Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mild autonomous cortisol secretion: pathophysiology, comorbidities and management approaches

Abstract

The majority of incidentally discovered adrenal tumours are benign adrenocortical adenomas and the prevalence of adrenocortical adenomas is around 1–7% on cross-sectional abdominal imaging. These can be non-functioning adrenal tumours or they can be associated with autonomous cortisol secretion on a spectrum that ranges from rare clinically overt adrenal Cushing syndrome to the much more prevalent mild autonomous cortisol secretion (MACS) without signs of Cushing syndrome. MACS is diagnosed (based on an abnormal overnight dexamethasone suppression test) in 20–50% of patients with adrenal adenomas. MACS is associated with cardiovascular morbidity, frailty, fragility fractures, decreased quality of life and increased mortality. Management of MACS should be individualized based on patient characteristics and includes adrenalectomy or conservative follow-up with treatment of associated comorbidities. Identifying patients with MACS who are most likely to benefit from adrenalectomy is challenging, as adrenalectomy results in improvement of cardiovascular morbidity in some, but not all, patients with MACS. Of note, diagnosis and management of patients with bilateral MACS is especially challenging. Current gaps in MACS clinical practice include a lack of specific biomarkers diagnostic of MACS-related health outcomes and a paucity of clinical trials demonstrating the efficacy of adrenalectomy on comorbidities associated with MACS. In addition, little evidence exists to demonstrate the efficacy and safety of long-term medical therapy in patients with MACS.

Key points

  • Mild autonomous cortisol secretion (MACS) is diagnosed based on the 1 mg overnight dexamethasone test and is found in 20–50% of patients with adrenal adenomas lacking signs and symptoms of Cushing syndrome.

  • Patients with adrenal adenomas show distinct changes in the steroid and global metabolome, which correlate with the degree of cortisol excess across MACS and Cushing syndrome.

  • MACS is associated with an increased likelihood of having cardiovascular risk factors and an increased risk of mortality.

  • Management of MACS must be individualized based on patient characteristics; the options range from adrenalectomy to long-term follow-up and conservative management of comorbidities.

  • Post-operative adrenal insufficiency is seen in around 50% of patients with MACS who undergo unilateral adrenalectomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of mild autonomous cortisol secretion.
Fig. 2: Natural history of mild autonomous cortisol secretion.
Fig. 3: Schematic overview of steroidogenesis and corresponding urine steroid metabolites.
Fig. 4: Diagnosis and management of mild autonomous cortisol secretion.
Fig. 5: Surgical management in patients with mild autonomous cortisol secretion.

Similar content being viewed by others

References

  1. Fassnacht, M. et al. European Society of Endocrinology clinical practice guidelines on the management of adrenal incidentalomas, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 189, G1–G42 (2023).

    Article  PubMed  Google Scholar 

  2. Ebbehoj, A. et al. Epidemiology of adrenal tumours in Olmsted County, Minnesota, USA: a population-based cohort study. Lancet Diabetes Endocrinol. 8, 894–902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elhassan, Y. S. et al. Natural history of adrenal incidentalomas with and without mild autonomous cortisol excess: a systematic review and meta-analysis. Ann. Intern. Med. 171, 107–116 (2019).

    Article  PubMed  Google Scholar 

  4. Prete, A. et al. Cardiometabolic disease burden and steroid excretion in benign adrenal tumors: a cross-sectional multicenter study. Ann. Intern. Med. 175, 325–334 (2022).

    Article  PubMed  Google Scholar 

  5. Deutschbein, T. et al. Age-dependent and sex-dependent disparity in mortality in patients with adrenal incidentalomas and autonomous cortisol secretion: an international, retrospective, cohort study. Lancet Diabetes Endocrinol. 10, 499–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dogra, P. et al. High prevalence of frailty in patients with adrenal adenomas and adrenocortical hormone excess: a cross-sectional multi-centre study with prospective enrolment. Eur. J. Endocrinol. 189, 318–326 (2023).

    Article  PubMed  Google Scholar 

  7. Lopez, D. et al. ‘Nonfunctional’ adrenal tumors and the risk for incident diabetes and cardiovascular outcomes: a cohort study. Ann. Intern. Med. 165, 533–542 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bancos, I. & Prete, A. Approach to the patient with adrenal incidentaloma. J. Clin. Endocrinol. Metab. 106, 3331–3353 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jing, Y. et al. Prevalence and characteristics of adrenal tumors in an unselected screening population: a cross-sectional study. Ann. Intern. Med. 175, 1383–1391 (2022).

    Article  PubMed  Google Scholar 

  10. Bancos, I. et al. Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study. Lancet Diabetes Endocrinol. 8, 773–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mantero, F. et al. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J. Clin. Endocrinol. Metab. 85, 637–644 (2000).

    CAS  PubMed  Google Scholar 

  12. Ahn, S. H. et al. Characteristics of adrenal incidentalomas in a large, prospective computed tomography-based multicenter study: the COAR study in Korea. Yonsei Med J. 59, 501–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ichijo, T., Ueshiba, H., Nawata, H. & Yanase, T. A nationwide survey of adrenal incidentalomas in Japan: the first report of clinical and epidemiological features. Endocr. J. 67, 141–152 (2020).

    Article  PubMed  Google Scholar 

  14. Libe, R. Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Front. Cell Dev. Biol. 3, 45 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lacroix, A., Feelders, R. A., Stratakis, C. A. & Nieman, L. K. Cushing’s syndrome. Lancet 386, 913–927 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Mete, O. et al. Overview of the 2022 WHO classification of adrenal cortical tumors. Endocr. Pathol. 33, 155–196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertherat, J. et al. Clinical, pathophysiologic, genetic, and therapeutic progress in primary bilateral macronodular adrenal hyperplasia. Endocr. Rev. 44, 567–628 (2023).

    Article  PubMed  Google Scholar 

  18. Li, D. et al. Determinants of muscle function and health-related quality of life in patients with endogenous hypercortisolism: a cross-sectional study. Eur. J. Endocrinol. 188, 603–612 (2023).

    PubMed  Google Scholar 

  19. Giordano, R. et al. Long-term morphological, hormonal, and clinical follow-up in a single unit on 118 patients with adrenal incidentalomas. Eur. J. Endocrinol. 162, 779–785 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Morelli, V. et al. Long-term follow-up in adrenal incidentalomas: an Italian multicenter study. J. Clin. Endocrinol. Metab. 99, 827–834 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Di Dalmazi, G. et al. Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: a 15-year retrospective study. Lancet Diabetes Endocrinol. 2, 396–405 (2014).

    Article  PubMed  Google Scholar 

  22. Arruda, M. et al. The presence of nonfunctioning adrenal incidentalomas increases arterial hypertension frequency and severity, and is associated with cortisol levels after dexamethasone suppression test. J. Hum. Hypertens. 32, 3–11 (2017).

    Article  PubMed  Google Scholar 

  23. Kim, J. H., Kim, M. J., Lee, J. H., Yoon, J. W. & Shin, C. S. Nonfunctioning adrenal incidentalomas are not clinically silent: a longitudinal cohort study. Endocr. Pract. 26, 1406–1415 (2020).

    Article  PubMed  Google Scholar 

  24. Khan, U. Nonfunctioning and subclinical cortisol secreting adrenal incidentalomas and their association with metabolic syndrome: a systematic review. Indian J. Endocrinol. Metab. 23, 332–346 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Araujo-Castro, M. et al. Nonfunctioning adrenal incidentalomas with cortisol post-dexamethasone suppression test >0.9 µg/dL have a higher prevalence of cardiovascular disease than those with values ≤0.9 µg/dL. Endocrine 79, 384–391 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Araujo-Castro, M. et al. Cardiometabolic profile of non-functioning and autonomous cortisol-secreting adrenal incidentalomas. Is the cardiometabolic risk similar or are there differences? Endocrine 66, 650–659 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Faillot, S. et al. Genomic classification of benign adrenocortical lesions. Endocr. Relat. Cancer 28, 79–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Di Dalmazi, G. et al. RNA sequencing and somatic mutation status of adrenocortical tumors: novel pathogenetic insights. J. Clin. Endocrinol. Metab. 105, dgaa616 (2020).

    Article  PubMed  Google Scholar 

  29. Wilmot Roussel, H. et al. Identification of gene expression profiles associated with cortisol secretion in adrenocortical adenomas. J. Clin. Endocrinol. Metab. 98, E1109–E1121 (2013).

    Article  PubMed  Google Scholar 

  30. Jouinot, A., Armignacco, R. & Assie, G. Genomics of benign adrenocortical tumors. J. Steroid Biochem. Mol. Biol. 193, 105414 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Bonnet, S. et al. Wnt/beta-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors. J. Clin. Endocrinol. Metab. 96, E419–E426 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Juhlin, C. C. et al. What did we learn from the molecular biology of adrenal cortical neoplasia? From histopathology to translational genomics. Endocr. Pathol. 32, 102–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Ronchi, C. L. et al. Genetic landscape of sporadic unilateral adrenocortical adenomas without PRKACA p.Leu206Arg mutation. J. Clin. Endocrinol. Metab. 101, 3526–3538 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Pitsava, G. & Stratakis, C. A. Genetic alterations in benign adrenal tumors. Biomedicines 10, 1041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ronchi, C. L. cAMP/protein kinase A signalling pathway and adrenocortical adenomas. Curr. Opin. Endocr. Metab. Res. 8, 15–21 (2019).

    Article  Google Scholar 

  36. Little, D. W. III, Dumontet, T., LaPensee, C. R. & Hammer, G. D. Beta-catenin in adrenal zonation and disease. Mol. Cell Endocrinol. 522, 111120 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Vassiliadi, D. A. & Tsagarakis, S. Diagnosis and management of primary bilateral macronodular adrenal hyperplasia. Endocr. Relat. Cancer 26, R567–R581 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Bouys, L. et al. Identification of predictive criteria for pathogenic variants of primary bilateral macronodular adrenal hyperplasia (PBMAH) gene ARMC5 in 352 unselected patients. Eur. J. Endocrinol. 187, 123–134 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Morelli, V. et al. Prevalence and clinical features of armadillo repeat-containing 5 mutations carriers in a single center cohort of patients with bilateral adrenal incidentalomas. Eur. J. Endocrinol. 189, 242–251 (2023).

    Article  PubMed  Google Scholar 

  40. Lacroix, A., Ndiaye, N., Tremblay, J. & Hamet, P. Ectopic and abnormal hormone receptors in adrenal Cushing’s syndrome. Endocr. Rev. 22, 75–110 (2001).

    CAS  PubMed  Google Scholar 

  41. Reznik, Y. et al. Aberrant adrenal sensitivity to multiple ligands in unilateral incidentaloma with subclinical autonomous cortisol hypersecretion: a prospective clinical study. Clin. Endocrinol. 61, 311–319 (2004).

    Article  CAS  Google Scholar 

  42. Perraudin, V. et al. Vasopressin-responsive adrenocortical tumor in a mild Cushing’s syndrome: in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 80, 2661–2667 (1995).

    CAS  PubMed  Google Scholar 

  43. Tsagarakis, S. et al. Food-dependent androgen and cortisol secretion by a gastric inhibitory polypeptide-receptor expressive adrenocortical adenoma leading to hirsutism and subclinical Cushing’s syndrome: in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 86, 583–589 (2001).

    CAS  PubMed  Google Scholar 

  44. Contesse, V. et al. Abnormal sensitivity of cortisol-producing adrenocortical adenomas to serotonin: in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 90, 2843–2850 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Dall’Asta, C. et al. Assessing the presence of abnormal regulation of cortisol secretion by membrane hormone receptors: in vivo and in vitro studies in patients with functioning and non-functioning adrenal adenoma. Horm. Metab. Res. 36, 578–583 (2004).

    Article  PubMed  Google Scholar 

  46. Carlson, H. E. Human adrenal cortex hyperfunction due to LH/hCG. Mol. Cell Endocrinol. 269, 46–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bernichtein, S., Alevizaki, M. & Huhtaniemi, I. Is the adrenal cortex a target for gonadotropins? Trends Endocrinol. Metab. 19, 231–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Vassiliadi, D. A., Ntali, G., Stratigou, T., Adali, M. & Tsagarakis, S. Aberrant cortisol responses to physiological stimuli in patients presenting with bilateral adrenal incidentalomas. Endocrine 40, 437–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Marina, L. V. et al. Luteinizing hormone and insulin resistance in menopausal patients with adrenal incidentalomas: the cause–effect relationship? Clin. Endocrinol. 88, 541–548 (2018).

    Article  CAS  Google Scholar 

  50. Feelders, R. A. et al. Luteinizing hormone (LH)-responsive Cushing’s syndrome: the demonstration of LH receptor messenger ribonucleic acid in hyperplastic adrenal cells, which respond to chorionic gonadotropin and serotonin agonists in vitro. J. Clin. Endocrinol. Metab. 88, 230–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Lefebvre, H., Prevost, G. & Louiset, E. Autocrine/paracrine regulatory mechanisms in adrenocortical neoplasms responsible for primary adrenal hypercorticism. Eur. J. Endocrinol. 169, R115–R138 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Lefebvre, H. et al. Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms. Mol. Cell Endocrinol. 408, 198–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Lefebvre, H., Duparc, C., Prevost, G., Bertherat, J. & Louiset, E. Cell-to-cell communication in bilateral macronodular adrenal hyperplasia causing hypercortisolism. Front. Endocrinol. 6, 34 (2015).

    Article  Google Scholar 

  54. Reincke, M., Fassnacht, M., Vath, S., Mora, P. & Allolio, B. Adrenal incidentalomas: a manifestation of the metabolic syndrome? Endocr. Res. 22, 757–761 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Muscogiuri, G. et al. The size of adrenal incidentalomas correlates with insulin resistance. Is there a cause–effect relationship? Clin. Endocrinol. 74, 300–305 (2011).

    Article  CAS  Google Scholar 

  56. Abdellatif, A. B., Fernandes-Rosa, F. L., Boulkroun, S. & Zennaro, M. C. Vascular and hormonal interactions in the adrenal gland. Front. Endocrinol. 13, 995228 (2022).

    Article  Google Scholar 

  57. Higgs, J. A. et al. Pathophysiological link between insulin resistance and adrenal incidentalomas. Int. J. Mol. Sci. 23, 4340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Altieri, B. et al. Adrenocortical tumors and insulin resistance: what is the first step? Int. J. Cancer 138, 2785–2794 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Sydney, G. I., Ioakim, K. J. & Paschou, S. A. Insulin resistance and adrenal incidentalomas: a bidirectional relationship. Maturitas 121, 1–6 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Arlt, W. et al. Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96, 3775–3784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hines, J. M. et al. High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clin. Chem. 63, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Kerkhofs, T. M., Kerstens, M. N., Kema, I. P., Willems, T. P. & Haak, H. R. Diagnostic value of urinary steroid profiling in the evaluation of adrenal tumors. Horm. Cancer 6, 168–175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arlt, W. et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2, e93136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kikuchi, E. et al. Urinary steroid profile in adrenocortical tumors. Biomed. Pharmacother. 54, 194s–197s (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Homoki, J., Holl, R. & Teller, W. M. [Urinary steroid profile in Cushing syndrome and in tumors of the adrenal cortex]. Klin. Wochenschr. 65, 719–726 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Kotlowska, A., Puzyn, T., Sworczak, K., Stepnowski, P. & Szefer, P. Metabolomic biomarkers in urine of Cushing’s syndrome patients. Int. J. Mol. Sci. 18, 294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tiu, S. C. et al. Use of urinary steroid profiling for diagnosing and monitoring adrenocortical tumours. Hong Kong Med. J. 15, 463–470 (2009).

    CAS  PubMed  Google Scholar 

  68. Velikanova, L. I. et al. Different types of urinary steroid profiling obtained by high-performance liquid chromatography and gas chromatography–mass spectrometry in patients with adrenocortical carcinoma. Horm. Cancer 7, 327–335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brossaud, J., Ducint, D. & Corcuff, J. B. Urinary glucocorticoid metabolites: biomarkers to classify adrenal incidentalomas? Clin. Endocrinol. 84, 236–243 (2016).

    Article  CAS  Google Scholar 

  70. Maser-Gluth, C., Reincke, M., Allolio, B. & Schulze, E. Metabolism of glucocorticoids and mineralocorticoids in patients with adrenal incidentalomas. Eur. J. Clin. Invest. 30, 83–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Araujo-Castro, M. et al. Is the 1 mg-dexamethasone suppression test a precise marker of glucocorticoid excess and cardiometabolic risk in patients with adrenal incidentalomas? Endocrine 82, 161–170 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Berke, K. et al. Plasma steroid profiling in patients with adrenal incidentaloma. J. Clin. Endocrinol. Metab. 107, e1181–e1192 (2022).

    Article  PubMed  Google Scholar 

  73. Hana, V. Jr et al. Serum steroid profiling in Cushing’s syndrome patients. J. Steroid Biochem. Mol. Biol. 192, 105410 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Masjkur, J. et al. Plasma steroid profiles in subclinical compared with overt adrenal Cushing syndrome. J. Clin. Endocrinol. Metab. 104, 4331–4340 (2019).

    Article  PubMed  Google Scholar 

  75. Eisenhofer, G. et al. Plasma steroid metabolome profiling for diagnosis and subtyping patients with Cushing syndrome. Clin. Chem. 64, 586–596 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Di Dalmazi, G. et al. Steroid profiling by LC–MS/MS in nonsecreting and subclinical cortisol-secreting adrenocortical adenomas. J. Clin. Endocrinol. Metab. 100, 3529–3538 (2015).

    Article  PubMed  Google Scholar 

  77. Ueshiba, H., Segawa, M., Hayashi, T., Miyachi, Y. & Irie, M. Serum profiles of steroid hormones in patients with Cushing’s syndrome determined by a new HPLC/RIA method. Clin. Chem. 37, 1329–1333 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Di Dalmazi, G. et al. The steroid profile of adrenal incidentalomas: subtyping subjects with high cardiovascular risk. J. Clin. Endocrinol. Metab. 104, 5519–5528 (2019).

    Article  PubMed  Google Scholar 

  79. Ku, E. J. et al. Metabolic subtyping of adrenal tumors: prospective multi-center cohort study in Korea. Endocrinol. Metab. 36, 1131–1141 (2021).

    Article  CAS  Google Scholar 

  80. Huayllas, M. K. P. et al. Steroidogenesis in patients with adrenal incidentalomas: extended steroid profile measured by liquid chromatography–mass spectrometry after ACTH stimulation and dexamethasone suppression. Clin. Endocrinol. 95, 29–40 (2021).

    Article  CAS  Google Scholar 

  81. Constantinescu, G. et al. Glucocorticoid excess in patients with pheochromocytoma compared with paraganglioma and other forms of hypertension. J. Clin. Endocrinol. Metab. 105, e3374–e3383 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dennedy, M. C. et al. Low DHEAS: a sensitive and specific test for the detection of subclinical hypercortisolism in adrenal incidentalomas. J. Clin. Endocrinol. Metab. 102, 786–792 (2017).

    PubMed  Google Scholar 

  83. Hana, V. et al. Novel GC–MS/MS technique reveals a complex steroid fingerprint of subclinical hypercortisolism in adrenal incidentalomas. J. Clin. Endocrinol. Metab. 104, 3545–3556 (2019).

    Article  PubMed  Google Scholar 

  84. Hannah-Shmouni, F. et al. Mass spectrometry-based steroid profiling in primary bilateral macronodular adrenocortical hyperplasia. Endocr. Relat. Cancer 27, 403–413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Teuber, J. P. et al. Intratumoral steroid profiling of adrenal cortisol-producing adenomas by liquid chromatography–mass spectrometry. J. Steroid Biochem. Mol. Biol. 212, 105924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Murakami, M. et al. In situ metabolomics of cortisol-producing adenomas. Clin. Chem. 69, 149–159 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bassett, M. H. et al. Expression profiles for steroidogenic enzymes in adrenocortical disease. J. Clin. Endocrinol. Metab. 90, 5446–5455 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Cao, C. et al. Increased expression of CYP17 and CYP11B1 in subclinical Cushing’s syndrome due to adrenal adenomas. Int. J. Urol. 18, 691–696 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Di Dalmazi, G. et al. Cortisol-related metabolic alterations assessed by mass spectrometry assay in patients with Cushing’s syndrome. Eur. J. Endocrinol. 177, 227–237 (2017).

    Article  PubMed  Google Scholar 

  90. Erlic, Z. et al. Targeted metabolomics as a tool in discriminating endocrine from primary hypertension. J. Clin. Endocrinol. Metab. 106, 1111–1128 (2021).

    Article  PubMed  Google Scholar 

  91. Vega-Beyhart, A. et al. Endogenous cortisol excess confers a unique lipid signature and metabolic network. J. Mol. Med. 99, 1085–1099 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. van der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 1859, 1558–1572 (2017).

    Article  PubMed  Google Scholar 

  93. Supale, S., Li, N., Brun, T. & Maechler, P. Mitochondrial dysfunction in pancreatic beta cells. Trends Endocrinol. Metab. 23, 477–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Ren, J., Pulakat, L., Whaley-Connell, A. & Sowers, J. R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. 88, 993–1001 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Funai, K. et al. Skeletal muscle phospholipid metabolism regulates insulin sensitivity and contractile function. Diabetes 65, 358–370 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Funai, K. et al. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J. Clin. Invest. 123, 1229–1240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Storlien, L. H. et al. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 40, 280–289 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Chang, W., Hatch, G. M., Wang, Y., Yu, F. & Wang, M. The relationship between phospholipids and insulin resistance: from clinical to experimental studies. J. Cell. Mol. Med. 23, 702–710 (2019).

    Article  PubMed  Google Scholar 

  99. Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guo, Y. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657–661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meikle, P. J. et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS ONE 8, e74341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Semba, R. D. et al. Altered plasma amino acids and lipids associated with abnormal glucose metabolism and insulin resistance in older adults. J. Clin. Endocrinol. Metab. 103, 3331–3339 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Morze, J. et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care 45, 1013–1024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tan, S. T., Ramesh, T., Toh, X. R. & Nguyen, L. N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res. 80, 101068 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Rodriguez-Cuenca, S., Pellegrinelli, V., Campbell, M., Oresic, M. & Vidal-Puig, A. Sphingolipids and glycerophospholipids — The ‘Ying and Yang’ of lipotoxicity in metabolic diseases. Prog. Lipid Res. 66, 14–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Green, C. D., Maceyka, M., Cowart, L. A. & Spiegel, S. Sphingolipids in metabolic disease: the good, the bad, and the unknown. Cell Metab. 33, 1293–1306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yin, X. et al. Lipidomic profiling identifies signatures of metabolic risk. eBioMedicine 51, 102520 (2020).

    Article  PubMed  Google Scholar 

  108. Markgraf, D. F., Al-Hasani, H. & Lehr, S. Lipidomics — reshaping the analysis and perception of type 2 diabetes. Int. J. Mol. Sci. 17, 1841 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Razquin, C. et al. Plasma lipidomic profiling and risk of type 2 diabetes in the PREDIMED trial. Diabetes Care 41, 2617–2624 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, P. et al. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 247, 117443 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Matsumoto, T., Kobayashi, T. & Kamata, K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr. Med. Chem. 14, 3209–3220 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Mihalik, S. J. et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 18, 1695–1700 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Guasch-Ferre, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu, E. et al. Changes in arginine are inversely associated with type 2 diabetes: a case–cohort study in the PREDIMED trial. Diabetes Obes. Metab. 21, 397–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, S. et al. Serum amino acid profiles and risk of type 2 diabetes among Japanese adults in the Hitachi Health Study. Sci. Rep. 9, 7010 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gunther, S. H. et al. Serum acylcarnitines and amino acids and risk of type 2 diabetes in a multiethnic Asian population. BMJ Open Diabetes Res. Care 8, e001315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pitocco, D. et al. Oxidative stress, nitric oxide, and diabetes. Rev. Diabet. Stud. 7, 15–25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Montagnani, M. & Quon, M. J. Insulin action in vascular endothelium: potential mechanisms linking insulin resistance with hypertension. Diabetes Obes. Metab. 2, 285–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. DiNicolantonio, J. J., McCarty, M. F. & James, H. O. K. Role of dietary histidine in the prevention of obesity and metabolic syndrome. Open Heart 5, e000676 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Toyoshima, K. et al. Increased plasma proline concentrations are associated with sarcopenia in the elderly. PLoS ONE 12, e0185206 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lu, Y. et al. Systemic and metabolic signature of sarcopenia in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 75, 309–317 (2020).

    CAS  PubMed  Google Scholar 

  122. Le Couteur, D. G. et al. Branched chain amino acids, cardiometabolic risk factors and outcomes in older men: the Concord Health and Ageing in Men Project. J. Gerontol. A Biol. Sci. Med. Sci. 75, 1805–1810 (2020).

    Article  PubMed  Google Scholar 

  123. Bjelakovic, G. et al. Metabolic correlations of glucocorticoids and polyamines in inflammation and apoptosis. Amino Acids 39, 29–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Carafone, L. E. et al. Diagnostic accuracy of dehydroepiandrosterone sulfate and corticotropin in autonomous cortisol secretion. Biomedicines https://doi.org/10.3390/biomedicines9070741 (2021).

  125. Genere, N. et al. Interpretation of abnormal dexamethasone suppression test is enhanced with use of synchronous free cortisol assessment. J. Clin. Endocrinol. Metab. 107, e1221–e1230 (2022).

    Article  PubMed  Google Scholar 

  126. Fassnacht, M. et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 175, G1–G34 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Kjellbom, A., Lindgren, O., Puvaneswaralingam, S., Londahl, M. & Olsen, H. Association between mortality and levels of autonomous cortisol secretion by adrenal incidentalomas : a cohort study. Ann. Intern. Med. 174, 1041–1049 (2021).

    Article  PubMed  Google Scholar 

  128. Ueland, G. A. et al. Simultaneous assay of cortisol and dexamethasone improved diagnostic accuracy of the dexamethasone suppression test. Eur. J. Endocrinol. 176, 705–713 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Atkins, J. S. et al. Serum cortisol assay performance following the 1 mg overnight dexamethasone suppression test. Ann. Clin. Biochem. 60, 386–395 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Issa, B. G. et al. The utility of salivary cortisone in the overnight dexamethasone suppression test in adrenal incidentalomas. J. Clin. Endocrinol. Metab. 108, e937–e943 (2023).

    Article  PubMed  Google Scholar 

  131. Patrova, J., Mannheimer, B., Lindh, J. D. & Falhammar, H. Mortality in patients with nonfunctional adrenal tumors. JAMA Intern. Med. 183, 832–838 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zhang, C. D. et al. Cardiometabolic outcomes and mortality in patients with adrenal adenomas in a population-based setting. J. Clin. Endocrinol. Metab. 106, 3320–3330 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Di Dalmazi, G. et al. Prevalence and incidence of atrial fibrillation in a large cohort of adrenal incidentalomas: a long-term study. J. Clin. Endocrinol. Metab. 105, dgaa270 (2020).

    Article  PubMed  Google Scholar 

  134. Pelsma, I. C. M. et al. Comorbidities in mild autonomous cortisol secretion and the effect of treatment: systematic review and meta-analysis. Eur. J. Endocrinol. 189, S88–S101 (2023).

    Article  PubMed  Google Scholar 

  135. Singh, S., Atkinson, E. J., Achenbach, S. J., LeBrasseur, N. & Bancos, I. Frailty in patients with mild autonomous cortisol secretion is higher than in patients with nonfunctioning adrenal tumors. J. Clin. Endocrinol. Metab. 105, e3307–e3315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Delivanis, D. A. et al. Abnormal body composition in patients with adrenal adenomas. Eur. J. Endocrinol. 185, 653–662 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Petramala, L. et al. Cardiovascular and metabolic risk factors in patients with subclinical Cushing. Endocrine 70, 150–163 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Park, J., De Luca, A., Dutton, H., Malcolm, J. C. & Doyle, M. A. Cardiovascular outcomes in autonomous cortisol secretion and nonfunctioning adrenal adenoma: a systematic review. J. Endocr. Soc. 3, 996–1008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Favero, V. et al. The degree of cortisol secretion is associated with diabetes mellitus and hypertension in patients with nonfunctioning adrenal tumors. Cardiovasc. Diabetol. 22, 102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kjellbom, A., Lindgren, O., Danielsson, M., Olsen, H. & Londahl, M. Mortality not increased in patients with nonfunctional adrenal adenomas: a matched cohort study. J. Clin. Endocrinol. Metab. 108, e536–e541 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Li, D. et al. Risk of bone fractures after the diagnosis of adrenal adenomas: a population-based cohort study. Eur. J. Endocrinol. 184, 597–606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zavatta, G. et al. Mild autonomous cortisol secretion in adrenal incidentalomas and risk of fragility fractures: a large cross-sectional study. Eur. J. Endocrinol. 188, 343–352 (2023).

    Article  PubMed  Google Scholar 

  143. Hans, D. et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J. Clin. Densitom. 14, 302–312 (2011).

    Article  PubMed  Google Scholar 

  144. Eller-Vainicher, C. et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J. Bone Miner. Res. 27, 2223–2230 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, B. J. et al. The association of cortisol and adrenal androgen with trabecular bone score in patients with adrenal incidentaloma with and without autonomous cortisol secretion. Osteoporos. Int. 29, 2299–2307 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Yano, C. et al. Coexistence of bone and vascular disturbances in patients with endogenous glucocorticoid excess. Bone Rep. 17, 101610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, M. S. et al. Impaired cognitive function in patients with autonomous cortisol secretion in adrenal incidentalomas. J. Clin. Endocrinol. Metab. 108, 633–641 (2023).

    Article  PubMed  Google Scholar 

  148. Sojat, A. S. et al. Depression: another cortisol-related comorbidity in patients with adrenal incidentalomas and (possible) autonomous cortisol secretion. J. Endocrinol. Invest. 44, 1935–1945 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Morelli, V. et al. Mental health in patients with adrenal incidentalomas: is there a relation with different degrees of cortisol secretion? J. Clin. Endocrinol. Metab. 106, e130–e139 (2021).

    Article  PubMed  Google Scholar 

  150. Li, D. et al. Risk of dementia and psychiatric or sleep disorders after diagnosis of adrenal adenomas: a population-based cohort study. Eur. J. Endocrinol. 189, 429–437 (2023).

    Article  PubMed  Google Scholar 

  151. Bancos, I. et al. Therapy of endocrine disease: improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: a systematic review and meta-analysis. Eur. J. Endocrinol. 175, R283–R295 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Morelli, V. et al. Adrenalectomy improves blood pressure and metabolic control in patients with possible autonomous cortisol secretion: results of a RCT. Front. Endocrinol. 13, 898084 (2022).

    Article  Google Scholar 

  153. Di Dalmazi, G., Berr, C. M., Fassnacht, M., Beuschlein, F. & Reincke, M. Adrenal function after adrenalectomy for subclinical hypercortisolism and Cushing’s syndrome: a systematic review of the literature. J. Clin. Endocrinol. Metab. 99, 2637–2645 (2014).

    Article  PubMed  Google Scholar 

  154. DeLozier, O. M. et al. Selective glucocorticoid replacement following unilateral adrenalectomy for hypercortisolism and primary aldosteronism. J. Clin. Endocrinol. Metab. 107, e538–e547 (2022).

    Article  PubMed  Google Scholar 

  155. Hurtado, M. D., Cortes, T., Natt, N., Young, W. F. Jr & Bancos, I. Extensive clinical experience: hypothalamic–pituitary–adrenal axis recovery after adrenalectomy for corticotropin-independent cortisol excess. Clin. Endocrinol. 89, 721–733 (2018).

    Article  CAS  Google Scholar 

  156. Zhang, C. D. et al. Glucocorticoid withdrawal syndrome following surgical remission of endogenous hypercortisolism: a longitudinal observational study. Eur. J. Endocrinol. 188, 592–602 (2023).

    PubMed  Google Scholar 

  157. Herndon, J. et al. The effect of curative treatment on hyperglycemia in patients with Cushing syndrome. J. Endocr. Soc. 6, bvab169 (2022).

    Article  PubMed  Google Scholar 

  158. Chabre, O., Young, J., Caron, P. & Tabarin, A. Letter to the editor: ‘long-term outcome of primary bilateral macronodular adrenocortical hyperplasia after unilateral adrenalectomy’. J. Clin. Endocrinol. Metab. 105, e920–e921 (2020).

    Article  Google Scholar 

  159. Debillon, E. et al. Unilateral adrenalectomy as a first-line treatment of Cushing’s syndrome in patients with primary bilateral macronodular adrenal hyperplasia. J. Clin. Endocrinol. Metab. 100, 4417–4424 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Osswald, A. et al. Long-term outcome of primary bilateral macronodular adrenocortical hyperplasia after unilateral adrenalectomy. J. Clin. Endocrinol. Metab. 104, 2985–2993 (2019).

    Article  PubMed  Google Scholar 

  161. Ueland, G. A. et al. Adrenal venous sampling for assessment of autonomous cortisol secretion. J. Clin. Endocrinol. Metab. 103, 4553–4560 (2018).

    Article  PubMed  Google Scholar 

  162. Johnson, P. C. et al. Adrenal venous sampling for lateralization of cortisol hypersecretion in patients with bilateral adrenal masses. Clin. Endocrinol. 98, 177–189 (2023).

    Article  CAS  Google Scholar 

  163. Belokovskaya, R. et al. Mifepristone treatment for mild autonomous cortisol secretion due to adrenal adenomas: a pilot study. Endocr. Pract. 25, 846–853 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Oda, S. et al. An open-label phase I/IIa clinical trial of 11beta-HSD1 inhibitor for Cushing’s syndrome and autonomous cortisol secretion. J. Clin. Endocrinol. Metab. 106, e3865–e3880 (2021).

    Article  PubMed  Google Scholar 

  165. Debono, M. et al. Resetting the abnormal circadian cortisol rhythm in adrenal incidentaloma patients with mild autonomous cortisol secretion. J. Clin. Endocrinol. Metab. 102, 3461–3469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.P. receives support from the NIHR Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham (grant reference number NIHR203326) and the European Union’s Horizon 2022 Research and Innovation Programme (call HORIZON-HLTH-2022-TOOL-11; project number 101095407). The views expressed are those of the author (authors) and not necessarily those of the NIHR or the Department of Health and Social Care UK. I.B. is partly supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and National Institute of Aging (NIA) of the National Institutes of Health (NIH) USA under awards K23DK121888, R03DK132121 and R03AG71934 (to I.B). The views expressed are those of the authors and not necessarily those of the National Institutes of Health. The authors thank W. Young (Mayo Clinic, Rochester, MN, USA), W. Arlt (Imperial College London, UK), R. Sandooja (Mayo Clinic, Rochester, MN, USA), L. Rahimi (Mayo Clinic, Rochester, MN, USA), C. Ronchi (University of Birmingham, UK), O. Suntornlohanakul (University of Birmingham, UK) and G. Di Dalmazi (University of Bologna, Italy) for their critical review of the manuscript and useful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

A.P. and I.B. contributed equally to all aspects of the article.

Corresponding author

Correspondence to Irina Bancos.

Ethics declarations

Competing interests

A.P. received research funding and consultancy fees from Recordati, Diurnal and HRA Pharma. I.B. reports consulting, advisory board or data safety monitoring board participation fees (to institution) from Diurnal, Neurocrine, Spruce, Adrenas, Recordati, Corcept, Sparrow, and HRA Pharma, NovoNordisk, AstraZeneca, Xeris outside this work. I.B. received research funding (to institution) from Recordati and HRA Pharma for investigator-initiated awards.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Filippo Ceccato, Ljiljana Marina and Antoine Tabarin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prete, A., Bancos, I. Mild autonomous cortisol secretion: pathophysiology, comorbidities and management approaches. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00984-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00984-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing