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A quantum critical Bose gas of magnons in 
the quasi-two-dimensional antiferromagnet 
YbCl3 under magnetic fields

Yosuke Matsumoto    1  , Simon Schnierer    1, Jan A. N. Bruin    1, 
Jürgen Nuss    1, Pascal Reiss    1, George Jackeli    1,2, Kentaro Kitagawa    3 & 
Hidenori Takagi    1,2,3 

Bose–Einstein condensation (BEC) is a quantum phenomenon in which a 
macroscopic number of bosons occupy the lowest energy state and acquire 
coherence at low temperatures. In three-dimensional antiferromagnets, 
a magnetic-field-induced transition has been successfully described as a 
magnon BEC. For a strictly two-dimensional (2D) system, it is known that 
BEC cannot take place due to the presence of a finite density of states at 
zero energy. However, in a realistic quasi-2D magnet consisting of stacked 
magnetic layers, a small but finite interlayer coupling stabilizes marginal 
BEC but such that 2D physics is still expected to dominate. This 2D-limit 
BEC behaviour has been reported in a few materials but only at very 
high magnetic fields that are difficult to access. The honeycomb S = 1/2 
Heisenberg antiferromagnet YbCl3 exhibits a transition to a fully polarized 
state at a relatively low in-plane magnetic field. Here, we demonstrate the 
formation of a quantum critical 2D Bose gas at the transition field, which, 
with lowering the field, experiences a BEC marginally stabilized by an 
extremely small interlayer coupling. Our observations establish YbCl3, 
previously a Kitaev quantum spin liquid material, as a realization of a 
quantum critical BEC in the 2D limit.

XY antiferromagnetism induced by an applied magnetic field H pro-
vides a prominent example of Bose–Einstein condensation (BEC)1,2 in 
quantum magnets3–5, which has been established in a wide variety of 
magnets including spin-singlet dimers TlCuCl3 (refs. 6,7), BaCuSi2O6 
(refs. 8,9) and S = 1 magnet with a single ion anisotropy NiCl2-4SC(NH2)2 
(ref. 10). Consider, for example, the case for a Heisenberg antiferro-
magnet with a nearest-neighbour coupling J in a field H. H along the 
z-direction polarizes the spins and causes their z-component <Sz> to 
acquire a finite value. When H is close to the saturation field Hs—that 
is, near a quantum phase transition to a fully polarized (FP) state—the 
system effectively becomes an XY antiferromagnet with the remaining 
x- and y-components of the spins, Sx and Sy. As Sx and Sy can be replaced 

with creation/annihilation operators of bosons, the system can be 
mapped onto an ensemble of interacting bosons with boson operators 
bk

+ and bk in the momentum k representation, an excitation energy εk 
and an effective chemical potential μeff (ref. 11), which is described by 
the following Hamiltonian:

H = ∑
k
(εk − μeff)b+k bk (1)

In this mapping, εk is determined by the energy dispersion of a 
tight-binding band with a nearest-neighbour hopping t = J/2 measured 
from the bottom of the band. The effective chemical potential

Received: 5 July 2022

Accepted: 28 March 2024

Published online: xx xx xxxx

 Check for updates

1Max Planck Institute for Solid State Research, Stuttgart, Germany. 2Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 
Stuttgart, Germany. 3Department of Physics, University of Tokyo, Tokyo, Japan.  e-mail: Y.Matsumoto@fkf.mpg.de; h.takagi@fkf.mpg.de

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-024-02498-w
http://orcid.org/0000-0001-8522-7113
http://orcid.org/0009-0004-6810-9982
http://orcid.org/0000-0002-9476-118X
http://orcid.org/0000-0002-0679-0184
http://orcid.org/0000-0003-4182-5108
http://orcid.org/0000-0002-1286-8718
http://orcid.org/0000-0002-9535-0710
http://orcid.org/0000-0001-5700-3761
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-024-02498-w&domain=pdf
mailto:Y.Matsumoto@fkf.mpg.de
mailto:h.takagi@fkf.mpg.de


Nature Physics

Article https://doi.org/10.1038/s41567-024-02498-w

(J⊥). The interlayer coupling should marginally push the system from 
a BKT transition to a 3D LRO and hence a BEC. Even in such a quasi-2D 
BEC state, however, 2D physics could be still relevant at temperatures 
above the temperature scale of J⊥. 2D logarithmic renormalization of 
Ueff, for example, may still be captured. Possible signatures of BKT phys-
ics were suggested theoretically18 and experimentally19–22 in quasi-2D 
magnets with intrinsic XY character.

It is tempting to explore such a distinct class of marginal BEC in the 
2D limit and its BEC-QCP in quasi-2D antiferromagnets under magnetic 
fields, where we anticipate 2D logarithmic renormalization, 2D quantum 
and thermal fluctuations with possible signatures of BKT physics and an 
interplay with 3D physics arising from a minute interlayer coupling  J⊥. So 
far, despite the long history of BEC and BEC-QCP in antiferromagnets, 
such exploration for the 2D limit has been limited due to the lack of an 
appropriate model system. The quasi-2D dimer system BaCu2Si2O6 shows 
a magnetic-field-induced BEC above the QCP where a finite magnetization 
emerges. The reduction of the effective interlayer coupling due to frustra-
tion was argued to play a vital role9. The linear decrease of the transition 
temperature Tc as a function of the magnetic field around QCP, which is 
expected for a BEC in the 2D limit23, suggests the presence of 2D quantum 
fluctuations. However, the frustration scenario was challenged by the 
later observation of ferromagnetic interlayer coupling. The presence of 
two types of dimers does not allow for a straightforward interpretation 
of the critical behaviour24. More importantly, signatures of ‘2D’ critical 
fluctuations other than the linear scaling of transition temperature and 
underlying boson–boson interactions have not yet been unveiled, in 
contrast to the 3D case (for example, TlCuCl3 (ref. 6) and NiCl2-4SC(NH2)2 
(ref. 25)), partly due to the very high magnetic field needed to reach the 
QCP. To capture the BEC criticality in the 2D limit experimentally, a mate-
rial system with an easily accessible QCP is highly desired, where one can 
probe 2D quantum and thermal fluctuations and underlying interactions 
through other thermodynamic parameters in addition to Tc.

The pseudospin 1/2 Heisenberg antiferromagnet YbCl3 may  
be an ideal system for the exploration of the quasi-2D BEC-QCP.  

μeff = gμB (HS − H ) − 2Ueff < n >

consists of the bare chemical potential controlled by Hs − H and an addi-
tional term representing the increase of the mean-field, one-particle 
energy due to a repulsive boson–boson interaction Ueff, which arises 
from the JSz

iSz
j term in the original spin Hamiltonian and is on the order 

of J in the bare form6,12. <n> is the average number of (hole) bosons per 
site, which corresponds to the deviation of field-induced magneti-
zation <Sz> from the saturation value. The XY ordering below Hs can 
therefore be treated as a BEC of a low density of interacting bosons 
in the Hamiltonian. The FP state above Hs has an excitation gap and 
zero boson density <n> = 0 at temperature T = 0 and can be regarded 
as the vacuum state of the bosons. The field-induced quantum phase 
transition at Hs provides us with a unique opportunity to study a BEC 
quantum critical point (BEC-QCP).

The nature of the magnetic-field-induced BEC depends sensitively 
on the dimensionality of the system. In a three-dimensional (3D) mag-
net, BEC occurs simply as a long-range XY ordering. Distinct from the 
3D case is a two-dimensional (2D) magnet. It is known that a strictly 2D 
Bose gas does not experience BEC at a finite temperature, due to the 
presence of a finite density of states at zero energy and the associated 
logarithmic divergence of the number integral in the T = 0 limit. In 
the original language of spin, a long-range XY ordering in a strictly 2D 
magnet is suppressed by strong fluctuations down to T = 0 (ref. 13). 
Instead, a quasi-long-range-order (quasi-LRO) emerges: that is, the 
Berezinskii–Kosterlitz–Thouless (BKT) transition14–16. One therefore 
observes a BKT near Hs in strictly 2D systems, instead of the BEC. The 
effective boson–boson interaction Ueff in 2D is distinct from those in 
3D and is subject to logarithmic renormalization as Ueff = U0/(−ln<n>), 
where U0 is the bare interaction and suppressed appreciably around the 
QCP17. In reality, the bulk ‘2D magnet’ that we investigate experimentally 
is not a strictly 2D magnet but a quasi-2D magnet, which comprises a 
stack of strictly 2D magnets with a small but finite interlayer coupling 
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Fig. 1 | Magnetic-field-induced quantum phase transition and H–T phase 
diagram for YbCl3. a, The magnetization M(H) curves at different temperatures. 
The Van Vleck contribution has been subtracted (Supplementary Fig. 1). The inset 
shows the honeycomb layered structure of YbCl3 (space group C12/m1)26,41 with 
an antiferromagnetic intralayer coupling J ≈ 5 K and a ferromagnetic interlayer 
coupling J⊥ ≈ 0.1 mK. b, The magnetic field dependence of entropy at different 
temperatures. c, The H–T phase diagram. The power α of the T-dependent 
specific heat C (C ∝ Tα defined as α(T) ≡ d ln C/d ln T) was evaluated by linear fits 
to ln C versus ln T for every four data points and is indicated by the colour. The 
open symbols indicate the Tc of the long-range magnetic ordering, defined by the 

position of peaks in dM/dT, C/T and dM/dH. The crosses represent the locations 
of the broad SRO peaks in C/T. Error bars for circles and crosses are defined by 
the peak width of the C(T)/T anomaly at 2% below the maximum value, which 
was determined by fitting 20–30 points around the peak with a polynomial 
curve. Filled squares indicate the gap size ∆ determined by C/T. A linear fit to ∆ 
is shown with dotted line above Hs. The grey broken line below Hs indicates the 
onset of the 2D thermal fluctuations above Tc, which is determined as the onset 
temperature of a rapid increase of C/T upon cooling (the open arrows in Fig. 2b). 
fluc., fluctuation.
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The material has the 2D honeycomb-based structure shown in the 
inset of Fig. 1a (ref. 26) and was earlier suggested as a possible Kitaev 
magnet with anisotropic bond-dependent couplings27. Recent inelas-
tic neutron-scattering measurements, however, revealed that the 
system is a quasi-2D Heisenberg antiferromagnet with an almost iso-
tropic in-plane nearest-neighbour coupling J ≈ 5 K (= 0.42 meV) and a 
very small interlayer coupling |J⊥/J| ≈ 3 × 10−5 (ref. 28). Recent quantum 
Monte Carlo (QMC) simulations on this system indicate a ferromagnetic 
interlayer coupling at least smaller than |J⊥/J| ≈ 2 × 10−3 (ref. 29), consist-
ent with the estimate from the inelastic neutron-scattering measure-
ment28. J⊥ is therefore extremely small, likely of the order of 0.1 mK and 
at most 10 mK, rendering this system ideal to explore a BEC close to the 
2D limit. Specific heat and neutron diffraction measurements indicate 
the occurrence of a 3D long-range Néel ordering at TN = 0.6 K (ref. 30) 
with an ordered moment of ∼1 µB (refs. 27,28,30), which is stabilized by 
the small J⊥. Alternating-current susceptibility measurements indicate 
a magnetic-field-induced transition to a FP state at Hs = 6 and 9.5 T with 
the field applied in and out of plane, respectively27, which we argue to 
be a quasi-2D BEC-QCP.

We therefore have explored the quasi-2D BEC-QCP in YbCl3 with 
the in-plane magnetic field H as a tuning parameter of the quantum 
phase transition. At the QCP, we identified clear signatures of BEC 
quantum critical fluctuations in the 2D limit, which manifest them-
selves as the formation of a highly mobile, correlated 2D Bose gas in 
the dilute limit, where the effective boson–boson interaction is an 
order of magnitude smaller than those of its 3D analogues due to the 
expected logarithmic renormalization of boson–boson interaction. 
The finite temperature transitions below the saturation field Hs (that 
is, the QCP) can be described as a BEC induced by an extremely small 
interlayer coupling  J⊥ of ~0.1 mK.

Heisenberg-like to XY-like crossover and the QCP
Single crystals of YbCl3 used in this study were grown by a chemical 
vapour-transport technique (Methods). The magnetic field was always 
applied along the in-plane a-direction, perpendicular to one of the 
honeycomb bonds. The magnetization M shown in Fig. 1a reaches the 
saturation moment Ms = 1.72 µB per Yb around Hs ≈ 5.9 T. The satura-
tion field in the T = 0 limit, which marks the quantum phase transi-
tion, was estimated as Hs = 5.93 ± 0.01 T from the crossing point of 
dM/dH curves at 0.05 and 0.08 K (Supplementary Information and 
Supplementary Fig. 1).

At zero field, the specific heat divided by temperature C/T shown in 
Fig. 2b exhibits a broad peak from a short-range 2D antiferromagnetic 
correlation around 1.2 K, followed by a tiny but sharp peak from the 
long-range 3D Néel ordering at Tc = 0.65 K, fully consistent with the 
previous studies27,30. Weak signature of the Néel order is also present 
in M(T), which is more clearly visualized in the temperature derivative 
dM/dT (Fig. 2e,f). Upon applying H, Tc first increases until Hp ≈ 2–3 T and 
then decreases to zero at the saturation field Hs = 5.93 T (refs. 27,30). 
This evolution is summarized in the phase diagram shown in Fig. 1c.  
The initial increase of Tc indicates the suppression of fluctuations along 
the field direction and the crossover of symmetry from Heisenberg-like 
to XY-like, as discussed in a class of low-dimensional Heisenberg mag-
nets31,32. The suppression of fluctuations can indeed be captured by 
the initial decrease of the isothermal entropy up to Hp at temperatures 
below 0.8 K in Fig. 1b, as well as a negative slope dM/dT|H(= dS/dH|T) in 
the same H- and T-range in Fig. 2a,e.

Above Hp ≈ 2–3 T, the system should have predominant XY charac-
ter. Reflecting this change of symmetry, the anomalies at Tc in C/T and M 
show qualitatively different behaviour from that of the zero-field limit. 
In C/T, the small λ-like peak associated with LRO and the broad peak 
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Fig. 2 | Temperature dependence of magnetization M(T) and specific heat 
C(T) at different magnetic fields. a,c, T-dependent M/H for H ≤ Hs (a) and H ≥ Hs 
(c). The arrows in a represent Tc determined from the singularity in dM/dT (e,f). 
b,d, T-dependent C/T for H ≤ Hs (b) and H ≥ Hs (d). Open triangles in b mark the 

onset temperature for thermal fluctuations towards Tc, where C/T starts to 
deviate from the constant behaviour upon cooling. e,f, T-dependence of the 
derivative of magnetization dM/dT below (e) and above (f) 3 T, respectively. The 
data at each field in e are shifted by 0.2 Am2 K−1 mol−1 for clarity.
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associated with short-range ordering (SRO) merge at higher fields into 
one sharp cusp-like peak (Fig. 2b). The weak anomaly in dM/dT at low 
fields changes to a cusp-like anomaly near Hp (Fig. 2e,f). As H increases 
further towards Hs, the LRO with XY character is suppressed due to the 
reduced Sx and Sy degrees of freedom and Tc decreases to zero (Fig.1c). 
In this field region near Hs, the LRO with XY character is described as a 
quasi-2D BEC induced by interlayer coupling, as we will discuss below. 
In the language of bosons, the suppression of the quasi-2D BEC upon 
approaching the QCP at Hs can be described by a decrease of the boson 
density to zero.

Above Hs, we observe thermally activated behaviours of C and 
(Ms − M)/Ms at low temperatures (Supplementary Fig. 4a,b), indicating 
the emergence of a gap in the magnetic (boson) excitations in the FP 
state. The extracted activation energy ∆, as shown in Fig. 1c and Sup-
plementary Fig. 4c, increases linearly from Hs as roughly gμB(Hs − H), 
where g ≈ 3.67 is the g-factor for S = 1/2 pseudospins (Supplementary 
Information). In the language of bosons, gμB(Hs − H) corresponds to 
the energy between the bare chemical potential μ and the bottom 
of the band and sets the excitation gap above Hs. These behaviours 
above Hp indicate that the honeycomb antiferromagnet YbCl3 under 
magnetic field is an excellent arena to explore a quasi-2D BEC and the 
associated BEC-QCP.

2D-limit BEC critical fluctuations at the QCP
At the saturation field Hs—that is, the QCP—we indeed find evidence 
for quantum fluctuations predicted for a BEC-QCP in the 2D limit. 
The critical behaviours of C(T), M(T) and Tc(H) at a field-induced 
BEC-QCP in d dimensions are predicted to be C ∝ Td/2, Ms − M ∝ Td/2 
and Tc(H) ∝ (Hs − H)2/d (refs. 3,23,33,34). In the 3D BEC systems such as 
TlCuCl3 (ref. 6) and NiCl2-4SC(NH2)2 (ref. 25), the critical exponents with 
d = 3 were firmly established at the BEC-QCP. As summarized in Figs. 2b,c 
and 3a,b, in stark contrast to 3D model systems, all three parameters 
of YbCl3, C, M and Tc, closely follow the expected critical behaviour in 
the 2D (d = 2) limit at Hs. C is linear in T with a coefficient γ = C/T ≈ 1 J K−2 
Yb-mol−1 over a wide T range below ~1.2 K. M decreases linearly with T 
from the saturation moment as M = Ms − Ms(T/T0) with T0 = 11 K. In the 
language of bosons, the boson density <n> ≡ (Ms − M)/Ms = T/T0 goes 
to zero at T = 0. Tc scales linearly with Hs − H near the critical point Hs. 
These quantum critical behaviours can be utilized as markers for quan-
tum fluctuations. The power exponent of C(T), α(T) ≡ d ln C/d ln T, is 
indicated as a colour contour map on the H–T phase diagram in Fig. 1c. 
The red region for α ≈ 1, which represents BEC criticality in the 2D limit, 
spreads like a fan from the QCP at Hs. The contour map of dM/dT yields 
essentially the same quantum critical region (Supplementary Informa-
tion). The fanlike spread is indeed the canonical behaviour of a quan-
tum critical regime around the QCP, which confirms that the critical 
exponents, which are consistent with a BEC-QCP in the 2D limit, arise 
from quantum critical fluctuations. The 2D quantum critical behaviour 
is observed at least down to our lowest temperature of measurements, 
T = 50 mK. We note that 50 mK is only 1% of J = 5 K but still orders of 
magnitude higher than the energy scale of J⊥, which is on the order of 
0.1 mK based on previous neutron-scattering studies and our analysis 
below. A substantial part of the 3D critical behaviour originating from 
the small J⊥ is very likely hidden in the low-temperature limit below 
experimentally accessible temperatures.

An interacting 2D Bose gas in the dilute limit at 
the QCP
The quasi-2D BEC-QCP lies at the limit of zero boson density, where 
the system hosts a dilute and therefore weakly interacting boson gas 
produced by thermal excitations at a finite temperature. Let us con-
sider a 2D boson gas with a constant density of states D(E) = D and an 
effective chemical potential µeff = gμB(Hs − H) − 2Ueff<n>, as shown in 
Fig. 3c. For a tight-binding model on the 2D honeycomb lattice with 
nearest-neighbour hopping t = J/2, D = √3/2πJ at the bottom of the 

band (energy E = 0) (Supplementary Information). From the number 
integral with the Bose function, <n> and µeff are related by the follow-
ing equation:

exp (−<n>/DkBT) + exp (μeff/kBT) = 1 (2)

where kB is the Boltzmann constant. At the QCP with H = Hs, 
µeff = −2Ueff<n>. Equation (2) then requires <n> and hence µeff to be 
linear in T, in accord with the BEC critical behaviour of <n> in the 2D 
limit. The experimentally obtained T-linear boson density from M 
in Fig. 3a, <n> = T/T0 (T0 = 11 K = 2.2J), yields Ueff = 1.2 K = 0.24J from 
equation (2). It is known that the free 2D Bose gas (Ueff = 0) with zero 
chemical potential has a T-linear C(T) at low temperatures with a linear  
coefficient γ = (π2/3)kB

2D, the same expression as that of a free Fermi 
gas. With D = √3/2πJ and J = 5 K, the free boson γ is 1.5 J K−2 mol−1. We find 
that the T-linear negative shift of the chemical potential from zero, 
µeff = −2Ueff<n> = −0.21kBT, reduces the γ value from the free boson value 
to 0.99 J K−2 mol−1, in excellent agreement with the experimental data 
(Supplementary Information). These results firmly justify the estimate 
of Ueff and µeff and, more importantly, the 2D Bose gas description. The 
BEC quantum criticality in the 2D limit manifests itself as the formation 
of an interacting 2D Bose gas at the zero-density limit.

Ueff = 0.24J is an order of magnitude smaller than those estimated 
for prototypical 3D BEC systems, 5J for TlCuCl3 (refs. 35,36) and 3J for 
NiCl2-4SC(NH2)2 (ref. 37). We argue that this represents the logarithmic 
renormalization of boson–boson scattering U0 unique to 2D, Ueff ≈ −U0/
ln<n> (ref. 17) and mirrors the 2D character of quantum critical Bose 
gas in YbCl3. The 2D renormalization alone would bring Ueff to zero 
at the quantum critical point due to the logarithmic divergence. We 
argue that Ueff stays at a finite value ~0.24J even at the QCP here due to 
the weak three-dimensionality associated with the interlayer coupling 
J⊥, which suppresses the logarithmic singularity at the bottom of the 
band, as we discuss later. The cut-off of logarithmic divergence is 
roughly estimated as Uc ≈ −U0/ln( J⊥/J), which suggests −ln( J⊥/J) ≈ 10  
for YbCl3.

BEC due to a finite interlayer coupling J⊥
Lowering the applied magnetic field below Hs, which corresponds to 
boson doping, clear anomalies indicative of a phase transition emerge 
in the T-dependent C(T) and M(T) at Tc(H), as shown in Fig. 2. We found 
that Tc(H) can be quantitatively described as a BEC of 3D system by intro-
ducing an extremely small interlayer coupling J⊥ to a purely 2D band, 
which implies that the transitions are a long-range magnetic ordering 
stabilized by the interlayer coupling rather than the BKT transition for 
2D. The presence of a small interlayer coupling J⊥ rounds the bottom 
of the purely 2D band and produces a corresponding √E-dependent 
density of states, as expected in 3D, within the extremely narrow energy 
range set by J⊥ (Fig. 3c). The continuously vanishing density of states 
at E = 0 prevents a logarithmic divergence of the number integral and 
hence gives rise to a BEC at a finite temperature. We approximate the 
rounding of the constant 2D density of states D(E) = D near the bot-
tom of the band by introducing an energy cut-off Ec below which D(E) 
is replaced with the 3D density of states, √E/Ec. Ec is of the order of J⊥, 
roughly 2–3J⊥. By setting µeff = 0 in the number integral, a BEC occurs 
at <nc> and TBEC satisfying

<nc>≈DkBTBEC (−ln (
kBTBEC
Ec

) + 2) . (3)

The first and second terms in equation (3) come from the 2D boson 
density above Ec and the small 3D contribution below Ec, respectively. 
In Fig. 3a, we overlay equation (3) with D = √3/2πJ, J = 5 K and Ec = 0.2 mK 
(= 2J⊥ for J⊥/J = 2 × 10−5) as a solid line. The predicted <nc> and TBEC rea-
sonably reproduce the experimentally observed Tc and <nc> (arrows 
in Fig. 3a). This close agreement clearly indicates that the magnetic 

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-024-02498-w

ordering near the QCP is described as a BEC stabilized by a very small 
interlayer coupling J⊥ of the order of 10−5J. The extremely small J⊥ com-
pared to J implies that YbCl3 is very close to the 2D limit. We note that 
the estimate of interlayer coupling is fully consistent with that in a 
previous neutron-scattering study28.

At the BEC, the chemical potential μeff = gμB(Hs − H) − 2Ueff<nc> = 0. 
This gives an estimate of the effective interaction Ueff = gμB(Hs − H)/2<nc> 
for H < Hs, which is plotted as a function of <nc> in Fig. 3d. With <nc> → 0, 
Ueff only weakly decreases to Ueff ≈ 0.2J, which is estimated from the 
analysis of a 2D quantum critical Bose gas at H = Hs. The decrease can 
be fitted reasonably by Ueff = −U0(1/ln<nc> + 1/ln(J⊥/J)) with U0 = 6 K = 1.2J 
and J⊥/J = 2 × 10−5 with 2D logarithmic renormalization and 3D cut-off, as 
seen by the dotted line in Fig. 3d. U0 is smaller than but reasonably close 
to the Ueff = 3–5J estimated for the canonical 3D BEC systems. Note that 
Ueff = −U0/ln<nc> goes to 0 with <nc> → 0 but stays a finite Ueff of ~0.2J at 
<nc> ≈ 0, which we discussed as a cut-off by the interlayer coupling  J⊥. 
These observations firmly establish the presence of 2D logarithmic 
renormalization, one of the hallmarks of 2D physics.

Thermal fluctuations in the 2D limit
Reflecting the proximity of the system to the 2D limit, clear signatures 
of 2D thermal fluctuations are observed above Tc in the specific heat 

data. In the specific heat power α(T) map in Fig. 1c, the red region of 2D 
quantum critical behaviour with α ≈ 1 crosses over to a white region with 
α < 1 with lowering temperature. The white area that extends down to Tc 
corresponds to the accelerated increase of C(T)/T from a T-independent 
behaviour upon approaching Tc in Fig. 2b, which marks the region of 
thermal fluctuations. It spreads over a wide range of temperatures, from 
as high as ~2Tc (dotted line in Fig. 1c) down to Tc, which points to the 2D 
character of the thermal fluctuations. Below Tc, we see a decrease of 
C(T)/T and a corresponding positive power α that decreases eventu-
ally to ~2. As the lowest temperature ~100 mK is still higher than 0.5Tc 
in the critical region near Hs (>5.5T), it is difficult to extract the low-T 
limit of α and to discuss the dimensionality of fluctuations below Tc.

Because the system is essentially an XY magnet near the QCP and 
in the 2D limit, the 2D fluctuations observed above and below Tc may 
carry certain characteristics of a BKT transition for the strictly 2D 
case. It is tempting to infer here that the hypothetical BKT transition 
temperature TBKT in the J⊥ = 0 limit is very likely close to the observed 
BEC transition temperature Tc. Theoretically, it was shown for classical 
spins that the long-range ordering temperature Tc for a small J⊥ is only 
slightly above TBKT (ref. 38). QMC simulations of a S = 1/2 Heisenberg 
antiferromagnet on a purely 2D square lattice (not honeycomb lat-
tice) under magnetic fields near the saturation field Hs (ref. 39) give 
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chemical potential μeff(T) = gμB(Hs − H) − 2Ueff<n> approaches E = 0 linearly with T 
at H = Hs. For H < Hs, μeff goes to zero at a finite temperature due to the suppression 
of the logarithmic divergence by the 3D DOS below Ec. d, The effective boson–
boson interaction Ueff versus the critical boson density <nc>. Ueff at <nc> → 0 
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boson interaction U0 = 6 K = 1.2J and J⊥/J = 2 × 10−5 are used.
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an estimate of the BKT transition temperature TBKT/J ≈ 1 − H/Hs, which 
is indeed reasonably close to the experimentally observed BEC transi-
tion temperatures Tc in Fig. 1c.

Highly mobile nature of 2D Bose gas at the QCP
The interacting 2D Bose gas at the QCP is highly mobile at low tem-
peratures, very likely due to the reduced boson–boson interactions 
in the dilute and 2D limit, which shows up as a singular enhancement 
of thermal conductivity κ(T) at Hs. Figure 4a shows the temperature 
dependence of κ/T. At the highest measured field of 11.9 T, the heat 
flow carried by magnetic excitations and the scattering of phonons 
by magnetic excitations are negligibly small below 2 K, as the gap for 
magnetic excitations is well developed (»2 K in Fig. 1c). κ(T) at 11.9 T is 
therefore a reference for the maximum phonon thermal conductiv-
ity in the absence of scattering by magnetic excitations. κ(T) at high 
temperatures above ~0.6 K decreases monotonically with lowering 
H from 11.9 T, reflecting the phonon-dominated thermal transport in 
the corresponding temperature range and the increase of magnetic 
excitations to scatter phonons due to the suppression of the magnetic 
excitation gap. At lower temperatures below ~0.5 K, κ(T) is larger than 
that at 11.9 T, the maximum phonon thermal conductivity, which indi-
cates the presence of additional contributions other than the phonon 
contribution, naturally those from magnetic excitations. We plot the 
normalized differential thermal conductivity ∆κ/κ(11.9 T) ≡ [κ(T, H) 
− κ(T, 11.9 T)]/κ(T, 11.9 T) as a colour contour map on the H–T phase 
diagram in Fig. 4b, where the positive contribution indicates the excess 
thermal conductivity originating from the magnetic heat carriers. A 
singular positive ∆κ emerges up to ~0.5 K as a vertical red spike with a 
width of ~0.4 T around Hs in Fig. 4b, indicating that the magnetic con-
tribution of thermal conductivity at low temperatures peaks sharply at 
Hs independent of T. This can be confirmed in the isotherm in Fig. 4c.

The thermal conductivity of 2D magnetic excitations is expressed 
as κmag = (1/2)Cmag<vmag>lmag, where Cmag, vmag and lmag are the specific 
heat, the velocity and the mean free path of magnetic excitations, 
respectively. Cmag(H) ≈ C(H) at low temperatures shows a peak at the 

magnetic transition field Hc(T), as in Fig. 4d, which moves away to a 
lower field from Hs with increasing T and is distinct from the position of 
the ∆κ peak always at Hs. The singular enhancement of magnetic ther-
mal conductivity ∆κ should therefore be dominated by the enhance-
ment of <vmag>lmag at Hs. As <vmag> ≈ √2mkBT (m, boson mass) does not 
strongly depend on H around Hs, lmag(H) must be enhanced drastically 
in a very narrow field region near the QCP. At T = 0.2 K, the peak value 
∆κ/T ≈ 0.13 W K−2 m−1 at H = Hs represents a lower bound for the mag-
netic contribution κmag/T, as the phonon contribution κph(T) should be 
suppressed from the maximum phonon contribution κ(T, 11.9 T) in the 
presence of scattering by magnetic excitations. We estimate a thermal 
velocity <vmag> of 62 m s−1 using a boson mass of 1,570 me at the bottom 
of the honeycomb tight-binding band with a hopping t = J/2 = 2.5 K. 
From ∆κT−1 and <vmag> together with Cmag/T ≈ C/T = 1 J mol−1 K−2 at H = Hs, 
we estimate a lower bound for the mean free path of 2D quantum criti-
cal bosons as long as lmag ≈ 0.3 μm, which indicates the highly mobile 
nature of 2D bosons. We were not able to conduct a more detailed 
and deeper analysis of κmag(T) and lmag(T) because of the difficulty in 
estimating quantitatively the suppressed phonon contribution κph(T) 
in the presence of magnetic excitations (see Supplementary Informa-
tion for further details). We note that in the red-spike region of the 
rapid enhancement of ∆κ in Fig. 4b, the number of bosons <n> is less 
than 0.1. We argue that the low boson density <n> around Hs reduces 
the dominant boson–boson scattering represented by 2Ueff<n> and 
makes the quantum critical 2D Bose gas highly mobile, which drasti-
cally enhances ∆κ. The 2D logarithmic suppression of boson–boson 
scattering Ueff may further enhance ∆κ around the QCP. An increase 
of κ around a QCP was also observed in the 3D magnetic BEC system, 
NiCl2-4SC(NH2)2, at very low temperatures40. The κ peak as a function 
H around the QCP, however, is appreciably broader than the present 
2D case, if normalized by the field scale of Hs, and appears to be closely 
correlated with the C(H) peak in contrast to the present 2D case. In this 
3D analogue, the dominant scattering of bosons is indeed ascribed to 
static defects (disorder)40 rather than boson–boson interactions in the 
temperature range of investigation.
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In summary, we identified a 2D-limit BEC quantum critical-
ity in the honeycomb quasi-2D Heisenberg antiferromagnet YbCl3 
under magnetic fields around the saturation field Hs, where a 
magnetic-field-induced quantum phase transition to the FP state takes 
place. At Hs, the QCP, the system behaves as a highly mobile dilute 2D 
gas of bosons in the density <n> = 0 limit, with the critical exponents of 
specific heat C(T) and magnetization M(T) predicted for the BEC-QCP in 
the 2D limit. Lowering the magnetic field to H < Hs, an extremely weak 
interlayer coupling J⊥ ≈ 10−5J marginally stabilizes a 3D LRO below Tc, 
which can de described quantitatively as a BEC. Reflecting the 2D-limit 
nature, 2D quantum and thermal fluctuations are captured clearly 
above Tc. A small boson–boson interaction Ueff of ~0.2J, one order of 
magnitude smaller than those in 3D analogues, is observed at the QCP, 
which increases only weakly with lowering H from the QCP, namely 
boson doping. The drastic suppression and the weak H-dependence 
can be quantitatively described as the logarithmic renormalization of 
the bare boson–boson interaction unique to 2D. YbCl3 is an ideal arena 
to explore the physics of 2D interacting hard-core bosons.
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Methods
Single crystals
Single-crystalline samples of YbCl3 used in this study, trans-
parent and with a thin plate-like shape, were synthesized by a 
self-chemical-vapour-transport method. Polycrystalline anhydrous 
YbCl3 (Sigma-Aldrich 99.99%) was used as a starting material and sealed 
under vacuum in a long quartz tube with inner diameter of 15 mm. 
The starting material was placed at the hot end of the tube, which was 
heated to 900 °C and subsequently cooled down to 750 °C at a rate of 
1 °C per hour. The temperature difference between the hot and the cold 
ends of tube was approximately 100 °C during the growth. The negli-
gibly small paramagnetic responses from the impurities in M and the 
large boundary-limited κ confirm the high quality of the single crystals. 
The crystallographic axis was checked by single-crystal X-ray diffrac-
tion. The magnetic field was applied always along the in-plane a-axis.

Magnetization measurements
The magnetization M below 3 K was measured with a homemade Fara-
day magnetometer installed in a 3He–4He dilution refrigerator. The 
measurements were conducted on a few pieces of crystals put together, 
aligned in the same direction, with a total mass of ∼0.7 mg. These were 
covered with dried Apiezon-N grease to protect the crystals from oxi-
dation. The oxidation of samples could be checked by the presence of 
a paramagnetic response in the magnetization curve. We used data 
only from crystals with negligibly small traces of such response. The 
absolute value of M was determined by calibrating the magnitude of 
the field-dependent Faraday signals at 2 K with previous data taken at 
1.8 K (ref. 30). The 0.2 K difference between the two measurements 
gives an error in the calibration up to ∼1%, which does not influence the 
conclusion of this work. We further checked that the calibrated data 
are consistent with those measured at high temperatures T ≥ 2 K by a 
commercial setup (Quantum Design Physical Property Measurement 
System, Vibrating Sample Magnetometer option).

Specific heat measurements
The specific heat C was measured by a relaxation calorimetry42 for 
aligned crystals with a total mass of ∼0.07 mg, which were covered with 
Apiezon-N grease to avoid oxidation. The total mass was determined by 
matching the C of single crystals with that of a polycrystalline sample at 
zero field and below ∼1 K, where the contribution from the grease can 
be reasonably neglected. The grease contribution was determined as a 
difference from the polycrystalline sample at higher T. This amounts to 
15% of the total heat capacity at 2 K and shows roughly T2-dependence, 
which can be ascribed to the contribution from amorphous phonons 
of the grease. We subtracted this from all the data including those 
under fields.

Thermal conductivity measurements
κ was measured with a conventional steady-state method using a  
3He–4He dilution refrigerator in a temperature range of 0.1–3 K. The 
sample with dimensions ∼1 mm × ∼2 mm × ∼20 µm thick was mounted 
onto a homemade cell. The cell was sealed in a glove box under argon 
atmosphere, which was then evacuated in the cryostat through a simple 

pop-up valve mechanism. Two more samples with similar dimensions 
were measured using a 3He cryostat, and the results were well repro-
duced in the T-range of overlap (0.3–3 K).

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. Source data are 
provided with this paper.
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