Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stress and cardiovascular disease: an update

Abstract

Psychological stress is generally accepted to be associated with an increased risk of cardiovascular disease (CVD), but results have varied in terms of how stress is measured and the strength of the association. Additionally, the mechanisms and potential causal links have remained speculative despite decades of research. The physiological responses to stress are well characterized, but their contribution to the development and progression of CVD has received little attention in empirical studies. Evidence suggests that physiological responses to stress have a fundamental role in the risk of CVD and that haemodynamic, vascular and immune perturbations triggered by stress are especially implicated. Stress response physiology is regulated by the corticolimbic regions of the brain, which have outputs to the autonomic nervous system. Variation in these regulatory pathways might explain interindividual differences in vulnerability to stress. Dynamic perturbations in autonomic, immune and vascular functions are probably also implicated as CVD risk mechanisms of chronic, recurring and cumulative stressful exposures, but more data are needed from prospective studies and from assessments in real-life situations. Psychological assessment remains insufficiently recognized in clinical care and prevention. Although stress-reduction interventions might mitigate perceived stress levels and potentially reduce cardiovascular risk, more data from randomized trials are needed.

Key points

  • Psychological stress has long been associated with negative health consequences, particularly cardiovascular disease, but the mechanisms and potential causal links have remained speculative.

  • Physiological responses to stress are emerging as key pathways for the risk of cardiovascular disease, especially haemodynamic, vascular and immune perturbations triggered by stress.

  • More data are needed from prospective studies and from assessments in real-life situations.

  • Mobile health technologies and wearable devices might be helpful in the prospective assessment of stressful exposures and stress responses in everyday life.

  • Psychological assessment should be integrated with clinical care and prevention.

  • Stress-reduction interventions might mitigate perceived stress levels and potentially reduce cardiovascular risk, although more data from large, randomized trials are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanistic model linking psychological stress and CVD.
Fig. 2: Cumulative incidence of cardiovascular disease end points for separate myocardial ischaemia phenotypes.
Fig. 3: The central role of stress response physiology in cardiovascular risk secondary to psychological stress.

Similar content being viewed by others

References

  1. Brotman, D. J., Golden, S. H. & Wittstein, I. S. The cardiovascular toll of stress. Lancet 370, 1089–1100 (2007).

    Article  PubMed  Google Scholar 

  2. Epel, E. S. et al. More than a feeling: a unified view of stress measurement for population science. Front. Neuroendocrinol. 49, 146–169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vaccarino, V. et al. Brain-heart connections in stress and cardiovascular disease: implications for the cardiac patient. Atherosclerosis 328, 74–82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kivimaki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen, R. E., Banner, J. & Jensen, S. E. Cardiovascular disease in patients with severe mental illness. Nat. Rev. Cardiol. 18, 136–145 (2021).

    Article  PubMed  Google Scholar 

  6. McEwen, B. S. Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin. Neurosci. 8, 367–381 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Osborne, M. T. et al. Disentangling the links between psychosocial stress and cardiovascular disease. Circ. Cardiovasc. Imaging 13, e010931 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dimsdale, J. E. Psychological stress and cardiovascular disease. J. Am. Coll. Cardiol. 51, 1237–1246 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hackett, R. A. & Steptoe, A. Psychosocial factors in diabetes and cardiovascular risk. Curr. Cardiol. Rep. 18, 95 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harshfield, E. L. et al. Association between depressive symptoms and incident cardiovascular diseases. JAMA 324, 2396–2405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. O’Donnell, C. J. et al. Posttraumatic stress disorder and cardiovascular disease: state of the science, knowledge gaps, and research opportunities. JAMA Cardiol. 6, 1207–1216 (2021).

    Article  PubMed  Google Scholar 

  12. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (American Psychiatric Association, 2013).

  13. Moazzami, K. et al. Association between symptoms of chronic psychological distress and myocardial ischemia induced by mental stress in patients with coronary artery disease. J. Am. Heart Assoc. 12, e030305 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Strike, P. C. et al. Pathophysiological processes underlying emotional triggering of acute cardiac events. Proc. Natl Acad. Sci. USA 103, 4322–4327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steptoe, A. & Kivimaki, M. Stress and cardiovascular disease: an update on current knowledge. Annu. Rev. Public Health 34, 337–354 (2013).

    Article  PubMed  Google Scholar 

  16. Mostofsky, E., Penner, E. A. & Mittleman, M. A. Outbursts of anger as a trigger of acute cardiovascular events: a systematic review and meta-analysis. Eur. Heart J. 35, 1404–1410 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mostofsky, E. et al. Risk of acute myocardial infarction after the death of a significant person in one’s life: the Determinants of Myocardial Infarction Onset Study. Circulation 125, 491–496 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carey, I. M. et al. Increased risk of acute cardiovascular events after partner bereavement: a matched cohort study. JAMA Intern. Med. 174, 598–605 (2014).

    Article  PubMed  Google Scholar 

  19. Nawrot, T. S., Perez, L., Kunzli, N., Munters, E. & Nemery, B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet 377, 732–740 (2011).

    Article  PubMed  Google Scholar 

  20. Cohen, S., Murphy, M. L. M. & Prather, A. A. Ten surprising facts about stressful life events and disease risk. Annu. Rev. Psychol. 70, 577–597 (2019).

    Article  PubMed  Google Scholar 

  21. Valtorta, N. K., Kanaan, M., Gilbody, S., Ronzi, S. & Hanratty, B. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart 102, 1009–1016 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Ji, J., Zöller, B., Sundquist, K. & Sundquist, J. Increased risks of coronary heart disease and stroke among spousal caregivers of cancer patients. Circulation 125, 1742–1747 (2012).

    Article  PubMed  Google Scholar 

  23. Diez Roux, A. V., Mujahid, M. S., Hirsch, J. A., Moore, K. & Moore, L. V. The impact of neighborhoods on CV risk. Glob. Heart 11, 353–363 (2016).

    Article  PubMed  Google Scholar 

  24. Lewis, T. T., Williams, D. R., Tamene, M. & Clark, C. R. Self-reported experiences of discrimination and cardiovascular disease. Curr. Cardiovasc. Risk Rep. 8, 365 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dupre, M. E., George, L. K., Liu, G. & Peterson, E. D. The cumulative effect of unemployment on risks for acute myocardial infarction. Arch. Intern. Med. 172, 1731–1737 (2012).

    Article  PubMed  Google Scholar 

  26. Stringhini, S. et al. Socioeconomic status and the 25 x 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. Lancet 389, 1229–1237 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Niedhammer, I., Bertrais, S. & Witt, K. Psychosocial work exposures and health outcomes: a meta-review of 72 literature reviews with meta-analysis. Scand. J. Work Environ. Health 47, 489–508 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lavigne-Robichaud, M. et al. Psychosocial stressors at work and coronary heart disease risk in men and women: 18-year prospective cohort study of combined exposures. Circ. Cardiovasc. Qual. Outcomes 16, e009700 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garcia, M. et al. Psychological distress and the risk of adverse cardiovascular outcomes in patients with coronary heart disease. JACC Adv. 3, 100794 (2024).

    Article  PubMed  Google Scholar 

  30. Gaffey, A. E., Gathright, E. C., Fletcher, L. M. & Goldstein, C. M. Screening for psychological distress and risk of cardiovascular disease and related mortality: a systematized review, meta-analysis, and case for prevention. J. Cardiopulm. Rehabil. Prev. 42, 404–415 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kivimäki, M. et al. Work stress and risk of death in men and women with and without cardiometabolic disease: a multicohort study. Lancet Diabetes Endocrinol. 6, 705–713 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chandola, T., Brunner, E. & Marmot, M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ 332, 521–525 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cuitún Coronado, J. I., Chandola, T. & Steptoe, A. Allostatic load and effort-reward imbalance: associations over the working-career. Int. J. Environ. Res. Public Health 15, 191 (2018).

    Article  Google Scholar 

  34. Montone, R. A. et al. Exposome in ischaemic heart disease: beyond traditional risk factors. Eur. Heart J. 45, 419–438 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Münzel, T., Sørensen, M., Hahad, O., Nieuwenhuijsen, M. & Daiber, A. The contribution of the exposome to the burden of cardiovascular disease. Nat. Rev. Cardiol. 20, 651–669 (2023).

    Article  PubMed  Google Scholar 

  36. Danese, A. et al. Biological embedding of stress through inflammation processes in childhood. Mol. Psychiatry 16, 244–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Berens, A. E., Jensen, S. K. G. & Nelson, C. A. III Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Med. 15, 135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hughes, K. et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health 2, e356–e366 (2017).

    Article  PubMed  Google Scholar 

  39. Ho, F. K. et al. Child maltreatment and cardiovascular disease: quantifying mediation pathways using UK Biobank. BMC Med. 18, 143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Clemens, V. et al. The interplay between child maltreatment and stressful life events during adulthood and cardiovascular problems — a representative study. J. Clin. Med. 10, 3937 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basu, A., McLaughlin, K. A., Misra, S. & Koenen, K. C. Childhood maltreatment and health impact: the examples of cardiovascular disease and type 2 diabetes mellitus in adults. Clin. Psychol. 24, 125–139 (2017).

    Google Scholar 

  42. Wang, W. et al. Adverse childhood and adulthood experiences and risk of new-onset cardiovascular disease with consideration of social support: a prospective cohort study. BMC Med. 21, 297 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bengtsson, J. et al. Childhood adversity and cardiovascular disease in early adulthood: a Danish cohort study. Eur. Heart J. 44, 586–593 (2023).

    Article  PubMed  Google Scholar 

  44. Goodday, S. M. & Friend, S. Unlocking stress and forecasting its consequences with digital technology. NPJ Digit. Med. 2, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zawadzki, M. J. et al. Understanding stress reports in daily life: a coordinated analysis of factors associated with the frequency of reporting stress. J. Behav. Med. 42, 545–560 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Smyth, J. M. et al. Computing components of everyday stress responses: exploring conceptual challenges and new opportunities. Perspect. Psychol. Sci. 18, 110–124 (2023).

    Article  PubMed  Google Scholar 

  47. Smets, E. et al. Large-scale wearable data reveal digital phenotypes for daily-life stress detection. NPJ Digital Med. 1, 67 (2018).

    Article  Google Scholar 

  48. Kemp, A. H., Koenig, J. & Thayer, J. F. From psychological moments to mortality: a multidisciplinary synthesis on heart rate variability spanning the continuum of time. Neurosci. Biobehav. Rev. 83, 547–567 (2017).

    Article  PubMed  Google Scholar 

  49. Hillebrand, S. et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose–response meta-regression. Europace 15, 742–749 (2013).

    Article  PubMed  Google Scholar 

  50. Fang, S. C., Wu, Y. L. & Tsai, P. S. Heart rate variability and risk of all-cause death and cardiovascular events in patients with cardiovascular disease: a meta-analysis of cohort studies. Biol. Res. Nurs. 22, 45–56 (2020).

    Article  PubMed  Google Scholar 

  51. Jarczok, M. N. et al. Heart rate variability in the prediction of mortality: a systematic review and meta-analysis of healthy and patient populations. Neurosci. Biobehav. Rev. 143, 104907 (2022).

    Article  PubMed  Google Scholar 

  52. Huang, M. et al. Association of depressive symptoms and heart rate variability in vietnam war-era twins: a longitudinal twin difference study. JAMA Psychiatry 75, 705–712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shah, A. & Vaccarino, V. Heart rate variability in the prediction of risk for posttraumatic stress disorder. JAMA Psychiatry 72, 964–965 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H. & Koo, B.-H. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Invest. 15, 235–245 (2018).

    Article  Google Scholar 

  55. Gao, L. et al. Resting heartbeat complexity predicts all‐cause and cardiorespiratory mortality in middle‐ to older‐aged adults from the UK biobank. J. Am. Heart Assoc. 10, e018483 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huang, M. et al. Heart rate variability, deceleration capacity of heart rate and mortality: a veteran twins study. J. Am. Heart Assoc. 13, e032740 (2024).

    Article  PubMed  Google Scholar 

  57. Bauer, A. et al. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367, 1674–1681 (2006).

    Article  PubMed  Google Scholar 

  58. Pan, Q. et al. Do the deceleration/acceleration capacities of heart rate reflect cardiac sympathetic or vagal activity? A model study. Med. Biol. Eng. Comput. 54, 1921–1933 (2016).

    Article  PubMed  Google Scholar 

  59. van Lien, R., Neijts, M., Willemsen, G. & de Geus, E. J. Ambulatory measurement of the ECG T-wave amplitude. Psychophysiology 52, 225–237 (2015).

    Article  PubMed  Google Scholar 

  60. Vrijkotte, T. G., van Doornen, L. J. & de Geus, E. J. Overcommitment to work is associated with changes in cardiac sympathetic regulation. Psychosom. Med. 66, 656–663 (2004).

    Article  PubMed  Google Scholar 

  61. Sheikh, S. A. et al. Impedance cardiogram based exploration of cardiac mechanisms in post-traumatic stress disorder during trauma recall. Psychophysiology 61, e14488 (2023).

    Article  PubMed  Google Scholar 

  62. Cabeza de Baca, T. et al. Financial strain and ideal cardiovascular health in middle-aged and older women: data from the Women’s Health study. Am. Heart J. 215, 129–138 (2019).

    Article  PubMed  Google Scholar 

  63. Moran, K. E., Ommerborn, M. J., Blackshear, C. T., Sims, M. & Clark, C. R. Financial stress and risk of coronary heart disease in the jackson heart study. Am. J. Prev. Med. 56, 224–231 (2019).

    Article  PubMed  Google Scholar 

  64. Beckman, A. L. et al. Sex differences in financial barriers and the relationship to recovery after acute myocardial infarction. J. Am. Heart Assoc. 5, e003923 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schulz, R. & Beach, S. R. Caregiving as a risk factor for mortality: the Caregiver Health Effects Study. JAMA 282, 2215–2219 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Chida, Y. & Steptoe, A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension 55, 1026–1032 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Marsland, A. L., Walsh, C., Lockwood, K. & John-Henderson, N. A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 64, 208–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Steptoe, A. et al. Disruption of multisystem responses to stress in type 2 diabetes: investigating the dynamics of allostatic load. Proc. Natl Acad. Sci. USA 111, 15693–15698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hammadah, M. et al. Hemodynamic, catecholamine, vasomotor and vascular responses: determinants of myocardial ischemia during mental stress. Int. J. Cardiol. 243, 47–53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hammadah, M. et al. Coronary and peripheral vasomotor responses to mental stress. J. Am. Heart Assoc. 7, e008532 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Xue, Y.-T. et al. Investigating the role of acute mental stress on endothelial dysfunction: a systematic review and meta-analysis. Clin. Res. Cardiol. 104, 310–319 (2015).

    Article  PubMed  Google Scholar 

  72. Vlachopoulos, C. et al. Acute mental stress has a prolonged unfavorable effect on arterial stiffness and wave reflections. Psychosom. Med. 68, 231–237 (2006).

    Article  PubMed  Google Scholar 

  73. Dickerson, S. S. & Kemeny, M. E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull. 130, 355–391 (2004).

    Article  PubMed  Google Scholar 

  74. Jarczok, M. N. et al. Autonomic nervous system activity and workplace stressors — a systematic review. Neurosci. Biobehav. Rev. 37, 1810–1823 (2013).

    Article  PubMed  Google Scholar 

  75. Gilbert-Ouimet, M., Trudel, X., Brisson, C., Milot, A. & Vézina, M. Adverse effects of psychosocial work factors on blood pressure: systematic review of studies on demand-control-support and effort-reward imbalance models. Scand. J. Work Environ. Health 40, 109–132 (2014).

    Article  PubMed  Google Scholar 

  76. Zanstra, Y. J. & Johnston, D. W. Cardiovascular reactivity in real life settings: measurement, mechanisms and meaning. Biol. Psychol. 86, 98–105 (2011).

    Article  PubMed  Google Scholar 

  77. Johnston, D. W., Tuomisto, M. T. & Patching, G. R. The relationship between cardiac reactivity in the laboratory and in real life. Health Psychol. 27, 34–42 (2008).

    Article  PubMed  Google Scholar 

  78. Kamarck, T. W., Debski, T. T. & Manuck, S. B. Enhancing the laboratory-to-life generalizability of cardiovascular reactivity using multiple occasions of measurement. Psychophysiology 37, 533–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Shiffman, S., Stone, A. A. & Hufford, M. R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008).

    Article  PubMed  Google Scholar 

  80. Whittaker, A. C., Ginty, A., Hughes, B. M., Steptoe, A. & Lovallo, W. R. Cardiovascular stress reactivity and health: recent questions and future directions. Psychosom. Med. 83, 756–766 (2021).

    Article  PubMed  Google Scholar 

  81. Kamarck, T. W. et al. Psychosocial demands and ambulatory blood pressure: a field assessment approach. Physiol. Behav. 77, 699–704 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Räikkönen, K. & Matthews, K. A. Do dispositional pessimism and optimism predict ambulatory blood pressure during school days and nights in adolescents? J. Pers. 76, 605–630 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Brondolo, E. et al. Hostility, interpersonal interactions, and ambulatory blood pressure. Psychosom. Med. 65, 1003–1011 (2003).

    Article  PubMed  Google Scholar 

  84. Szakonyi, B., Vassanyi, I., Schumacher, E. & Kosa, I. Efficient methods for acute stress detection using heart rate variability data from Ambient Assisted Living sensors. Biomed. Eng. Online 20, 73 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rodrigues, S., Paiva, J. S., Dias, D. & Cunha, J. P. S. Stress among on-duty firefighters: an ambulatory assessment study. PeerJ 6, e5967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. von Kanel, R. Acute mental stress and hemostasis: when physiology becomes vascular harm. Thromb. Res. 135, S52–S55 (2015).

    Article  Google Scholar 

  87. Kang, D. O. et al. Stress-associated neurobiological activity is linked with acute plaque instability via enhanced macrophage activity: a prospective serial 18F-FDG-PET/CT imaging assessment. Eur. Heart J. 42, 1883–1895 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Shah, A. J. et al. Posttraumatic stress disorder and impaired autonomic modulation in male twins. Biol. Psychiatry 73, 1103–1110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Phillips, A. C., Ginty, A. T. & Hughes, B. M. The other side of the coin: blunted cardiovascular and cortisol reactivity are associated with negative health outcomes. Int. J. Psychophysiol. 90, 1–7 (2013).

    Article  PubMed  Google Scholar 

  90. Cohen, S., Gianaros, P. J. & Manuck, S. B. A stage model of stress and disease. Perspect. Psychol. Sci. 11, 456–463 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kivimäki, M., Bartolomucci, A. & Kawachi, I. The multiple roles of life stress in metabolic disorders. Nat. Rev. Endocrinol. 19, 10–27 (2023).

    Article  PubMed  Google Scholar 

  92. Carroll, D., Ginty, A. T., Whittaker, A. C., Lovallo, W. R. & de Rooij, S. R. The behavioural, cognitive, and neural corollaries of blunted cardiovascular and cortisol reactions to acute psychological stress. Neurosci. Biobehav. Rev. 77, 74–86 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moazzami, K. et al. Hemodynamic reactivity to mental stress in patients with coronary artery disease. JAMA Netw. Open 6, e2338060 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Turner, A. I. et al. Psychological stress reactivity and future health and disease outcomes: a systematic review of prospective evidence. Psychoneuroendocrinology 114, 104599 (2020).

    Article  PubMed  Google Scholar 

  95. Lima, B. B. et al. Association of transient endothelial dysfunction induced by mental stress with major adverse cardiovascular events in men and women with coronary artery disease. JAMA Cardiol. 4, 988–996 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kim, J. H. et al. Peripheral vasoconstriction during mental stress and adverse cardiovascular outcomes in patients with coronary artery disease. Circ. Res. 125, 874–883 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Almuwaqqat, Z. et al. Acute psychological stress-induced progenitor cell mobilization and cardiovascular events. J. Psychosom. Res. 178, 111412 (2023).

    Article  PubMed  Google Scholar 

  98. Sullivan, S. et al. Sex differences in the inflammatory response to stress and risk of adverse cardiovascular outcomes among patients with coronary heart disease. Brain Behav. Immun. 90, 294–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arri, S. S., Ryan, M., Redwood, S. R. & Marber, M. S. Mental stress-induced myocardial ischaemia. Heart 102, 472–480 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Hassan, M. et al. Usefulness of peripheral arterial tonometry in the detection of mental stress-induced myocardial ischemia. Clin. Cardiol. 32, E1–E6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sullivan, S. et al. Sex differences in hemodynamic and microvascular mechanisms of myocardial ischemia induced by mental stress. Arterioscler. Thromb. Vasc. Biol. 38, 473–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Hassan, M. et al. Comparison of peripheral arterial response to mental stress in men versus women with coronary artery disease. Am. J. Cardiol. 102, 970–974 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sullivan, S. et al. Sex differences in vascular response to mental stress and adverse cardiovascular events among patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 43, e112–e120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yeung, A. C. et al. The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. N. Engl. J. Med. 325, 1551–1556 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Dakak, N., Quyyumi, A. A., Eisenhofer, G., Goldstein, D. S. & Cannon, R. O. III Sympathetically mediated effects of mental stress on the cardiac microcirculation of patients with coronary artery disease. Am. J. Cardiol. 76, 125–130 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Hammadah, M. et al. Inflammatory response to mental stress and mental stress induced myocardial ischemia. Brain Behav. Immun. 68, 90–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Passos, I. C. et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2, 1002–1012 (2015).

    Article  PubMed  Google Scholar 

  108. Osimo, E. F. et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav. Immun. 87, 901–909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Danese, A. & McEwen, B. S. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav. 106, 29–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  111. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bierhaus, A. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl Acad. Sci. USA 100, 1920–1925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, J., Buisman-Pijlman, F. & Hutchinson, M. R. Toll-like receptor 4: innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Front. Neurosci. 8, 309 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tawakol, A. et al. Stress-associated neurobiological pathway linking socioeconomic disparities to cardiovascular disease. J. Am. Coll. Cardiol. 73, 3243–3255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fadini, G. P. et al. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur. Heart J. 41, 4271–4282 (2020).

    Article  PubMed  Google Scholar 

  117. Patel, R. S. et al. Circulating CD34+ progenitor cells and risk of mortality in a population with coronary artery disease. Circ. Res. 116, 289–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Al Mheid, I. et al. Age and human regenerative capacity impact of cardiovascular risk factors. Circ. Res. 119, 801–809 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Hammadah, M. et al. Myocardial ischemia and mobilization of circulating progenitor cells. J. Am. Heart Assoc. 7, e007504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sullivan, S. et al. Young women with coronary artery disease exhibit higher concentrations of interleukin-6 at baseline and in response to mental stress. J. Am. Heart Assoc. 7, e010329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Martinez-Muniz, G. A. & Wood, S. K. Sex differences in the inflammatory consequences of stress: implications for pharmacotherapy. J. Pharmacol. Exp. Ther. 375, 161–174 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Shah, A. et al. Brain correlates of stress-induced peripheral vasoconstriction in patients with cardiovascular disease. Psychophysiology 56, e13291 (2019).

    Article  PubMed  Google Scholar 

  123. Moazzami, K. et al. Higher activation of the rostromedial prefrontal cortex during mental stress predicts major cardiovascular disease events in individuals with coronary artery disease. Circulation 142, 455–465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vaccarino, V. et al. Mental stress-induced-myocardial ischemia in young patients with recent myocardial infarction: sex differences and mechanisms. Circulation 137, 794–805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Burg, M. M. & Soufer, R. Psychological stress and induced ischemic syndromes. Curr. Cardiovasc. Risk Rep. 8, 377 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wei, J. et al. Meta-analysis of mental stress-induced myocardial ischemia and subsequent cardiac events in patients with coronary artery disease. Am. J. Cardiol. 114, 187–192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Vaccarino, V. et al. Association of mental stress-induced myocardial ischemia with cardiovascular events in patients with coronary heart disease. JAMA 326, 1818–1828 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Almuwaqqat, Z. et al. Sex-specific association between coronary artery disease severity and myocardial ischemia induced by mental stress. Psychosom. Med. 81, 57–66 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wei, J. et al. Depressive symptoms are associated with mental stress-induced myocardial ischemia after acute myocardial infarction. PLoS One 9, e102986 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Boyle, S. H. et al. Depressive symptoms and mental stress-induced myocardial ischemia in patients with coronary heart disease. Psychosom. Med. 75, 822–831 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lima, B. B. et al. Association of posttraumatic stress disorder with mental stress-induced myocardial ischemia in adults after myocardial infarction. JAMA Netw. Open 3, e202734 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Burg, M. M. et al. Noninvasive detection of risk for emotion-provoked myocardial ischemia. Psychosom. Med. 71, 14–20 (2009).

    Article  PubMed  Google Scholar 

  133. Jiang, W. et al. Platelet aggregation and mental stress induced myocardial ischemia: results from the Responses of Myocardial Ischemia to Escitalopram Treatment (REMIT) study. Am. Heart J. 169, 496–507.e1 (2015).

    Article  PubMed  Google Scholar 

  134. Ersbøll, M. et al. Impaired resting myocardial annular velocities are independently associated with mental stress-induced ischemia in coronary heart disease. JACC Cardiovasc. Imaging 7, 351–361 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Vaccarino, V. et al. Sex differences in mental stress-induced myocardial ischemia in patients with coronary heart disease. J. Am. Heart Assoc. 5, e003630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jiang, W. et al. Prevalence and clinical characteristics of mental stress-induced myocardial ischemia in patients with coronary heart disease. J. Am. Coll. Cardiol. 61, 714–722 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Almuwaqqat, Z. et al. Quantitation of diffuse myocardial ischemia with mental stress and its association with cardiovascular events in individuals with recent myocardial infarction. J. Nucl. Cardiol. 30, 2029–2038 (2023).

    Article  PubMed  Google Scholar 

  138. Pimple, P. et al. Chest pain and mental stress-induced myocardial ischemia: sex differences. Am. J. Med. 131, 540–547.e1 (2018).

    Article  PubMed  Google Scholar 

  139. Ong, P. et al. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 250, 16–20 (2018).

    Article  PubMed  Google Scholar 

  140. Bremner, J. D. In: The Handbook of Stress: Neuropsychological Effects on the Brain (ed Conrad, C.D.) (Wiley-Blackwell, 2011).

  141. Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Bremner, J. D. et al. Brain correlates of mental stress-induced myocardial ischemia. Psychosom. Med. 80, 515–525 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ligneul, R., Obeso, I., Ruff, C. C. & Dreher, J. C. Dynamical representation of dominance relationships in the human rostromedial prefrontal cortex. Curr. Biol. 26, 3107–3115 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Kasher, N. et al. Sex differences in brain activation patterns with mental stress in patients with coronary artery disease. Biol. Sex Differ. 10, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Moazzami, K. et al. Neural correlates of stress and abdominal obesity in patients with coronary artery disease. Psychosom. Med. 82, 272–280 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bremner, J. D., Fani, N., Cheema, F. A., Ashraf, A. & Vaccarino, V. Effects of a mental stress challenge on brain function in coronary artery disease patients with and without depression. Health Psychol. 38, 910–924 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wittbrodt, M. T. et al. Early childhood trauma alters neurological responses to mental stress in patients with coronary artery disease. J. Affect. Disord. 254, 49–58 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Moazzami, K. et al. Association between mental stress-induced inferior frontal cortex activation and angina in coronary artery disease. Circ. Cardiovasc. Imaging 13, e010710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bonanno, G. A. Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? Am. Psychol. 59, 20–28 (2004).

    Article  PubMed  Google Scholar 

  150. Ryan, M. & Ryznar, R. The molecular basis of resilience: a narrative review. Front. Psychiatry 13, 856998 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bruenig, D. et al. Correlation between interferon γ and interleukin 6 with PTSD and resilience. Psychiatry Res. 260, 193–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Dar, T. et al. Greater neurobiological resilience to chronic socioeconomic or environmental stressors associates with lower risk for cardiovascular disease events. Circ. Cardiovasc. Imaging 13, e010337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Suglia, S. F. et al. Childhood and adolescent adversity and cardiometabolic outcomes: a scientific statement from the american heart association. Circulation 137, e15–e28 (2018).

    Article  PubMed  Google Scholar 

  154. Vaccarino, V. & Bremner, J. D. Behavioral, emotional and neurobiological determinants of coronary heart disease risk in women. Neurosci. Biobehav. Rev. 74, 297–309 (2017).

    Article  PubMed  Google Scholar 

  155. Shah, A. J., Veledar, E., Hong, Y., Bremner, J. D. & Vaccarino, V. Depression and history of attempted suicide as risk factors for heart disease mortality in young individuals. Arch. Gen. Psychiatry 68, 1135–1142 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wyman, L., Crum, R. M. & Celentano, D. Depressed mood and cause-specific mortality: a 40-year general community assessment. Ann. Epidemiol. 22, 638–643 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Korkeila, J. et al. Childhood adversities as predictors of incident coronary heart disease and cerebrovascular disease. Heart 96, 298–303 (2010).

    Article  PubMed  Google Scholar 

  158. Xu, X. et al. Sex differences in perceived stress and early recovery in young and middle-aged patients with acute myocardial infarction. Circulation 131, 614–623 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shah, A. J. et al. Sex and age differences in the association of depression with obstructive coronary artery disease and adverse cardiovascular events. J. Am. Heart Assoc. 3, e000741 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Murphy, M. O. & Loria, A. S. Sex-specific effects of stress on metabolic and cardiovascular disease: are women at higher risk? Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R1–R9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Samad, Z. et al. Sex differences in platelet reactivity and cardiovascular and psychological response to mental stress in patients with stable ischemic heart disease: insights from the REMIT study. J. Am. Coll. Cardiol. 64, 1669–1678 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Pepine, C. J., Petersen, J. W. & Bairey Merz, C. N. A microvascular-myocardial diastolic dysfunctional state and risk for mental stress ischemia: a revised concept of ischemia during daily life. JACC Cardiovasc. Imaging 7, 362–365 (2014).

    Article  PubMed  Google Scholar 

  163. Lyon, A. R. et al. Pathophysiology of takotsubo syndrome: JACC state-of-the-art review. J. Am. Coll. Cardiol. 77, 902–921 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Lewis, T. T., Lampert, R., Charles, D. & Katz, S. Expectations of racism and carotid intima-media thickness in African American Women. Psychosom. Med. 81, 759–768 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Islam, S. J. et al. Neighborhood characteristics and ideal cardiovascular health among Black adults: results from the Morehouse-Emory Cardiovascular (MECA) Center for Health Equity. Ann. Epidemiol. 65, 120.e1–120.e10 (2022).

    Article  PubMed  Google Scholar 

  166. Havranek, E. P. et al. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association. Circulation 132, 873–898 (2015).

    Article  PubMed  Google Scholar 

  167. Okoh, A. K. et al. Racial differences in mental stress-induced transient endothelial dysfunction and its association with cardiovascular outcomes. Psychosom. Med. 85, 431–439 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. McKinnon, I. I. et al. Everyday discrimination and mental stress-induced myocardial ischemia. Psychosom. Med. 83, 432–439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Garcia, M. et al. Racial disparities in adverse cardiovascular outcomes after a myocardial infarction in young or middle-aged patients. J. Am. Heart Assoc. 10, e020828 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hughes, J. W., Dennis, M. F. & Beckham, J. C. Baroreceptor sensitivity at rest and during stress in women with posttraumatic stress disorder or major depressive disorder. J. Trauma. Stress 20, 667–676 (2007).

    Article  PubMed  Google Scholar 

  171. Gurel, N. Z. et al. Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: a double-blind, randomized, sham controlled trial. Neurobiol. Stress 13, 100264 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Koch, C., Wilhelm, M., Salzmann, S., Rief, W. & Euteneuer, F. A meta-analysis of heart rate variability in major depression. Psychol. Med. 49, 1948–1957 (2019).

    Article  PubMed  Google Scholar 

  173. Kiecolt-Glaser, J. K., Derry, M. D. & Fagundes, C. P. Inflammation: depression fans the flames and feasts on the heat. Am. J. Psychiatry 172, 1075–1091 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Lima, B. B. et al. Posttraumatic stress disorder is associated with enhanced interleukin-6 response to mental stress in subjects with a recent myocardial infarction. Brain Behav. Immun. 75, 26–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. von Kanel, R. et al. Posttraumatic stress disorder and soluble cellular adhesion molecules at rest and in response to a trauma-specific interview in patients after myocardial infarction. Psychiatry Res. 179, 312–317 (2010).

    Article  Google Scholar 

  176. Vaccarino, V. et al. Posttraumatic stress disorder, myocardial perfusion, and myocardial blood flow: a longitudinal twin study. Biol. Psychiatry 91, 615–625 (2022).

    Article  PubMed  Google Scholar 

  177. Martin, Z. T. et al. Exaggerated peripheral and systemic vasoconstriction during trauma recall in post-traumatic stress disorder: a co-twin control study. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2023.12.014 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Taqueti, V. R. & Di Carli, M. F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2625–2641 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 74, e177–e232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Smith, S. C. Jr et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. J. Am. Coll. Cardiol. 58, 2432–2446 (2011).

    Article  PubMed  Google Scholar 

  181. Lloyd-Jones, D. M. et al. Life’s essential 8: updating and enhancing the american heart association’s construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation 146, e18–e43 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Visseren, F. L. J. et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    Article  PubMed  Google Scholar 

  183. Levine, G. N. et al. Psychological health, well-being, and the mind-heart-body connection: a scientific statement from the American Heart Association. Circulation 143, e763–e783 (2021).

    Article  PubMed  Google Scholar 

  184. Richards, S. H. et al. Psychological interventions for coronary heart disease: cochrane systematic review and meta-analysis. Eur. J. Prev. Cardiol. 25, 247–259 (2018).

    Article  PubMed  Google Scholar 

  185. Scott-Sheldon, L. A. J. et al. Mindfulness-based interventions for adults with cardiovascular disease: a systematic review and meta-analysis. Ann. Behav. Med. 54, 67–73 (2020).

    Article  PubMed  Google Scholar 

  186. Blumenthal, J. A. et al. Enhancing cardiac rehabilitation with stress management training. Circulation 133, 1341–1350 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Holdgaard, A. et al. Cognitive-behavioural therapy reduces psychological distress in younger patients with cardiac disease: a randomized trial. Eur. Heart J. 44, 986–996 (2023).

    Article  PubMed  Google Scholar 

  188. Wells, A. et al. Improving the effectiveness of psychological interventions for depression and anxiety in cardiac rehabilitation: PATHWAY — a single-blind, parallel, randomized, controlled trial of group metacognitive therapy. Circulation 144, 23–33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Singh, B. et al. Effectiveness of physical activity interventions for improving depression, anxiety and distress: an overview of systematic reviews. Br. J. Sports Med. 57, 1203–1209 (2023).

    Article  PubMed  Google Scholar 

  190. Isath, A. et al. The effect of yoga on cardiovascular disease risk factors: a meta-analysis. Curr. Probl. Cardiol. 48, 101593 (2023).

    Article  PubMed  Google Scholar 

  191. Burlacu, A., Brinza, C., Popa, I. V., Covic, A. & Floria, M. Influencing cardiovascular outcomes through heart rate variability modulation: a systematic review. Diagnostics 11, 2198 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Pizzoli, S. F. M. et al. A meta-analysis on heart rate variability biofeedback and depressive symptoms. Sci. Rep. 11, 6650 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huffman, J. C., Adams, C. N. & Celano, C. M. Collaborative care and related interventions in patients with heart disease: an update and new directions. Psychosomatics 59, 1–18 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Part of the authors’ work reported in this article was supported by National Institutes of Health grants P01 HL101398, R01 HL109413, R01 HL125246, R01 HL136205, R01 HL088726, R01 MH120262, UG3 DA048502, T32 HL130025, KL2TR000455, K23 HL127251, K24 HL077506 and K24 MH076955.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Viola Vaccarino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Mika Kivimäki; Johannes Siegrist; Andrew Steptoe; and Ahmed Tawakol, who co-reviewed with Shady Abohashem; for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaccarino, V., Bremner, J.D. Stress and cardiovascular disease: an update. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01024-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01024-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing