
The recent Review by Roelfsema and 
Holtmaat (Control of synaptic plasticity in 
deep cortical networks. Nat. Rev. Neurosci. 
19, 166–180 (2018))1 provides a much-​needed 
guide to learning in deep cortical networks. 
The importance of credit assignment for 
deep cortical networks has come into focus 
recently with the success of deep learning in  
artificial intelligence2. The learning algorithm 
that is typically used for credit assignment 
in deep artificial neural networks, the 
backpropagation-of-error algorithm3, is 
biologically infeasible4. Yet, its successful 
application to complicated tasks suggests that 
credit assignment is important for learning 
in non-​trivial  circumstances, whether in 
artificial or biological neural networks.

As Roelfsema and Holtmaat note, the 
focus in neuroscience to date has been either  
on Hebbian plasticity mechanisms5, or three- 
factor Hebbian plasticity rules that incorporate  
a global reward prediction error6. They argue 
that a more powerful approach is to use 
feedback signals that can determine credit on 
a neuron-​by-neuron basis. We agree with the 
authors that this is a likely role for feedback 
connections in learning. A question that is 
left open, though, is whether feedback signals 
act purely as a gating mechanism, and if so, 
is that enough to solve the credit assignment 
problem?

According to one framework that Roelfsema 
and Holtmaat explore in their paper, changes 
(Δ) in the strength of a synapse between 
presynaptic neuron i and postsynaptic neuron  
j (wij) are guided by a four-​term equation 
(which we simplify here slightly):

⋅ ⋅ ⋅w f f RPE FBΔ = (1)ij i j j

where fi and fj are functions of presynaptic and 
postsynaptic activity, respectively, RPE is a 
global reward prediction error communicated 
via neuromodulators and FBj is the feedback 
received by the postsynaptic neuron. In the 
Review, Roelfsema and Holtmaat suggest 
that the feedback signal, FBj,  could be a 
gating signal ranging from 0 to 1, such that 

postulate that neocortical feedback may be 
set up to communicate signed credit signals 
that cause some neurons to potentiate and 
others to depress. One possibility is to use 
the temporal order of feedback onto specific 
dendrites as a signal of sign10,11. Another 
possibility is to use inhibitory interneuron 
circuits to calculate a difference12. Ultimately, 
we believe that neuroscientists should not 
assume that feedback acts only as a gating 
mechanism. Importantly, we are not arguing 
that feedback never acts as a gating signal. 
Indeed, recent evidence from the Holtmaat 
group shows feedback-​based gating of 
plasticity13, although this does not preclude 
signed credit assignment. Prejudging that 
possibility could lead our investigations on 
this important topic astray.

There is a reply to this letter by Roelfsema, 
P. R. & Holtmaat, A. Nat. Rev. Neurosci. https://
doi.org/10.1038/s41583-018-0048-6 (2018).
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it can turn synaptic plasticity in a neuron on 
or off but cannot alter the sign of synaptic 
plasticity (for example, whether synapses 
potentiate or depress). Instead, the term RPE 
determines the sign of plasticity. However, 
in our opinion it may be important for FBj 
to determine whether neurons potentiate or 
depress their synapses.

Roelfsema and Holtmaat state that the 
weight changes from equation 1 are equivalent 
to those prescribed by backpropagation-​
of-error, but the equivalence is on the 
weight changes on average, and this point 
is crucial. Notably, even random search 
algorithms, such as REINFORCE7, also agree 
with backpropagation-​of-error on average. 
This means that for an individual stimulus, 
algorithms like REINFORCE or those 
prescribed by equation 1 do not follow the 
true gradient. Instead, these algorithms only 
follow the true gradient when their synaptic 
weight updates are averaged across many 
repetitions of the same stimuli. Put another 
way, equation 1 uses an estimator of the true 
gradient followed by backpropagation-of-
error. There are two key questions pertinent 
to this approach. First, what is the variance 
of this estimator? Second, how long does it 
take to reach good performance for a given 
task8? We speculate that if a task requires 
learning a high-​dimensional, complex 
function, the variance of the estimator will  
be high and it will take an intractably long time  
to reach reasonable levels of performance. For 
example, to the best of our knowledge, there 
are no examples in the literature of successfully 
training a good ImageNet classifier using 
REINFORCE-​like algorithms. Algorithms 
like AGREL9, which uses feedback-​based 
gating, can have better variance properties 
than REINFORCE, but whether the variance 
in the estimator is small enough to learn high-​
dimensional, complex tasks in a reasonable 
amount of time remains to be determined.

Given these considerations, we propose 
that neuroscientists should consider how 
feedback in the neocortex may do more than 
act as a gating mechanism. In other words, we 
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