Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral tools for neuroscience

Abstract

Recombinant viruses are the workhorse of modern neuroscience. Whether one would like to understand a neuron’s morphology, natural activity patterns, molecular composition, connectivity or behavioural and physiologic function, most studies begin with the injection of an engineered virus, often an adeno-associated virus or herpes simplex virus, among many other types. Recombinant viruses currently enable some combination of cell type-specific, circuit-selective, activity-dependent and spatiotemporally resolved transgene expression. Viruses are now used routinely to study the molecular and cellular functions of a gene within an identified cell type in the brain, and enable the application of optogenetics, chemogenetics, calcium imaging and related approaches. These advantageous properties of engineered viruses thus enable characterization of neuronal function at unprecedented resolution. However, each virus has specific advantages and disadvantages, which makes viral tool selection paramount for properly designing and executing experiments within the central nervous system. In the current Review, we discuss the key principles and uses of engineered viruses and highlight innovations that are needed moving forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key principles for viral-mediated gene transfer in neuroscience.
Fig. 2: Viral strategies for accessing neurons by virtue of their connectivity.
Fig. 3: Assessing a gene’s function within the CNS.

Similar content being viewed by others

References

  1. Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 35, 235–241 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lefkowitz, E. J. et al. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46, D708–D717 (2018).

    CAS  PubMed  Google Scholar 

  3. Flint, S. J., Racaniello, V. R., Rall, G. G., Skalka, A. M. & Enquist, L. W. Principles of Virology 4th edn Vol. 4 (ASM, 2015).

  4. Seo, J. W. et al. Positron emission tomography imaging of novel AAV capsids maps rapid brain accumulation. Nat. Commun. 11, 2102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Knowland, D. et al. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell 170, 284–297.e18 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M. & Callaway, E. M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl Acad. Sci. USA 107, 21848–21853 (2010). This paper describes the first use of monosynaptic retrograde tracing from a genetically defined post-synaptic population, using a rabies-based system.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008). This paper applies the FLEX switch to AAVs, in tandem with Cre-driver lines, to achieve highly cell-selective yet robust gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014). This paper, building on previous advances in transgenic reporter lines, describes a compact viral method for intersectional genetic cell type targeting.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kay, M. A., Glorioso, J. C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40 (2001).

    CAS  PubMed  Google Scholar 

  11. Osakada, F. & Callaway, E. M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583–1601 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Jacobs, A., Breakefield, X. O. & Fraefel, C. HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: part II. Vector systems and applications. Neoplasia 1, 402–416 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ekstrand, M. I., Enquist, L. W. & Pomeranz, L. E. The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol. Med. 14, 134–140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    CAS  PubMed  Google Scholar 

  15. Truong, D. J. et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94, 891–907.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016). This paper uses AAV capsid variation to achieve broad gene expression patterns after a peripheral viral injection.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Challis, C. et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat. Neurosci. 23, 327–336 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bedbrook, C. N., Deverman, B. E. & Gradinaru, V. Viral strategies for targeting the central and peripheral nervous systems. Annu. Rev. Neurosci. 41, 323–348 (2018).

    CAS  PubMed  Google Scholar 

  21. Szablowski, J. O., Lee-Gosselin, A., Lue, B., Malounda, D. & Shapiro, M. G. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat. Biomed. Eng. 2, 475–484 (2018).

    CAS  PubMed  Google Scholar 

  22. Pomeranz, L. E. et al. Gene expression profiling with Cre-conditional pseudorabies virus reveals a subset of midbrain neurons that participate in reward circuitry. J. Neurosci. 37, 4128–4144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pomeranz, L. E., Reynolds, A. E. & Hengartner, C. J. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. 69, 462–500 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Junyent, F. & Kremer, E. J. CAV-2—why a canine virus is a neurobiologist’s best friend. Curr. Opin. Pharmacol. 24, 86–93 (2015).

    CAS  PubMed  Google Scholar 

  25. Ekstrand, M. I. et al. Molecular profiling of neurons based on connectivity. Cell 157, 1230–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nectow, A. R., Ekstrand, M. I. & Friedman, J. M. Molecular characterization of neuronal cell types based on patterns of projection with Retro-TRAP. Nat. Protoc. 10, 1319–1327 (2015).

    CAS  PubMed  Google Scholar 

  27. Smith, B. N. et al. Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc. Natl Acad. Sci. USA 97, 9264–9269 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, S. J., Vaughan, A., Sturgill, J. F. & Kepecs, A. A viral receptor complementation strategy to overcome CAV-2 tropism for efficient retrograde targeting of neurons. Neuron 98, 905–917.e5 (2018).

    CAS  PubMed  Google Scholar 

  29. Murlidharan, G., Samulski, R. J. & Asokan, A. Biology of adeno-associated viral vectors in the central nervous system. Front. Mol. Neurosci. 7, 76 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Watakabe, A. et al. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci. Res. 93, 144–157 (2015).

    PubMed  Google Scholar 

  31. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    CAS  PubMed  Google Scholar 

  32. Juttner, J. et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat. Neurosci. 22, 1345–1356 (2019).

    CAS  PubMed  Google Scholar 

  33. Callaway, E. M. & Luo, L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J. Neurosci. 35, 8979–8985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakurai, K. et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron 92, 739–753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McCarty, D. M., Monahan, P. E. & Samulski, R. J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254 (2001).

    CAS  PubMed  Google Scholar 

  36. Poulin, J. F. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21, 1260–1271 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fenno, L. E. et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron 107, 836–853.e11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dias, C. et al. β-Catenin mediates stress resilience through Dicer1/microRNA regulation. Nature 516, 51–55 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. von Jonquieres, G. et al. Recombinant human myelin-associated glycoprotein promoter drives selective AAV-mediated transgene expression in oligodendrocytes. Front. Mol. Neurosci. 9, 13 (2016).

    Google Scholar 

  41. Nagai, J. et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177, 1280–1292.e20 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Korbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Marchio, S., Sidman, R. L., Arap, W. & Pasqualini, R. Brain endothelial cell-targeted gene therapy of neurovascular disorders. EMBO Mol. Med. 8, 592–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    CAS  PubMed  Google Scholar 

  45. Nectow, A. R. et al. Rapid molecular profiling of defined cell types using viral TRAP. Cell Rep. 19, 655–667 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Murugan, M. et al. Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171, 1663–1677.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye, L. et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008). This paper, an update on the original landmark review, builds on the cutting-edge genetic strategies used to study neural circuits today.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits: a decade of progress. Neuron 98, 256–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. He, T. et al. The influence of murine genetic background in adeno-associated virus transduction of the mouse brain. Hum. Gene Ther. Clin. Dev. 30, 169–181 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McCarthy, K. M., Tank, D. W. & Enquist, L. W. Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS Pathog. 5, e1000640 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Xiong, W. et al. AAV cis-regulatory sequences are correlated with ocular toxicity. Proc. Natl Acad. Sci. USA 116, 5785–5794 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Beier, K. T. et al. Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc. Natl Acad. Sci. USA 108, 15414–15419 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lo, L. & Anderson, D. J. A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 72, 938–950 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kelly, R. M. & Strick, P. L. Rabies as a transneuronal tracer of circuits in the central nervous system. J. Neurosci. Methods 103, 63–71 (2000).

    CAS  PubMed  Google Scholar 

  56. Chatterjee, S. et al. Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat. Neurosci. 21, 638–646 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Reardon, T. R. et al. Rabies virus CVS-N2c(DeltaG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89, 711–724 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Oyibo, H. K., Znamenskiy, P., Oviedo, H. V., Enquist, L. W. & Zador, A. M. Long-term Cre-mediated retrograde tagging of neurons using a novel recombinant pseudorabies virus. Front. Neuroanat. 8, 86 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016). This paper uses viral engineering to identify an effective retrograde-tracing AAV.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017). This paper identifies different pre-existing AAV serotypes that are capable of anterograde tracing.

    CAS  PubMed  Google Scholar 

  61. Zingg, B., Peng, B., Huang, J., Tao, H. W. & Zhang, L. I. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J. Neurosci. 40, 3250–3267 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pena, C. J. et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science 356, 1185–1188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hultman, R. et al. Brain-wide electrical spatiotemporal dynamics encode depression vulnerability. Cell 173, 166–180.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaspar, B. K. et al. Adeno-associated virus effectively mediates conditional gene modification in the brain. Proc. Natl Acad. Sci. USA 99, 2320–2325 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayat, H. et al. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv. 6, eaaz4232 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    CAS  PubMed  Google Scholar 

  67. Nathanson, J. L. et al. Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Front. Neural Circuits 3, 19 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Mehta, P. et al. Functional access to neuron subclasses in rodent and primate forebrain. Cell Rep. 26, 2818–2832.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl Acad. Sci. USA 101, 18206–18211 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stamatakis, A. M. et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80, 1039–1053 (2013).

    CAS  PubMed  Google Scholar 

  72. Allen, W. E. et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, D., Hyun, J. H., Jung, K., Hannan, P. & Kwon, H. B. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat. Biotechnol. 35, 858–863 (2017).

    CAS  PubMed  Google Scholar 

  74. Wang, W. et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat. Biotechnol. 35, 864–871 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, E. J. et al. Extraction of distinct neuronal cell types from within a genetically continuous population. Neuron 107, 274–282.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007). This paper describes restricted retrograde tracing with a modified RbV variant.

    CAS  PubMed  Google Scholar 

  78. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schwarz, L. A. et al. Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524, 88–92 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Banfield, B. W., Kaufman, J. D., Randall, J. A. & Pickard, G. E. Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications. J. Virol. 77, 10106–10112 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Falkner, A. L. et al. Hierarchical representations of aggression in a hypothalamic–midbrain circuit. Neuron 106, 637–648.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schneeberger, M. et al. Regulation of energy expenditure by brainstem GABA neurons. Cell 178, 672–685.e12 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Beier, K. T. et al. Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input–output relations. Cell Rep. 26, 159–167.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786.e19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kebschull, J. M. & Zador, A. M. Cellular barcoding: lineage tracing, screening and beyond. Nat. Methods 15, 871–879 (2018).

    CAS  PubMed  Google Scholar 

  86. Kebschull, J. M. et al. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron 91, 975–987 (2016). This paper uses a modified Sindbis virus to profile projection neurons using sequencing, in place of classical imaging approaches.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lerner, T. N., Ye, L. & Deisseroth, K. Communication in neural circuits: tools, opportunities, and challenges. Cell 164, 1136–1150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, D. W. et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179, 713–728.e17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yim, Y. Y., Teague, C. D. & Nestler, E. J. In vivo locus-specific neuroepigenome editing. Nat. Rev. Neurosci. 21, 471–484 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lorsch, Z. S. et al. Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex. Nat. Neurosci. 22, 1413–1423 (2019). This paper is a recent example of the use of viral vectors to modify a single gene locus, through the expression of CRISPR tools to effect locus-specific epigenome editing, in a targeted brain region and to study the downstream molecular, cellular and behavioural consequences.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Labonte, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 23, 1102–1111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bagot, R. C. et al. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility. Neuron 90, 969–983 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Palfi, S. et al. Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum. Gene Ther. Clin. Dev. 29, 148–155 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hitti, F. L., Yang, A. I., Gonzalez-Alegre, P. & Baltuch, G. H. Human gene therapy approaches for the treatment of Parkinson’s disease: an overview of current and completed clinical trials. Parkinsonism Relat. Disord. 66, 16–24 (2019).

    PubMed  Google Scholar 

  95. Kaplitt, M. G. Gene-targeting approaches for movement disorders: recent advances. Curr. Opin. Neurol. 32, 566–570 (2019).

    PubMed  Google Scholar 

  96. Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 (2019). This paper uses machine learning to guide AAV capsid design.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bru, T., Salinas, S. & Kremer, E. J. An update on canine adenovirus type 2 and its vectors. Viruses 2, 2134–2153 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lundstrom, K. Viral vectors in gene therapy. Diseases 6, 42 (2018).

    PubMed Central  Google Scholar 

  99. Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. & McGeoch, D. J. The genome sequence of herpes simplex virus type 2. J. Virol. 72, 2010–2021 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. McGeoch, D. J. et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69, 1531–1574 (1988).

    CAS  PubMed  Google Scholar 

  101. Morissette, G. & Flamand, L. Herpesviruses and chromosomal integration. J. Virol. 84, 12100–12109 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Neve, R. L., Neve, K. A., Nestler, E. J. & Carlezon, W. A. Jr. Use of herpes virus amplicon vectors to study brain disorders. Biotechniques 39, 381–391 (2005).

    CAS  PubMed  Google Scholar 

  103. Smith, G. A. & Enquist, L. W. A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc. Natl Acad. Sci. USA 97, 4873–4878 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Klupp, B. G., Hengartner, C. J., Mettenleiter, T. C. & Enquist, L. W. Complete, annotated sequence of the pseudorabies virus genome. J. Virol. 78, 424–440 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Srivastava, A., Lusby, E. W. & Berns, K. I. Nucleotide sequence and organization of the adeno-associated virus 2 genome. J. Virol. 45, 555–564 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Deyle, D. R. & Russell, D. W. Adeno-associated virus vector integration. Curr. Opin. Mol. Ther. 11, 442–447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. McCarty, D. M., Young, S. M. Jr. & Samulski, R. J. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38, 819–845 (2004).

    CAS  PubMed  Google Scholar 

  108. Muesing, M. A. et al. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 313, 450–458 (1985).

    CAS  PubMed  Google Scholar 

  109. Parr-Brownlie, L. C. et al. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front. Mol. Neurosci. 8, 14 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Blomer, U. et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hioki, H. et al. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther. 14, 872–882 (2007).

    CAS  PubMed  Google Scholar 

  112. Conzelmann, K. K., Cox, J. H., Schneider, L. G. & Thiel, H. J. Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175, 485–499 (1990).

    CAS  PubMed  Google Scholar 

  113. Walker, P. J. et al. Evolution of genome size and complexity in the Rhabdoviridae. PLoS Pathog. 11, e1004664 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Dietzgen, R. G., Kondo, H., Goodin, M. M., Kurath, G. & Vasilakis, N. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res. 227, 158–170 (2017).

    CAS  PubMed  Google Scholar 

  115. van den Pol, A. N. et al. Viral strategies for studying the brain, including a replication-restricted self-amplifying δG vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J. Comp. Neurol. 516, 456–481 (2009).

    PubMed  PubMed Central  Google Scholar 

  116. Kebschull, J. M., Garcia da Silva, P. & Zador, A. M. A new defective helper RNA to produce recombinant Sindbis virus that infects neurons but does not propagate. Front. Neuroanat. 10, 56 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Hahn, C. S., Hahn, Y. S., Braciale, T. J. & Rice, C. M. Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc. Natl Acad. Sci. USA 89, 2679–2683 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ehrengruber, M. U. Alphaviral gene transfer in neurobiology. Brain Res. Bull. 59, 13–22 (2002).

    CAS  PubMed  Google Scholar 

  119. Lustig, S. et al. Molecular basis of Sindbis virus neurovirulence in mice. J. Virol. 62, 2329–2336 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bredenbeek, P. J., Frolov, I., Rice, C. M. & Schlesinger, S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J. Virol. 67, 6439–6446 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Papez, J. W. A proposed mechanism of emotion. 1937. J. Neuropsychiatry Clin. Neurosci. 7, 103–112 (1995). This paper is the earliest to use a viral approach for neural circuit mapping.

    CAS  PubMed  Google Scholar 

  122. Card, J. P. et al. Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis. J. Neurosci. 13, 2515–2539 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Le Gal La Salle, G. et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259, 988–990 (1993).

    PubMed  Google Scholar 

  124. Akli, S. et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nat. Genet. 3, 224–228 (1993).

    CAS  PubMed  Google Scholar 

  125. Davidson, B. L., Allen, E. D., Kozarsky, K. F., Wilson, J. M. & Roessler, B. J. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat. Genet. 3, 219–223 (1993).

    CAS  PubMed  Google Scholar 

  126. Kaplitt, M. G. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat. Genet. 8, 148–154 (1994).

    CAS  PubMed  Google Scholar 

  127. Neve, R. L., Howe, J. R., Hong, S. & Kalb, R. G. Introduction of the glutamate receptor subunit 1 into motor neurons in vitro and in vivo using a recombinant herpes simplex virus. Neuroscience 79, 435–447 (1997).

    CAS  PubMed  Google Scholar 

  128. Carlezon, W. A. Jr et al. Sensitization to morphine induced by viral-mediated gene transfer. Science 277, 812–814 (1997).

    CAS  PubMed  Google Scholar 

  129. Song, S. et al. An HSV-1 vector containing the rat tyrosine hydroxylase promoter enhances both long-term and cell type-specific expression in the midbrain. J. Neurochem. 68, 1792–1803 (1997).

    CAS  PubMed  Google Scholar 

  130. Carlezon, W. A. Jr. et al. Regulation of cocaine reward by CREB. Science 282, 2272–2275 (1998).

    CAS  PubMed  Google Scholar 

  131. Kelz, M. B. et al. Expression of the transcription factor δFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276 (1999).

    CAS  PubMed  Google Scholar 

  132. Bolanos, C. A. et al. Phospholipase Cγ in distinct regions of the ventral tegmental area differentially modulates mood-related behaviors. J. Neurosci. 23, 7569–7576 (2003).

    PubMed  PubMed Central  Google Scholar 

  133. Haberman, R. P., McCown, T. J. & Samulski, R. J. Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Ther. 5, 1604–1611 (1998).

    CAS  PubMed  Google Scholar 

  134. Scammell, T. E. et al. Focal deletion of the adenosine A1 receptor in adult mice using an adeno-associated viral vector. J. Neurosci. 23, 5762–5770 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ahmed, B. Y. et al. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci. 5, 4 (2004).

    PubMed  PubMed Central  Google Scholar 

  136. Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Enquist (Princeton) for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding authors

Correspondence to Alexander R. Nectow or Eric J. Nestler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks Eric Kremer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Marker genes

Genes whose cell type-specific mRNA and/or protein expression can be used to identify a cell type.

Reporter genes

Genes whose expressed mRNA or protein is readily detectable and can be used to characterize another gene or gene product.

Baltimore classification

A classification scheme (conceived by virologist David Baltimore) that characterizes a virus based on its nucleic acid composition, in particular how the virus ultimately synthesizes mRNA.

Capsid

A proteinaceous shell that surrounds the viral genome.

Vectors

Vehicles used to transfer nucleic acid information into the cell.

Recombinase

An enzyme (for example, Cre or Flp) capable of recombining defined nucleic acid sequences, often used to activate or inactivate expression of a gene engineered to include sequences specific for that recombinase.

Pseudotyping

The process of heterologously expressing proteins on a virus’ capsid/envelope (often with the intention of gaining advantageous viral spread/entry properties).

Constructs

Designer DNA sequences.

Cre-driver line

A mouse or rat strain (for example, knock-in and BAC transgenic) engineered to drive expression of Cre recombinase in a cell type-specific pattern (often using a marker gene’s promoter or enhancer elements).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nectow, A.R., Nestler, E.J. Viral tools for neuroscience. Nat Rev Neurosci 21, 669–681 (2020). https://doi.org/10.1038/s41583-020-00382-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-00382-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing