherence of polar symmetric top molecules in pendular states. Sci. Rep. 7, 17822 (2017).

    ADS  Google Scholar 

  171. Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).

    ADS  Google Scholar 

  172. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    ADS  Google Scholar 

  173. Wall, M. L., Maeda, K. & Carr, L. D. Simulating quantum magnets with symmetric top molecules. Ann. Phys. 525, 845–865 (2013).

    MathSciNet  Google Scholar 

  174. Wall, M. L., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).

    ADS  Google Scholar 

  175. Blackmore, J. A., Gregory, P. D., Bromley, S. L. & Cornish, S. L. Coherent manipulation of the internal state of ultracold 87Rb133Cs molecules with multiple microwave fields. Phys. Chem. Chem. Phys. 22, 27529–27538 (2020).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the UK Engineering and Physical Sciences Research Council (grant nos. EP/P01058X/1, EP/P008275/1, EP/V011499/1 and EP/W00299X/1), a Frontier Research Grant from UK Research and Innovation (grant no. EP/X023354/1), the Robert A. Welch Foundation (grant no. C-1872), the National Science Foundation (grant nos. PHY1848304 and CMMI-2037545), the Office of Naval Research (grant nos. N00014-20-1-2695 and N00014-12-1-2665), the W.M. Keck Foundation (grant no. 995764), the Department of Energy (grant no. DE-SC0024301), the Royal Society and Durham University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Simon L. Cornish.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Alexey Gorshkov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornish, S.L., Tarbutt, M.R. & Hazzard, K.R.A. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. 20, 730–740 (2024). https://doi.org/10.1038/s41567-024-02453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02453-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing