Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The senescence-associated secretory phenotype and its physiological and pathological implications

Abstract

Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of cellular senescence.
Fig. 2: Regulatory network of the SASP.
Fig. 3: Heterogeneity of the SASP.
Fig. 4: Biological functions of the SASP.
Fig. 5: Clinically relevant SASP inhibition.

Similar content being viewed by others

References

  1. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  PubMed  Google Scholar 

  3. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Faust, H. J. et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J. Clin. Investig. 130, 5493–5507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Freund, A., Laberge, R.-M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kohli, J. et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat. Protoc. 16, 2471–2498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.-Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, eaaf4445 (2016).

    Article  Google Scholar 

  19. Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, B. et al. Pharmacological CDK4/6 inhibition reveals a p53‐dependent senescent state with restricted toxicity. EMBO J. 41, e108946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wiley, C. D. et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 33, 1124–1136.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takasugi, M. et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 8, 15729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borghesan, M. et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956–3971.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sagini, K. et al. Oncogenic H-Ras expression induces fatty acid profile changes in human fibroblasts and extracellular vesicles. Int. J. Mol. Sci. 19, 3515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weiner-Gorzel, K. et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 4, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orjalo, A. V., Bhaumik, D., Gengler, B. K., Scott, G. K. & Campisi, J. Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc. Natl Acad. Sci. USA 106, 17031–17036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamura, Y., Aihara, R., Iwata, H., Kuwayama, T. & Shirasuna, K. IL1B triggers inflammatory cytokine production in bovine oviduct epithelial cells and induces neutrophil accumulation via CCL2. Am. J. Reprod. Immunol. 85, e13365 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Ortiz-Montero, P., Londoño-Vallejo, A. & Vernot, J.-P. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal 15, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wiggins, K. A. et al. IL‐1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence‐associated secretory phenotype. Aging Cell 18, e12946 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. McCarthy, D. A., Clark, R. R., Bartling, T. R., Trebak, M. & Melendez, J. A. Redox control of the senescence regulator interleukin-1α and the secretory phenotype. J. Biol. Chem. 288, 32149–32159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandinova, A. et al. S100A13 mediates the copper-dependent stress-induced release of IL-1α from both human U937 and murine NIH 3T3 cells. J. Cell Sci. 116, 2687–2696 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Su, Y. et al. S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. Aging 11, 549–572 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhaumik, D. et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1, 402–411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, A.-P. et al. Pulmonary artery smooth muscle cell senescence promotes the proliferation of PASMCs by paracrine IL-6 in hypoxia-induced pulmonary hypertension. Front. Physiol. 12, 656139 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jacob, J. et al. Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8. Acta Histochem. 124, 151867 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, J. et al. Sirt1 overexpression improves senescence‐associated pulmonary fibrosis induced by vitamin D deficiency through downregulating IL‐11 transcription. Aging Cell 21, e13680 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cherry, C. et al. Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies. GeroScience 45, 2559–2587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamagishi, R. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci. Immunol. 7, eabl7209 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Rossi, M. et al. Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. eLife 12, e84238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chambers, E. S. et al. Recruitment of inflammatory monocytes by senescent fibroblasts inhibits antigen-specific tissue immunity during human aging. Nat. Aging 1, 101–113 (2021).

    Article  PubMed  Google Scholar 

  43. Jin, H. J. et al. Senescence-associated MCP-1 secretion is dependent on a decline in BMI1 in human mesenchymal stromal cells. Antioxid. Redox Signal. 24, 471–485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng, X., Wang, Q., Xie, Z. & Li, J. The elevated level of IL-1α in the bone marrow of aged mice leads to MSC senescence partly by down-regulating BMI-1. Exp. Gerontol. 148, 111313 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Kong, P. et al. Palbociclib enhances migration and invasion of cancer cells via senescence-associated secretory phenotype-related CCL5 in non-small-cell lung cancer. J. Oncol. 2022, 2260625 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shen, L. et al. CCL5 secreted by senescent theca‐interstitial cells inhibits preantral follicular development via granulosa cellular apoptosis. J. Cell. Physiol. 234, 22554–22564 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, N., Kim, K.-H. & Lau, L. F. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight 7, e158207 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takikawa, T. et al. Senescent human pancreatic stellate cells secrete CXCR2 agonist CXCLs to promote proliferation and migration of human pancreatic cancer AsPC-1 and MIAPaCa-2 cell lines. Int. J. Mol. Sci. 23, 9275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kawagoe, Y. et al. CXCL5‐CXCR2 signaling is a senescence‐associated secretory phenotype in preimplantation embryos. Aging Cell 19, e13240 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo, H. et al. Chemokine receptor CXCR2 is transactivated by p53 and induces p38‐mediated cellular senescence in response to DNA damage. Aging Cell 12, 1110–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Lesina, M. et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J. Clin. Investig. 126, 2919–2932 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zang, J., Ye, J., Zhang, C., Sha, M. & Gao, J. Senescent hepatocytes enhance natural killer cell activity via the CXCL-10/CXCR3 axis. Exp. Ther. Med. 18, 3845–3852 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hwang, H. J. et al. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 490, 100–110 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, J. et al. Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice. J. Clin. Investig. 132, e148073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsuda, S. et al. TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep. 42, 112129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo, Y. et al. Senescence‐associated tissue microenvironment promotes colon cancer formation through the secretory factor GDF15. Aging Cell 18, e13013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weng, P.-W. et al. Role of GDF15/MAPK14 axis in chondrocyte senescence as a novel senomorphic agent in osteoarthritis. Int. J. Mol. Sci. 23, 7043 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mattia, L., Gossiel, F., Walsh, J. S. & Eastell, R. Effect of age and gender on serum growth differentiation factor 15 and its relationship to bone density and bone turnover. Bone Rep. 18, 101676 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Igarashi, N. et al. Hepatocyte growth factor derived from senescent cells attenuates cell competition-induced apical elimination of oncogenic cells. Nat. Commun. 13, 4157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, H. et al. Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging. Biomed. Pharmacother. 150, 113034 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Wiley, C. D. et al. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 4, e130056 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wei, J. et al. Leukotriene D4 induces cellular senescence in osteoblasts. Int. Immunopharmacol. 58, 154–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Cheng, H., Huang, H., Guo, Z., Chang, Y. & Li, Z. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 11, 8836–8854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dackor, R. T. et al. Prostaglandin E2 protects murine lungs from bleomycin-induced pulmonary fibrosis and lung dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L645–L655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wallis, R., Mizen, H. & Bishop, C. L. The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mech. Ageing Dev. 189, 111263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeon, O. H. et al. Senescence cell-associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight 4, e125019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Terlecki-Zaniewicz, L. et al. Extracellular vesicles in human skin: cross-talk from senescent fibroblasts to keratinocytes by miRNAs. J. Investig. Dermatol. 139, 2425–2436.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Takahashi, A. et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, eaaa5612 (2015).

    Article  Google Scholar 

  71. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wiley, C. D. et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci. Rep. 8, 2410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Efeyan, A. et al. Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res. 67, 7350–7357 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Coppé, J.-P. et al. Tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem. 286, 36396–36403 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sturmlechner, I. et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science 374, eabb3420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Buj, R., Leon, K. E., Anguelov, M. A. & Aird, K. M. Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging 13, 3290–3312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Crescenzi, E. et al. NF-κB-dependent cytokine secretion controls Fas expression on chemotherapy-induced premature senescent tumor cells. Oncogene 30, 2707–2717 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Rovillain, E. et al. Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 30, 2356–2366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ohanna, M. et al. Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes Dev. 25, 1245–1261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kolesnichenko, M. et al. Transcriptional repression of NFKBIA triggers constitutive IKK‐ and proteasome‐independent p65/RelA activation in senescence. EMBO J. 40, e104296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alexander, E. et al. IκBζ is a regulator of the senescence-associated secretory phenotype in DNA damage- and oncogene-induced senescence. J. Cell Sci. 126, 3738–3745 (2013).

    CAS  PubMed  Google Scholar 

  83. Salotti, J. & Johnson, P. F. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp. Gerontol. 128, 110752 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, P. et al. Protein kinase D1 is essential for Ras-induced senescence and tumor suppression by regulating senescence-associated inflammation. Proc. Natl Acad. Sci. USA 111, 7683–7688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chong, M. et al. CD36 initiates the secretory phenotype during the establishment of cellular senescence. EMBO Rep. 19, e45274 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xu, W. et al. Membrane-bound CD40L promotes senescence and initiates senescence-associated secretory phenotype via NF-κB activation in lung adenocarcinoma. Cell. Physiol. Biochem. 48, 1793–1803 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freund, A., Patil, C. K. & Campisi, J. p38MAPK is a novel DNA damage response‐independent regulator of the senescence‐associated secretory phenotype. EMBO J. 30, 1536–1548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alspach, E. et al. p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov. 4, 716–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, B. et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat. Commun. 9, 1723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Laberge, R.-M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Vliet, T. et al. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol. Cell 81, 2041–2052.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takahashi, A. et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9, 1249 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhao, B. et al. Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nat. Commun. 11, 908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Omer, A. et al. G3BP1 controls the senescence-associated secretome and its impact on cancer progression. Nat. Commun. 11, 4979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hari, P. et al. The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci. Adv. 5, eaaw0254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cecco, M. D. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  Google Scholar 

  103. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gulen, M. F. et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoare, M. et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18, 979–992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guccini, I. et al. Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell 39, 68–82.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, P. et al. m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat. Cell Biol. 23, 355–365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guan, Y. et al. Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res. 48, gkaa858 (2020).

    Article  Google Scholar 

  109. Tasdemir, N. et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 6, 612–629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, B. et al. KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype. Nat. Aging 1, 454–472 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chibaya, L. et al. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nat. Cancer 4, 872–892 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, N. et al. Dual inhibition of H3K9me2 and H3K27me3 promotes tumor cell senescence without triggering the secretion of SASP. Int. J. Mol. Sci. 23, 3911 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Capell, B. C. et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 30, 321–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hayakawa, T. et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10, e0116480 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chen, H. et al. MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol. Cell 59, 719–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zirkel, A. et al. HMGB2 loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types. Mol. Cell 70, 730–744.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Sofiadis, K. et al. HMGB1 coordinates SASP‐related chromatin folding and RNA homeostasis on the path to senescence. Mol. Syst. Biol. 17, e9760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aird, K. M. et al. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 215, 325–334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nacarelli, T. et al. NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zuccolo, E. et al. The microRNA-34a-induced senescence-associated secretory phenotype (SASP) favors vascular smooth muscle cells calcification. Int. J. Mol. Sci. 21, 4454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu, H. et al. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int. J. Biol. Sci. 18, 661–674 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lang, A. et al. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging 8, 484–505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Montes, M. et al. The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat. Commun. 12, 2459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dou, X. et al. PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy. Nat. Metab. 5, 1887–1910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Maus, M. et al. Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype. Nat. Metab. 5, 2111–2130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fafián-Labora, J. et al. FASN activity is important for the initial stages of the induction of senescence. Cell Death Dis. 10, 318 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Flor, A. C., Wolfgeher, D., Wu, D. & Kron, S. J. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov. 3, 17075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, X. et al. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab. 35, 667–684.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gonçalves, S. et al. COX2 regulates senescence secretome composition and senescence surveillance through PGE2. Cell Rep. 34, 108860 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Yu, X., Harris, S. L. & Levine, A. J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Ito, Y., Hoare, M. & Narita, M. Spatial and temporal control of senescence. Trends Cell Biol. 27, 820–832 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Martínez-Zamudio, R. I. et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat. Cell Biol. 22, 842–855 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Giroud, J. et al. Exploring the communication of the SASP: dynamic, interactive, and adaptive effects on the microenvironment. Int. J. Mol. Sci. 24, 10788 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Plikus, M. V. et al. Fibroblasts: origins, definitions, and functions in health and disease. Cell 184, 3852–3872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Casella, G. et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 11476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Głuchowska, A. et al. Unbiased proteomic analysis of extracellular vesicles secreted by senescent human vascular smooth muscle cells reveals their ability to modulate immune cell functions. GeroScience 44, 2863–2884 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Oguma, Y. et al. Meta-analysis of senescent cell secretomes to identify common and specific features of the different senescent phenotypes: a tool for developing new senotherapeutics. Cell Commun. Signal. 21, 262 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu, P. et al. The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol. Neurodegener. 17, 5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Lee, K.-A., Flores, R. R., Jang, I. H., Saathoff, A. & Robbins, P. D. Immune senescence, immunosenescence and aging. Front. Aging 3, 900028 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhao, Y., Shao, Q. & Peng, G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell. Mol. Immunol. 17, 27–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, X. et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat. Commun. 9, 249 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ye, J. et al. Human regulatory T cells induce T-lymphocyte senescence. Blood 120, 2021–2031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hall, B. M. et al. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pinney, J. J. et al. Macrophage hypophagia as a mechanism of innate immune exhaustion in mAb-induced cell clearance. Blood 136, 2065–2079 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ogata, Y. et al. SASP‐induced macrophage dysfunction may contribute to accelerated senescent fibroblast accumulation in the dermis. Exp. Dermatol. 30, 84–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Liang, S., Domon, H., Hosur, K. B., Wang, M. & Hajishengallis, G. Age-related alterations in innate immune receptor expression and ability of macrophages to respond to pathogen challenge in vitro. Mech. Ageing Dev. 130, 538–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Plowden, J. et al. Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cell. Immunol. 229, 86–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Eleftheriadis, T. et al. Dapagliflozin prevents high-glucose-induced cellular senescence in renal tubular epithelial cells. Int. J. Mol. Sci. 23, 16107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, P. et al. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation. J. Biol. Chem. 294, 18807–18819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nehme, J. et al. High dietary protein and fat contents exacerbate hepatic senescence and SASP in mice. FEBS J. 290, 1340–1347 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2015).

    Article  Google Scholar 

  154. Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Teo, Y. V. et al. Notch signaling mediates secondary senescence. Cell Rep. 27, 997–1007.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  Google Scholar 

  159. Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Andrade, A. M. et al. Role of senescent cells in cutaneous wound healing. Biology 11, 1731 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53, 13–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Silva‐Álvarez, S. D. et al. Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell 19, e13052 (2020).

    Article  PubMed  Google Scholar 

  164. Kim, S. R. et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. JASN 32, 1987–2004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Feng, T. et al. CCN1-induced cellular senescence promotes heart regeneration. Circulation 139, 2495–2498 (2019).

    Article  PubMed  Google Scholar 

  166. Walters, H. E., Troyanovskiy, K. E., Graf, A. M. & Yun, M. H. Senescent cells enhance newt limb regeneration by promoting muscle dedifferentiation. Aging Cell 22, e13826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cuollo, L., Antonangeli, F., Santoni, A. & Soriani, A. The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology 9, 485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. MacLeod, A. S. & Mansbridge, J. N. The innate immune system in acute and chronic wounds. Adv. Wound Care 5, 65–78 (2016).

    Article  Google Scholar 

  169. Karkanitsa, M., Fathi, P., Ngo, T. & Sadtler, K. Mobilizing endogenous repair through understanding immune reaction with biomaterials. Front. Bioeng. Biotechnol. 9, 730938 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Qin, H. et al. TGF-β promotes Th17 cell development through inhibition of SOCS3. J. Immunol. 183, 97–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Deng, L., Huang, T. & Zhang, L. T cells in idiopathic pulmonary fibrosis: crucial but controversial. Cell Death Discov. 9, 62 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kang, T.-W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Kale, A., Sharma, A., Stolzing, A., Desprez, P.-Y. & Campisi, J. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 17, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bennett, M. R. & Clarke, M. C. H. Killing the old: cell senescence in atherosclerosis. Nat. Rev. Cardiol. 14, 8–9 (2017).

    Article  CAS  Google Scholar 

  176. Salminen, A., Kauppinen, A. & Kaarniranta, K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology 19, 325–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Suda, M. et al. Senescent cells: a therapeutic target in cardiovascular diseases. Cells 12, 1296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Schafer, M. J. et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5, e133668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yeh, S. et al. Higher senescence associated secretory phenotype and lower defense mediator in urinary extracellular vesicles of elders with and without Parkinson disease. Sci. Rep. 11, 15783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Weng, N. Aging of the immune system: how much can the adaptive immune system adapt? Immunity 24, 495–499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ashour, D. et al. An interferon gamma response signature links myocardial aging and immunosenescence. Cardiovasc. Res. 119, 2458–2468 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 123, 958–965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Loeser, R. F. The role of aging in the development of osteoarthritis. Trans. Am. Clin. Clim. Assoc. 128, 44–54 (2017).

    Google Scholar 

  188. Weyand, C. M. & Goronzy, J. J. Aging of the immune system. mechanisms and therapeutic targets. Ann. Am. Thorac. Soc. 13, S422–S428 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Han, J., Rindone, A. N. & Elisseeff, J. H. Immunoengineering biomaterials for musculoskeletal tissue repair across lifespan. Adv. Mater. https://doi.org/10.1002/adma.202311646 (2024).

    Article  PubMed  Google Scholar 

  190. Wick, G. et al. The immunology of fibrosis: innate and adaptive responses. Trends Immunol. 31, 110–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ramani, K. & Biswas, P. S. Interleukin-17: friend or foe in organ fibrosis. Cytokine 120, 282–288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chung, L. et al. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci. Transl. Med. 12, eaax3799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang, L., Chen, S. & Xu, K. IL-17 expression is correlated with hepatitis B-related liver diseases and fibrosis. Int. J. Mol. Med. 27, 385–392 (2010).

    Google Scholar 

  194. Selman, M. & Pardo, A. Fibroageing: an ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res. Rev. 70, 101393 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ruscetti, M. et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 184, 4838–4839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Goel, S. et al. CDK4/6 inhibition triggers anti-tumor immunity. Nature 548, 471–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kim, J. J., Lee, S. B., Park, J. K. & Yoo, Y. D. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-XL. Cell Death Differ. 17, 1420–1434 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Regis, G. et al. IL-6, but not IFN-γ, triggers apoptosis and inhibits in vivo growth of human malignant T cells on STAT3 silencing. Leukemia 23, 2102–2108 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Liu, D. & Hornsby, P. J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 67, 3117–3126 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Kim, Y. H. et al. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat. Commun. 8, 15208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Fletcher-Sananikone, E. et al. Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res. 81, 5935–5947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Eyman, D., Damodarasamy, M., Plymate, S. R. & Reed, M. J. CCL5 secreted by senescent aged fibroblasts induces proliferation of prostate epithelial cells and expression of genes that modulate angiogenesis. J. Cell. Physiol. 220, 376–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chen, C. et al. CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal cancer. Cell Death Dis. 10, 178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Coppé, J.-P., Kauser, K., Campisi, J. & Beauséjour, C. M. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006).

    Article  PubMed  Google Scholar 

  209. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Zhu, Y. et al. Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. EBioMedicine 77, 103912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Aversa, Z. et al. Biomarkers of cellular senescence in idiopathic pulmonary fibrosis. Respir. Res. 24, 101 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Sorokina, A. G. et al. Correlations between biomarkers of senescent cell accumulation at the systemic, tissue and cellular levels in elderly patients. Exp. Gerontol. 177, 112176 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. St Sauver, J. L. et al. Biomarkers of cellular senescence and risk of death in humans. Aging Cell 22, e14006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lin, Y. et al. Circulating monocytes expressing senescence‐associated features are enriched in COVID‐19 patients with severe disease. Aging Cell 22, e14011 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Laberge, R. et al. Glucocorticoids suppress selected components of the senescence‐associated secretory phenotype. Aging Cell 11, 569–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Moiseeva, O. et al. Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐κB activation. Aging Cell 12, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Abdelgawad, I. Y., Agostinucci, K., Sadaf, B., Grant, M. K. O. & Zordoky, B. N. Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in doxorubicin-induced senescent endothelial cells. Front. Aging 4, 1170434 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Frediani, E. et al. Olive phenols preserve lamin B1 expression reducing cGAS/STING/NFκB‐mediated SASP in ionizing radiation‐induced senescence. J. Cell. Mol. Med. 26, 2337–2350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Alimbetov, D. et al. Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology 17, 305–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Yao, Z. et al. Therapy-induced senescence drives bone loss. Cancer Res. 80, 1171–1182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2‐independent mechanism. Aging Cell 16, 564–574 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Roh, K. et al. Lysosomal control of senescence and inflammation through cholesterol partitioning. Nat. Metab. 5, 398–413 (2023).

    Article  CAS  PubMed  Google Scholar 

  223. Liu, S. et al. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri. Fish Shellfish Immunol. 80, 473–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Luo, X. et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 14, 82–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. di Martino, S. et al. HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene 37, 1369–1385 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Perrott, K. M., Wiley, C. D., Desprez, P.-Y. & Campisi, J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. GeroScience 39, 161–173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Georgilis, A. et al. PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell 34, 85–102.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Salas-Venegas, V. et al. Chronic consumption of a hypercaloric diet increases neuroinflammation and brain senescence, promoting cognitive decline in middle-aged female Wistar rats. Front. Aging Neurosci. 15, 1162747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Maeda, M., Hayashi, T., Mizuno, N., Hattori, Y. & Kuzuya, M. Intermittent high glucose implements stress-induced senescence in human vascular endothelial cells: role of superoxide production by NADPH oxidase. PLoS One 10, e0123169 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wang, W., Cai, G. & Chen, X. Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging. Exp. Gerontol. 107, 4–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Fontana, L. et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell 17, e12746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Erlangga, Z. et al. The effect of prolonged intermittent fasting on autophagy, inflammasome and senescence genes expressions: an exploratory study in healthy young males. Hum. Nutr. Metab. 32, 200189 (2023).

    Article  CAS  Google Scholar 

  234. Englund, D. A. et al. Exercise reduces circulating biomarkers of cellular senescence in humans. Aging Cell 20, e13415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Demaria, M. et al. Long-term intensive endurance exercise training is associated to reduced markers of cellular senescence in the colon mucosa of older adults. NPJ Aging 9, 3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Meng, J. et al. Exercise protects vascular function by countering senescent cells in older adults. Front. Physiol. 14, 1138162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang, B., Kohli, J. & Demaria, M. Senescent cells in cancer therapy: friends or foes? Trends Cancer 6, 838–857 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ferrucci, L. et al. Serum IL‐6 level and the development of disability in older persons. J. Am. Geriatr. Soc. 47, 639–646 (1999).

    Article  CAS  PubMed  Google Scholar 

  242. Khavinson, V., Linkova, N., Dyatlova, A., Kantemirova, R. & Kozlov, K. Senescence-associated secretory phenotype of cardiovascular system cells and inflammaging: perspectives of peptide regulation. Cells 12, 106 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Demaria laboratory for continuous and fruitful discussions. M.D. is funded by the Dutch Research Council (NWO) Talent Program, the Dutch Organization for Health Research and Development (ZonMw), the Dutch Cancer Foundation (KWF), the American Federation for Aging Research (AFAR) and the Hevolution Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to the discussion of content and wrote the article. J.H.E. and M.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Marco Demaria.

Ethics declarations

Competing interests

M.D. is co-inventor of patents held by the Buck Institute for Research on Aging and by Cleara Biotech. M.D. is the scientific cofounder of Cleara Biotech and consultant for Oisin Biotechnologies. The M.D. laboratory currently receives research funding from Ono Pharmaceuticals. J.H.E. holds equity in Unity Biotechnology and Aegeria Soft Tissue and is an adviser for Tessera Therapeutics, HapInScience, and Font Bio.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Akiko Takahashi, Rugang Zhang with Xue Hao, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SASP Atlas: http://www.saspatlas.com

Supplementary information

Glossary

α-Klotho

An enzyme that can suppress oxidative stresses; its plasma level is used to evaluate health span.

Cyclic GMP–AMP synthase–stimulator of interferon genes

(cGAS–STING). A complex that senses the presence of DNA in the cytosol and activates an inflammatory response.

Foreign body response

An immune and stromal cell response to a foreign material, such as a biomaterial implant, that results in encapsulating fibrosis and abnormal vasculature that resembles fibrosis in other disease processes.

Inflammageing

Chronic low-grade inflammation that can be discovered during ageing and can contribute to age-related diseases.

Inflammatory cells

Immune cells that exhibit a pro-inflammatory phenotype and contribute to acute and chronic inflammation; the subset includes innate immunity cells, such as neutrophils and macrophages, and select lymphocyte populations, such as cytotoxic CD8+ T cells, varying depending on context.

JAK–STAT pathway

A signalling pathway that regulates cell proliferation and differentiation as well as inflammatory responses.

Leukotrienes

Fatty acid eicosanoid inflammatory factors with detrimental roles in allergy and asthma.

Minority mitochondrial outer membrane permeabilization

(miMOMP). A phenomenon occurring in a subset of mitochondria of senescent cells that contributes to the release of mitochondrial DNA to the cytosol.

mTOR

A kinase that senses nutrient stimuli and coordinates cell growth and metabolism.

NF-κB

A transcription factor that regulates inflammation factors in activated B cells.

p38 MAPK

Stress-activated protein kinases of the MAPK family that mediate cellular responses to inflammatory signals. p38 and other MAPKs are central regulators of cell proliferation, differentiation and stress responses.

Pro-resolving phenotype

Immune cell subtypes that resolve inflammation and promote tissue repair; generally include M2 macrophages, T helper 2 cells and regulatory T cells, varying depending on context.

Prostaglandins

Fatty acid eicosanoid factors that can be both pro-inflammatory and anti-inflammatory.

Senolytic therapy

A therapy aimed to selectively kill senescent cells in physiological and pathological contexts.

Senomorphic therapy

A therapy aimed to selectively target certain phenotypes of senescence (for example, the senescence-associated secretory phenotype) without killing the cells.

Theca and interstitial cells

Cells that are part of the ovarian follicles and are important for hormone secretion in the ovary.

Topoisomerase 1 cleavage complexes

(TOP1cc). Topoisomerase 1–DNA catalytic intermediates.

Type 3 immune response

An immune response centred around T helper 17 cells and the production of IL-17 and IL-22; characterized by the recruitment of inflammatory neutrophils and macrophages.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Han, J., Elisseeff, J.H. et al. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00727-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00727-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing