Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic influences on the neural encoding of social valence

Abstract

Social signals can serve as potent emotional triggers with powerful impacts on processes from cognition to valence processing. How are social signals dynamically and flexibly associated with positive or negative valence? How do our past social experiences and present social standing shape our motivation to seek or avoid social contact? We discuss a model in which social attributes, social history, social memory, social rank and social isolation can flexibly influence valence assignment to social stimuli, termed here as ‘social valence’. We emphasize how the brain encodes each of these four factors and highlight the neural circuits and mechanisms that play a part in the perception of social attributes, social memory and social rank, as well as how these factors affect valence systems associated with social stimuli. We highlight the impact of social isolation, dissecting the neural and behavioural mechanisms that mediate the effects of acute versus prolonged periods of social isolation. Importantly, we discuss conceptual models that may account for the potential shift in valence of social stimuli from positive to negative as the period of isolation extends in time. Collectively, this Review identifies factors that control the formation and attribution of social valence — integrating diverse areas of research and emphasizing their unique contributions to the categorization of social stimuli as positive or negative.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Social alignment: a coarse parameterization of interactions between the self and other with positive or negative valence.
Fig. 2: Factors influencing social valence assignment and circuits underlying those factors.
Fig. 3: A model of the temporal effects of social isolation.

Similar content being viewed by others

References

  1. Trezza, V., Campolongo, P. & Vanderschuren, L. J. M. J. Evaluating the rewarding nature of social interactions in laboratory animals. Dev. Cogn. Neurosci. 1, 444–458 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mason, P. & Shan, H. A valence-free definition of sociality as any violation of inter-individual independence. Proc. R. Soc. B Biol. Sci. 284, 20170948 (2017).

    Article  Google Scholar 

  3. Matthews, G. A. & Tye, K. M. Neural mechanisms of social homeostasis. Ann. N. Y. Acad. Sci. 1457, 5–25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee, C. R., Chen, A. & Tye, K. M. The neural circuitry of social homeostasis: consequences of acute versus chronic social isolation. Cell 184, 1500–1516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thor, D. H. & Holloway, W. R. Social memory of the male laboratory rat. J. Comp. Physiol. Psychol. 96, 1000–1006 (1982).

    Article  Google Scholar 

  6. Kogan, J. H., Franklandand, P. W. & Silva, A. J. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Meira, T. et al. A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nat. Commun. 9, 4163 (2018). This study shows that the dorsal CA2 is necessary for encoding, consolidation and recall of social memory, and that the dorsal CA2 projects to ventral CA1 neurons that are necessary for social memory as well.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ferguson, J. N., Aldag, J. M., Insel, T. R. & Young, L. J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 20, 8278–8285 (2001).

    Article  Google Scholar 

  9. Dwortz, M. F., Curley, J. P., Tye, K. M. & Padilla-Coreano, N. Neural systems that facilitate the representation of social rank. Philos. Trans. R. Soc. B Biol. Sci. 377, 20200444 (2022). This recent review covers the many methods to measure social rank across species and the neural circuits and dynamics that represent social rank.

    Article  Google Scholar 

  10. Strauss, E. D., Curley, J. P., Shizuka, D. & Hobson, E. A. The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies. Philos. Trans. R. Soc. B Biol. Sci. 377, 20200432 (2022).

    Article  Google Scholar 

  11. Weiss, R. S. Loneliness: The Experience of Emotional and Social Isolation Vol. xxii (MIT Press, 1973).

  12. Cacioppo, J. T., Hughes, M. E., Waite, L. J., Hawkley, L. C. & Thisted, R. A. Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses. Psychol. Aging 21, 140 (2006).

    Article  PubMed  Google Scholar 

  13. Hawkley, L. C., Masi, C. M., Berry, J. D. & Cacioppo, J. T. Loneliness is a unique predictor of age-related differences in systolic blood pressure. Psychol. Aging 21, 152–164 (2006).

    Article  PubMed  Google Scholar 

  14. Hawkley, L. C. & Cacioppo, J. T. Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Ann. Behav. Med. 40, 218–227 (2010).

    Article  PubMed  Google Scholar 

  15. Perissinotto, C. M., Cenzer, I. S. & Covinsky, K. E. Loneliness in older persons: a predictor of functional decline and death. Arch. Intern. Med. 172, 1078–1084 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Holwerda, T. J. et al. Increased risk of mortality associated with social isolation in older men: only when feeling lonely? Results from the Amsterdam Study of the Elderly (AMSTEL). Psychol. Med. 42, 843–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Holt-Lunstad, J., Smith, T. B. & Layton, J. B. Social relationships and mortality risk: a meta-analytic review. PLoS Med. 7, e1000316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berkman, L. F. & Syme, S. L. Social networks, host resistance, and mortality: a nine-year follow-up study of Alameda county residents. Am. J. Epidemiol. 109, 186–204 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Steptoe, A., Shankar, A., Demakakos, P. & Wardle, J. Social isolation, loneliness, and all-cause mortality in older men and women. Proc. Natl Acad. Sci. USA 110, 5797–5801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hawkley, L. C. & Cacioppo, J. T. Loneliness and pathways to disease. Brain. Behav. Immun. 17, 98–105 (2003).

    Article  Google Scholar 

  21. LeRoy, A. S., Murdock, K. W., Jaremka, L. M., Loya, A. & Fagundes, C. P. Loneliness predicts self-reported cold symptoms after a viral challenge. Health Psychol. 36, 512–520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Balter, L. J. T. et al. Loneliness in healthy young adults predicts inflammatory responsiveness to a mild immune challenge in vivo. Brain. Behav. Immun. 82, 298–301 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. House, J. S., Landis, K. R. & Umberson, D. Social relationships and health. Science 241, 540–545 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Bailey, N. W. & Moore, A. J. Evolutionary consequences of social isolation. Trends Ecol. Evol. 33, 595–607 (2018).

    Article  PubMed  Google Scholar 

  25. Ma, X. et al. Social isolation-induced aggression potentiates anxiety and depressive-like behavior in male mice subjected to unpredictable chronic mild stress. PLoS ONE 6, e20955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zelikowsky, M. et al. The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell 173, 1265–1279.e19 (2018). This study shows that chronic social isolation increases the neuropeptide TAC2 brain-wide. TAC2 shows dissociable region-specific roles for aggression and fear changes induced by isolation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sams-Dodd, F. Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav. Pharmacol. 7, 3–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto, K., Pinna, G., Puia, G., Guidotti, A. & Costa, E. Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress. Amst. Neth. 8, 85–93 (2005).

    CAS  Google Scholar 

  29. Asahina, K. et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156, 221–235 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Asahina, K. Neuromodulation and strategic action choice in Drosophila aggression. Annu. Rev. Neurosci. 40, 51–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Haney, C. Restricting the use of solitary confinement. Annu. Rev. Criminol. 1, 285–310 (2018).

    Article  Google Scholar 

  32. Matthews, G. A. et al. Dorsal raphe dopamine neurons represent the experience of social isolation. Cell 164, 617–631 (2016). This study identifies a cellular substrate linked to social isolation, specifically demonstrating that neurons in DRN dopaminergic neurons represent social isolation state and control social motivation in a rank-dependent manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomova, L. et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nat. Neurosci. 23, 1597–1605 (2020). This study is among the first to examine the neural correlates of social isolation and finds that isolation in humans induces a craving-like response in the midbrain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980).

    Article  Google Scholar 

  35. Posner, J., Russell, J. A. & Peterson, B. S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–734 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Laviolette, S. R. Dopamine modulation of emotional processing in cortical and subcortical neural circuits: evidence for a final common pathway in schizophrenia? Schizophr. Bull. 33, 971–981 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gradin, V. B. et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134, 1751–1764 (2011).

    Article  PubMed  Google Scholar 

  38. Bigot, M. et al. An emotional-response model of bipolar disorders integrating recent findings on amygdala circuits. Neurosci. Biobehav. Rev. 118, 358–366 (2020).

    Article  PubMed  Google Scholar 

  39. Trøstheim, M. et al. Assessment of anhedonia in adults with and without mental illness: a systematic review and meta-analysis. JAMA Netw. Open 3, e2013233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. McTeague, L. M. et al. Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. Am. J. Psychiatry 177, 411–421 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tye, K. M. Neural circuit motifs in valence processing. Neuron 100, 436–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind”. NeuroImage 19, 1835–1842 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Koster-Hale, J. & Saxe, R. Theory of mind: a neural prediction problem. Neuron 79, 836–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schachter, S. & Singer, J. E. Cognitive, social, and physiological determinants of emotional state. Psychol. Rev. 69, 379–399 (1962).

    Article  CAS  PubMed  Google Scholar 

  45. Dutton, D. G. & Aron, A. P. Some evidence for heightened sexual attraction under conditions of high anxiety. J. Pers. Soc. Psychol. 30, 510–517 (1974).

    Article  CAS  PubMed  Google Scholar 

  46. Kensinger, E. A. & Schacter, D. L. Processing emotional pictures and words: effects of valence and arousal. Cogn. Affect. Behav. Neurosci. 6, 110–126 (2006).

    Article  PubMed  Google Scholar 

  47. Middleton, L. et al. Identification of touch neurons underlying dopaminergic pleasurable touch and sexual receptivity. Preprint at bioRxiv https://doi.org/10.1101/2021.09.22.461355 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gothard, K. M. & Fuglevand, A. J. The role of the amygdala in processing social and affective touch. Curr. Opin. Behav. Sci. 43, 46–53 (2022).

    Article  PubMed  Google Scholar 

  49. Suvilehto, J. T., Renvall, V. & Nummenmaa, L. Relationship-specific encoding of social touch in somatosensory and insular cortices. Neuroscience 464, 105–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Bartholomeus, B. Voice identification by nursery school children. Can. J. Psychol. Can. Psychol. 27, 464–472 (1973).

    Article  CAS  Google Scholar 

  51. Mills, M. & Melhuish, E. Recognition of mother’s voice in early infancy. Nature 252, 123–124 (1974).

    Article  CAS  PubMed  Google Scholar 

  52. Morton, J. B. & Trehub, S. E. Children’s understanding of emotion in speech. Child Dev. 72, 834–843 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Bänziger, T., Hosoya, G. & Scherer, K. R. Path models of vocal emotion communication. PLoS ONE 10, e0136675 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Junger, J. et al. Sex matters: neural correlates of voice gender perception. Neuroimage 9, 275–287 (2011).

    Google Scholar 

  55. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P. & Pike, B. Voice-selective areas in human auditory cortex. Nature 403, 309–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Grandjean, D. et al. The voices of wrath: brain responses to angry prosody in meaningless speech. Nat. Neurosci. 8, 145–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Mothes-Lasch, M., Mentzel, H.-J., Miltner, W. H. & Straube, T. Visual attention modulates brain activation to angry voices. J. Neurosci. 31, 9594–9598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sokhi, D. S., Hunter, M. D., Wilkinson, I. D. & Woodruff, P. W. R. Male and female voices activate distinct regions in the male brain. NeuroImage 27, 572–578 (2005).

    Article  PubMed  Google Scholar 

  59. Morris, J. S., Scott, S. K. & Dolan, R. J. Saying it with feeling: neural responses to emotional vocalizations. Neuropsychologia 37, 1155–1163 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Ethofer, T., Van De Ville, D., Scherer, K. & Vuilleumier, P. Decoding of emotional information in voice-sensitive cortices. Curr. Biol. CB 19, 1028–1033 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Miller, C. T. & Thomas, A. W. Individual recognition during bouts of antiphonal calling in common marmosets. J. Comp. Physiol. A 198, 337–346 (2012).

    Article  Google Scholar 

  62. Kato, M. et al. Individual identity and affective valence in marmoset calls: in vivo brain imaging with vocal sound playback. Anim. Cogn. 21, 331–343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nummela, S. U., Jovanovic, V., de la Mothe, L. & Miller, C. T. Social context-dependent activity in marmoset frontal cortex populations during natural conversations. J. Neurosci. 37, 7036–7047 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miller, C. T., Thomas, A. W., Nummela, S. U. & de la Mothe, L. A. Responses of primate frontal cortex neurons during natural vocal communication. J. Neurophysiol. 114, 1158–1171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hage, S. R. & Nieder, A. Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. Nat. Commun. 4, 2409 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Chabout, J., Sarkar, A., Dunson, D. B. & Jarvis, E. D. Male mice song syntax depends on social contexts and influences female preferences. Front. Behav. Neurosci. 9, 76 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Seagraves, K. M., Arthur, B. J. & Egnor, S. E. R. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues. J. Exp. Biol. 219, 1437–1448 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Blanchard, R. J., Blanchard, D. C., Agullana, R. & Weiss, S. M. Twenty-two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol. Behav. 50, 967–972 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Wöhr, M. & Schwarting, R. K. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res. 354, 81–97 (2013).

    Article  PubMed  Google Scholar 

  70. Kim, E. J., Kim, E. S., Covey, E. & Kim, J. J. Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization. PLoS ONE 5, e15077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nyby, J. Ultrasonic vocalizations during sex behavior of male house mice (Mus musculus): a description. Behav. Neural Biol. 39, 128–134 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. Holy, T. E. & Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3, e386 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. D’Amato, F. R., Scalera, E., Sarli, C. & Moles, A. Pups call, mothers rush: does maternal responsiveness affect the amount of ultrasonic vocalizations in mouse pups? Behav. Genet. 35, 103–112 (2005).

    Article  PubMed  Google Scholar 

  74. Ehret, G. & Bernecker, C. Low-frequency sound communication by mouse pups (Mus musculus): wriggling calls release maternal behaviour. Anim. Behav. 34, 821–830 (1986).

    Article  Google Scholar 

  75. Russell, M. J. Human olfactory communication. Nature 260, 520–522 (1976).

    Article  CAS  PubMed  Google Scholar 

  76. Havlicek, J. & Lenochova, P. The effect of meat consumption on body odor attractiveness. Chem. Senses 31, 747–752 (2006).

    Article  PubMed  Google Scholar 

  77. Porter, R. H. Olfaction and human kin recognition. Genetica 104, 259–263 (1998).

    Article  PubMed  Google Scholar 

  78. Penn, D. & Potts, W. How do major histocompatibility complex genes influence odor and mating preferences. Adv. Immunol. 69, 411–436 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Abel, E. L. & Bilitzke, P. J. A possible alarm substance in the forced swimming test. Physiol. Behav. 48, 233–239 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Boissy, A., Terlouw, C. & Le Neindre, P. Presence of cues from stressed conspecifics increases reactivity to aversive events in cattle: evidence for the existence of alarm substances in urine. Physiol. Behav. 63, 489–495 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Vieuille-Thomas, C. & Signoret, J. P. Pheromonal transmission of an aversive experience in domestic pig. J. Chem. Ecol. 18, 1551–1557 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Brämerson, A., Nordin, S. & Bende, M. Clinical experience with patients with olfactory complaints, and their quality of life. Acta Otolaryngol. 127, 167–174 (2007).

    Article  PubMed  Google Scholar 

  83. Prehn-Kristensen, A. et al. Induction of empathy by the smell of anxiety. PLoS ONE 4, e5987 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Mujica-Parodi, L. R. et al. Chemosensory cues to conspecific emotional stress activate amygdala in humans. PLoS ONE 4, e6415 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4, 551–562 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002). This study demonstrates that sensory perception in the vomeronasal organ is necessary for sexual discrimination of conspecifics.

    Article  CAS  PubMed  Google Scholar 

  87. Chamero, P. et al. Identification of protein pheromones that promote aggressive behaviour. Nature 450, 899–902 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Mucignat-Caretta, C., Caretta, A. & Baldini, E. Protein-bound male urinary pheromones: differential responses according to age and gender. Chem. Senses 23, 67–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Mucignat-Caretta, C., Cavaggioni, A. & Caretta, A. Male urinary chemosignals differentially affect aggressive behavior in male mice. J. Chem. Ecol. 30, 777–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kimchi, T., Xu, J. & Dulac, C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Thom, M. D. et al. The direct assessment of genetic heterozygosity through scent in the mouse. Curr. Biol. 18, 619–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Ben-Shaul, Y., Katz, L. C., Mooney, R. & Dulac, C. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc. Natl Acad. Sci. USA 107, 5172–5177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bergan, J. F., Ben-Shaul, Y. & Dulac, C. Sex-specific processing of social cues in the medial amygdala. eLife 3, e02743 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li, Y. et al. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171, 1176–1190.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Raam, T. & Hong, W. Organization of neural circuits underlying social behavior: a consideration of the medial amygdala. Curr. Opin. Neurobiol. 68, 124–136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McHenry, J. A. et al. Hormonal gain control of a medial preoptic area social reward circuit. Nat. Neurosci. 20, 449–458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Levy, D. R. et al. Dynamics of social representation in the mouse prefrontal cortex. Nat. Neurosci. 22, 2013–2022 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Coley, A. A., Padilla-Coreano, N., Patel, R. & Tye, K. M. Valence processing in the PFC: reconciling circuit-level and systems-level views. Int. Rev. Neurobiol. 158, 171–212 (2021).

    Article  PubMed  Google Scholar 

  99. Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).

    Article  CAS  PubMed  Google Scholar 

  101. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 30 (1995).

  102. Hasselmo, M. E., Rolls, E. T. & Baylis, G. C. The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav. Brain Res. 32, 203–218 (1989).

    Article  CAS  PubMed  Google Scholar 

  103. Harry, B. B., Williams, M., Davis, C. & Kim, J. Emotional expressions evoke a differential response in the fusiform face area. Front. Hum. Neurosci. 7, 692 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dolensek, N., Gehrlach, D. A., Klein, A. S. & Gogolla, N. Facial expressions of emotion states and their neuronal correlates in mice. Science 368, 89–94 (2020). This study uses machine learning to analyse differential facial expressions in mice associated with positive versus negative valence.

    Article  CAS  PubMed  Google Scholar 

  105. Langford, D. J. et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 7, 447–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Todd, P. M., Rieskamp, J. & Gigerenzer, G. in Handbook of Experimental Economics Results Vol. 1 Ch. 110 (eds Plott, C. R. & Smith, V. L.) 1035–1046 (Elsevier, 2008).

  107. Hertwig, R. & Hoffrage, U. in Simple Heuristics in a Social World 3–36 (Oxford Univ. Press, 2013).

  108. Rand, D. G. et al. Social heuristics shape intuitive cooperation. Nat. Commun. 5, 3677 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. van den Berg, P. & Wenseleers, T. Uncertainty about social interactions leads to the evolution of social heuristics. Nat. Commun. 9, 1–7 (2018).

    CAS  Google Scholar 

  110. Perrin, P. G. ‘Pecking Order’ 1927–54. Am. Speech 30, 265–268 (1955).

    Article  Google Scholar 

  111. Rubenstein, D. R. Stress hormones and sociality: integrating social and environmental stressors. Proc. R. Soc. B Biol. Sci. 274, 967–975 (2007).

    Article  CAS  Google Scholar 

  112. Creel, S. Social dominance and stress hormones. Trends Ecol. Evol. 16, 491–497 (2001).

    Article  Google Scholar 

  113. Creel, S., Dantzer, B., Goymann, W. & Rubenstein, D. R. The ecology of stress: effects of the social environment. Funct. Ecol. 27, 66–80 (2013).

    Article  Google Scholar 

  114. Wang, F. et al. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, T. et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science 357, 162–168 (2017). This study shows that dorsal mPFC cells encode effort during social competition and that plasticity in the MDT input onto these cells reflects a winning history.

    Article  CAS  PubMed  Google Scholar 

  116. Lee, W. et al. Effect of relative social rank within a social hierarchy on neural activation in response to familiar or unfamiliar social signals. Sci. Rep. 11, 2864 (2021). This study parameterizes social rank and familiarity between subject mice and urine stimuli from mice that were either familiar or not, or dominant or subordinate. The brain has distinct patterns of activation to dominance and familiarity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Murugan, M. et al. Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171, 1663–1677.e16 (2017). This study shows that prelimbic cells that project to the NAc encode location of the conspecific. These cells are necessary for social memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Noonan, M. P. et al. A neural circuit covarying with social hierarchy in macaques. PLoS Biol. 12, e1001940 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Chiao, J. Y. et al. Knowing who’s boss: fMRI and ERP investigations of social dominance perception. Group Process. Intergr. Relat. 11, 201–214 (2008).

    Article  Google Scholar 

  120. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Mason, M., Magee, J. C. & Fiske, S. T. Neural substrates of social status inference: roles of medial prefrontal cortex and superior temporal sulcus. J. Cogn. Neurosci. 26, 1131–1140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zink, C. F. et al. Know your place: neural processing of social hierarchy in humans. Neuron 58, 273–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marsh, A. A., Blair, K. S., Jones, M. M., Soliman, N. & Blair, R. J. R. Dominance and submission: the ventrolateral prefrontal cortex and responses to status cues. J. Cogn. Neurosci. 21, 713–724 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ligneul, R., Obeso, I., Ruff, C. C. & Dreher, J.-C. Dynamical representation of dominance relationships in the human rostromedial prefrontal cortex. Curr. Biol. 26, 3107–3115 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Padilla-Coreano, N. et al. Cortical ensembles orchestrate social competition through hypothalamic outputs. Nature https://doi.org/10.1038/s41586-022-04507-5 (2022). This study shows that mPFC activity orthogonally encodes winning and relative social rank, and that the mPFC projection to the lateral hypothalamus (LH) drives social dominance.

    Article  PubMed  Google Scholar 

  126. Li, S. W. et al. Frontal neurons driving competitive behaviour and ecology of social groups. Nature 603, 661–666 (2022). This study records ACC neurons in intermediate-ranking mice in an ethological foraging task. ACC neurons encode winning, relative rank and effort.

    Article  CAS  PubMed  Google Scholar 

  127. Kumaran, D., Banino, A., Blundell, C., Hassabis, D. & Dayan, P. Computations underlying social hierarchy learning: distinct neural mechanisms for updating and representing self-relevant information. Neuron 92, 1135–1147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Heatherton, T. F. et al. Medial prefrontal activity differentiates self from close others. Soc. Cogn. Affect. Neurosci. 1, 18–25 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lee, D. K. et al. Reduced sociability and social agency encoding in adult Shank3-mutant mice are restored through gene re-expression in real time. Nat. Neurosci. 24, 1243–1255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Courtney, A. L. & Meyer, M. L. Self-other representation in the social brain reflects social connection. J. Neurosci. 40, 5616–5627 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Watson, K. K. & Platt, M. L. Social signals in primate orbitofrontal cortex. Curr. Biol. CB 22, 2268–2273 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Chang, S. W. C., Gariépy, J.-F. & Platt, M. L. Neuronal reference frames for social decisions in primate frontal cortex. Nat. Neurosci. 16, 243–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Vander Weele, C. M. et al. Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 563, 397–401 (2018).

    Article  CAS  Google Scholar 

  134. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).

    Article  PubMed  Google Scholar 

  135. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Grunfeld, I. S. & Likhtik, E. Mixed selectivity encoding and action selection in the prefrontal cortex during threat assessment. Curr. Opin. Neurobiol. 49, 108–115 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Parthasarathy, A. et al. Mixed selectivity morphs population codes in prefrontal cortex. Nat. Neurosci. 20, 1770–1779 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Klein, J. T. & Platt, M. L. Social information signaling by neurons in primate striatum. Curr. Biol. 23, 691–696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Munuera, J. Social hierarchy representation in the primate amygdala reflects the emotional ambiguity of our social interactions. J. Exp. Neurosci. 12, 1179069518782459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nelson, A. C. et al. Molecular and circuit architecture of social hierarchy. Preprint at bioRxiv https://doi.org/10.1101/838664 (2019).

    Article  Google Scholar 

  141. Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S. & Tonegawa, S. Ventral CA1 neurons store social memory. Science 353, 1536–1541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Namburi, P. et al. A circuit mechanism for differentiating positive and negative associations. Nature 520, 675–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bolkan, S. S. et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat. Neurosci. 20, 987 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gruenfeld, D. H., Mannix, E. A., Williams, K. Y. & Neale, M. A. Group composition and decision making: how member familiarity and information distribution affect process and performance. Organ. Behav. Hum. Decis. Process. 67, 1–15 (1996).

    Article  Google Scholar 

  145. Ellis, H. D., Quayle, A. H. & Young, A. W. The emotional impact of faces (but not names): face specific changes in skin conductance responses to familiar and unfamiliar people. Curr. Psychol. 18, 88–97 (1999).

    Article  Google Scholar 

  146. Frostman, P. & Sherman, P. T. Behavioral response to familiar and unfamiliar neighbors in a territorial cichlid, Neolamprologus pulcher. Ichthyol. Res. 51, 283–285 (2004).

    Article  Google Scholar 

  147. Habbershon, H. M., Ahmed, S. Z. & Cohen, Y. E. Rhesus macaques recognize unique multimodal face-voice relations of familiar individuals and not of unfamiliar ones. Brain. Behav. Evol. 81, 219–225 (2013).

    Article  PubMed  Google Scholar 

  148. Höjesjö, J., Johnsson, J. I., Petersson, E. & Järvi, T. The importance of being familiar: individual recognition and social behavior in sea trout (Salmo trutta). Behav. Ecol. 9, 445–451 (1998).

    Article  Google Scholar 

  149. Smith, C. N. et al. When recognition memory is independent of hippocampal function. Proc. Natl Acad. Sci. USA 111, 9935–9940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Engelmann, M., Wotjak, C. T. & Landgraf, R. Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol. Behav. 58, 315–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  151. Andersen, P., Morris, R., Amaral, D., Bliss, T. & O’Keefe, J. The Hippocampus Book (Oxford Univ. Press, 2006).

  152. Leung, C. et al. Activation of entorhinal cortical projections to the dentate gyrus underlies social memory retrieval. Cell Rep. 23, 2379–2391 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Hitti, F. L. & Siegelbaum, S. A. The hippocampal CA2 region is essential for social memory. Nature 508, 88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stevenson, E. L. & Caldwell, H. K. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur. J. Neurosci. 40, 3294–3301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Raam, T., McAvoy, K. M., Besnard, A., Veenema, A. H. & Sahay, A. Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nat. Commun. 8, 2001 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Yoshida, M. et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin, Y.-T. et al. Conditional deletion of hippocampal CA2/CA3a oxytocin receptors impairs the persistence of long-term social recognition memory in mice. J. Neurosci. 38, 1218–1231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Smith, A. S., Avram, S. W., Cymerblit-Sabba, A., Song, J. & Young, W. S. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol. Psychiatry 21, 1137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chiang, M.-C., Huang, A. J. Y., Wintzer, M. E., Ohshima, T. & McHugh, T. J. A role for CA3 in social recognition memory. Behav. Brain Res. 354, 22–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Phillips, M. L., Robinson, H. A. & Pozzo-Miller, L. Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. eLife 8, e44182 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. DeNardo, L. A. et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shpokayte, M. et al. Hippocampal cells multiplex positive and negative engrams. Preprint at bioRxiv https://doi.org/10.1101/2020.12.11.419887 (2020).

    Article  Google Scholar 

  164. Choleris, E. et al. Microparticle-based delivery of oxytocin receptor antisense DNA in the medial amygdala blocks social recognition in female mice. Proc. Natl Acad. Sci. USA 104, 4670–4675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lukas, M., Toth, I., Veenema, A. H. & Neumann, I. D. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology 38, 916–926 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Xing, B. et al. A subpopulation of prefrontal cortical neurons is required for social memory. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2020.08.023 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Park, G. et al. Social isolation impairs the prefrontal–nucleus accumbens circuit subserving social recognition in mice. Cell Rep. 35, 109104 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Tan, Y. et al. Oxytocin receptors are expressed by glutamatergic prefrontal cortical neurons that selectively modulate social recognition. J. Neurosci. 39, 3249–3263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hurst, J. L., Thom, M. D., Nevison, C. M., Humphries, R. E. & Beynon, R. J. MHC odours are not required or sufficient for recognition of individual scent owners. Proc. R. Soc. B Biol. Sci. 272, 715–724 (2005).

    Article  Google Scholar 

  170. Nelson, A. C., Cunningham, C. B., Ruff, J. S. & Potts, W. K. Protein pheromone expression levels predict and respond to the formation of social dominance networks. J. Evol. Biol. 28, 1213–1224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Veyrac, A., Wang, G., Baum, M. J. & Bakker, J. The main and accessory olfactory systems of female mice are activated differentially by dominant versus subordinate male urinary odors. Brain Res. 1402, 20–29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Panksepp, J. & Beatty, W. W. Social deprivation and play in rats. Behav. Neural Biol. 30, 197–206 (1980).

    Article  CAS  PubMed  Google Scholar 

  173. Tomova, L., Tye, K. & Saxe, R. The neuroscience of unmet social needs. Soc. Neurosci. https://doi.org/10.1080/17470919.2019.1694580 (2019).

    Article  PubMed  Google Scholar 

  174. Sciolino, N. R. et al. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience 168, 371–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Cacioppo, J. T. et al. Loneliness and health: potential mechanisms. Psychosom. Med. 64, 407–417 (2002).

    Article  PubMed  Google Scholar 

  176. Cacioppo, J. T., Hawkley, L. C., Norman, G. J. & Berntson, G. G. Social isolation. Ann. N. Y. Acad. Sci. 1231, 17–22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cacioppo, J. T., Cacioppo, S. & Boomsma, D. I. Evolutionary mechanisms for loneliness. Cogn. Emot. 28, 3–21 (2014).

    Article  PubMed  Google Scholar 

  178. Cacioppo, J. T., Cacioppo, S., Capitanio, J. P. & Cole, S. W. The neuroendocrinology of social isolation. Annu. Rev. Psychol. 66, 733–767 (2015).

    Article  PubMed  Google Scholar 

  179. Hawkley, L. C., Cole, S. W., Capitanio, J. P., Norman, G. J. & Cacioppo, J. T. Effects of social isolation on glucocorticoid regulation in social mammals. Horm. Behav. 62, 314–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Niesink, R. J. & Van Ree, J. M. Short-term isolation increases social interactions of male rats: a parametric analysis. Physiol. Behav. 29, 819–825 (1982).

    Article  CAS  PubMed  Google Scholar 

  181. Evans, C. S. & Marler, P. Food calling and audience effects in male chickens, Gallus gallus: their relationships to food availability, courtship and social facilitation. Anim. Behav. 47, 1159–1170 (1994).

    Article  Google Scholar 

  182. Hiura, L. C., Tan, L. & Hackenberg, T. D. To free, or not to free: social reinforcement effects in the social release paradigm with rats. Behav. Process. 152, 37–46 (2018).

    Article  Google Scholar 

  183. Tomova, L., Tye, K. & Saxe, R. The neuroscience of unmet social needs. Soc. Neurosci. 16, 221–231 (2021).

    Article  PubMed  Google Scholar 

  184. Tsai, H.-C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Manduca, A. et al. Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats. Neuropsychopharmacology 41, 2215–2223 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Saavedra, J. M. et al. A centrally acting, anxiolytic angiotensin II AT 1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF 1 receptor and benzodiazepine binding. Neuropsychopharmacology 31, 1123–1134 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Pournajafi-Nazarloo, H. et al. Effects of social isolation on mRNA expression for corticotrophin-releasing hormone receptors in prairie voles. Psychoneuroendocrinology 36, 780–789 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Senst, L., Baimoukhametova, D., Sterley, T.-L. & Bains, J. S. Sexually dimorphic neuronal responses to social isolation. eLife 5, e18726 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Thielen, R. J., McBride, W. J., Lumeng, L. & Li, T.-K. Housing conditions alter GABAA receptor of alcohol-preferring and-nonpreferring rats. Pharmacol. Biochem. Behav. 46, 723–727 (1993).

    Article  CAS  PubMed  Google Scholar 

  192. Donaldson, Z. R. & Young, L. J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900–904 (2008). This cross-species review discusses the role of oxytocin and vasopressin in sociability and social cognition.

    Article  CAS  PubMed  Google Scholar 

  193. Musardo, S., Contestabile, A., Knoop, M., Baud, O., & Bellone, C. Oxytocin neurons mediate the effect of social isolation via the VTA circuits. eLife, 11, e73421 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Grippo, A. J., Trahanas, D. M., Zimmerman, R. R., Porges, S. W. & Carter, C. S. Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 34, 1542–1553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Stevenson, J. R., McMahon, E. K., Boner, W. & Haussmann, M. F. Oxytocin administration prevents cellular aging caused by social isolation. Psychoneuroendocrinology 103, 52–60 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Smith, P. S. The effects of solitary confinement: commentary on one-year longitudinal study of the psychological effects of administrative segregation. Corrections & Mental Health https://www.researchgate.net/publication/323991053_The_Effects_of_Solitary_Confinement_Commentary_on_One_Year_Longitudinal_Study_of_the_Psychological_Effects_of_Administrative_Segregation (2011).

  197. van der Horst, F. C. P. & van der Veer, R. Loneliness in infancy: Harry Harlow, John Bowlby and issues of separation. Integr. Psychol. Behav. Sci. 42, 325–335 (2008).

    Article  PubMed  Google Scholar 

  198. Harlow, H. F. The nature of love. Am. Psychol. 13, 673–685 (1958). This infamous study in monkeys demonstrates that social contact is an important variable for socio-emotional development.

    Article  Google Scholar 

  199. Murthy, S. & Gould, E. Early life stress in rodents: animal models of illness or resilience? Front. Behav. Neurosci. 12, 157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Levine, S. Infantile experience and resistance to physiological stress. Science 126, 405–405 (1957).

    Article  CAS  PubMed  Google Scholar 

  201. Millstein, R. A. & Holmes, A. Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci. Biobehav. Rev. 31, 3–17 (2007).

    Article  PubMed  Google Scholar 

  202. Peña, C. J. et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science 356, 1185–1188 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Raineki, C., Cortés, M. R., Belnoue, L. & Sullivan, R. M. Effects of early-life abuse differ across development: infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala. J. Neurosci. 32, 7758–7765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Romeo, R. D. et al. Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Horm. Behav. 43, 561–567 (2003).

    Article  PubMed  Google Scholar 

  205. Pietrabissa, G. & Simpson, S. G. Psychological consequences of social isolation during COVID-19 outbreak. Front. Psychol. 11, 2201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Clair, R., Gordon, M., Kroon, M. & Reilly, C. The effects of social isolation on well-being and life satisfaction during pandemic. Humanit. Soc. Sci. Commun. 8, 1–6 (2021).

    Article  Google Scholar 

  207. Cannon, C. E. B., Ferreira, R., Buttell, F. & First, J. COVID-19, intimate partner violence, and communication ecologies. Am. Behav. Sci. 65, 992–1013 (2021).

    Article  Google Scholar 

  208. Valzelli, L. The “isolation syndrome” in mice. Psychopharmacologia 31, 305–320 (1973).

    Article  CAS  PubMed  Google Scholar 

  209. Blanchard, R. J. & Blanchard, D. C. Aggressive behavior in the rat. Behav. Biol. 21, 197–224 (1977). This study is one of the first to analyse the aggressive behaviour of rodents towards intruders.

    Article  CAS  PubMed  Google Scholar 

  210. Miczek, K. A. & O’Donnell, J. M. Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology 57, 47–55 (1978).

    Article  CAS  PubMed  Google Scholar 

  211. Wongwitdecha, N. & Marsden, C. A. Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav. Brain Res. 75, 27–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  212. Miczek, K. A., Maxson, S. C., Fish, E. W. & Faccidomo, S. Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125, 167–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Brain, P. F. Effects of isolation/grouping on endocrine function and fighting behavior in male and female golden hamsters (Mesocricetus auratus Waterhouse). Behav. Biol. 7, 349–357 (1972).

    Article  CAS  PubMed  Google Scholar 

  214. Davis, E. S. & Marler, C. A. The progesterone challenge: steroid hormone changes following a simulated territorial intrusion in female Peromyscus californicus. Horm. Behav. 44, 185–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  215. Hashikawa, K. et al. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci. 20, 1580–1590 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Niesink, R. J. M. & Van Ree, J. M. Short-term isolation increases social interactions of male rats: a parametric analysis. Physiol. Behav. 29, 819–825 (1982).

    Article  CAS  PubMed  Google Scholar 

  217. Varlinskaya, E. I., Spear, L. P. & Spear, N. E. Social behavior and social motivation in adolescent rats: role of housing conditions and partner’s activity. Physiol. Behav. 67, 475–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  218. Tan, T. et al. Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Rep. 34, 108874 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Takahashi, A., Nagayasu, K., Nishitani, N., Kaneko, S. & Koide, T. Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS ONE 9, e94657 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Insel, T. R. & Young, L. J. Neuropeptides and the evolution of social behavior. Curr. Opin. Neurobiol. 10, 784–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  221. Bargmann, C. I. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34, 458–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  222. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Taghert, P. H. & Nitabach, M. N. Peptide neuromodulation in invertebrate model systems. Neuron 76, 82–97 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kennedy, A. et al. in Cold Spring Harbor Symposia on Quantitative Biology Vol. 79, 199–210 (Cold Spring Harbor Laboratory Press, 2014).

  225. Zelikowsky, M., Ding, K. & Anderson, D. J. Neuropeptidergic control of an internal brain state produced by prolonged social isolation stress. Cold Spring Harb. Symp. Quant. Biol. 83, 97–103 (2018).

    Article  PubMed  Google Scholar 

  226. Shapiro, L. E. & Insel, T. R. Infant’s response to social separation reflects adult differences in affiliative behavior: a comparative developmetal study in prairie and montane voles. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 23, 375–393 (1990).

    Article  CAS  Google Scholar 

  227. Li, W. et al. Chronic social isolation signals starvation and reduces sleep in Drosophila. Nature 597, 239–244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Fanselow, M. S. Shock-induced analgesia on the formalin test: effects of shock severity, naloxone, hypophysectomy, and associative variables. Behav. Neurosci. 98, 79 (1984).

    Article  CAS  PubMed  Google Scholar 

  229. Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Fanselow, M. S. & Lester, L. S. A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. in Evolution and Learning (eds Bolles, R. C. & Beecher, M. D.) 185–212 (Lawrence Erlbaum Associates, 1988).

  231. Blanchard, D. C., Griebel, G. & Blanchard, R. J. Conditioning and residual emotionality effects of predator stimuli: some reflections on stress and emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 1177–1185 (2003).

    Article  PubMed  Google Scholar 

  232. Perusini, J. N. & Fanselow, M. S. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn. Mem. 22, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Fanselow, M. S., Hoffman, A. N. & Zhuravka, I. Timing and the transition between modes in the defensive behavior system. Behav. Process. 166, 103890 (2019).

    Article  Google Scholar 

  234. Mobbs, D. et al. Viewpoints: approaches to defining and investigating fear. Nat. Neurosci. 22, 1205–1216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Falkner, A. L., Grosenick, L., Davidson, T. J., Deisseroth, K. & Lin, D. Hypothalamic control of male aggression-seeking behavior. Nat. Neurosci. 19, 596–604 (2016). This study demonstrates a role for the ventromedial hypothalamus in aggression-seeking behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Anim. Learn. Behav. 22, 1–18 (1994).

    Article  Google Scholar 

  237. Lauer, J. et al. Multi-animal pose estimation and tracking with DeepLabCut. Nat. Methods. 19, 496–504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Pereira, T. D. et al. SLEAP: multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Chen, Z. et al. AlphaTracker: a multi-animal tracking and behavioral analysis tool. Preprint at bioRxiv https://doi.org/10.1101/2020.12.04.405159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Levy, E. R. J., Park, E. H., Redman, W. T. & Fenton, A. A. A neuronal code for space in hippocampal coactivity dynamics independent of place fields. Preprint at bioRxiv https://doi.org/10.1101/2021.07.26.453856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Greenberg, N., MacLean, P. D. & Ferguson, J. L. Role of the paleostriatum in species-typical display behavior of the lizard (Anolis carolinensis). Brain Res. 172, 229–241 (1979).

    Article  CAS  PubMed  Google Scholar 

  243. Calder, A. J., Keane, J., Lawrence, A. D. & Manes, F. Impaired recognition of anger following damage to the ventral striatum. Brain J. Neurol. 127, 1958–1969 (2004).

    Article  Google Scholar 

  244. Larson, E. T. & Summers, C. H. Serotonin reverses dominant social status. Behav. Brain Res. 121, 95–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  245. Tse, W. S. & Bond, A. J. Serotonergic intervention affects both social dominance and affiliative behaviour. Psychopharmacology 161, 324–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  246. McGuire, M. T., Raleigh, M. J. & Brammer, G. L. Adaptation, selection, and benefit–cost balances: implications of behavioral–physiological studies of social dominance in male vervet monkeys. Ethol. Sociobiol. 5, 269–277 (1984).

    Article  Google Scholar 

  247. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. McCall, J. G. et al. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife 6, e18247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Porcelli, S. et al. Social brain, social dysfunction and social withdrawal. Neurosci. Biobehav. Rev. 97, 10–33 (2019).

    Article  PubMed  Google Scholar 

  250. Du, E. & Chang, S. W. Neural components of altruistic punishment. Front. Neurosci. 9, 26 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Mason, P. in The Evolution of Morality 177–194 (Springer, 2016).

  252. Bartal, I. B.-A., Decety, J. & Mason, P. Empathy and pro-social behavior in rats. Science 334, 1427–1430 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  253. Haroush, K. & Williams, Z. M. Neuronal prediction of opponent’s behavior during cooperative social interchange in primates. Cell 160, 1233–1245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Chang, S., Winecoff, A. & Platt, M. Vicarious reinforcement in rhesus macaques (Macaca mulatta). Front. Neurosci. 5, 27 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Apps, M. A. J., Rushworth, M. F. S. & Chang, S. W. C. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 90, 692–707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Lee, D. Game theory and neural basis of social decision making. Nat. Neurosci. 11, 404–409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Rilling, J. K. et al. A neural basis for social cooperation. Neuron 35, 395–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  258. Vuilleumier, P. & Pourtois, G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45, 174–194 (2007).

    Article  PubMed  Google Scholar 

  259. Jiang, Y. & Platt, M. L. Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex. Sci. Rep. 8, 8201 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Chen, S. et al. A hypothalamic novelty signal modulates hippocampal memory. Nature 586, 270–274 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Chaibi, I., Bennis, M. & Ba-M’Hamed, S. GABA-A receptor signaling in the anterior cingulate cortex modulates aggression and anxiety-related behaviors in socially isolated mice. Brain Res. 1762, 147440 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Lavenda-Grosberg, D. et al. Acute social isolation and regrouping cause short- and long-term molecular changes in the rat medial amygdala. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01342-4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Darwin, C. R. On the Origin of Species by Means of Natural Selection (Murray, 1859).

  264. Ben-Ami Bartal, I., Rodgers, D. A., Bernardez Sarria, M. S., Decety, J. & Mason, P. Pro-social behavior in rats is modulated by social experience. eLife 3, e01385 (2014). This study shows that a rat’s likelihood to cooperate and help another rat depends on familiarity with the individual that needs help.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ben-Ami Bartal, I. et al. Neural correlates of ingroup bias for prosociality in rats. eLife 10, e65582 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Greenwald, A. G., Nosek, B. A. & Banaji, M. R. Understanding and using the implicit association test: I. An improved scoring algorithm. J. Pers. Soc. Psychol. 85, 197–216 (2003).

    Article  PubMed  Google Scholar 

  267. Gaither, S. E. & Sommers, S. R. Living with an other-race roommate shapes Whites’ behavior in subsequent diverse settings. J. Exp. Soc. Psychol. 49, 272–276 (2013).

    Article  Google Scholar 

  268. Maddox, K. B. Perspectives on racial phenotypicality bias. Personal. Soc. Psychol. Rev. 8, 383–401 (2004).

    Article  Google Scholar 

  269. Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S. & Keysers, C. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 114–121 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Kingsbury, L. et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178, 429–446.e16 (2019). This study shows inter-brain synchrony between prefrontal neurons that encode self versus other, and the behaviour of the dominant mouse preferentially drives the synchrony.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Platt, T. G. & Bever, J. D. Kin competition and the evolution of cooperation. Trends Ecol. Evol. 24, 370–377 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Chang, S. W. C. et al. Neural mechanisms of social decision-making in the primate amygdala. Proc. Natl Acad. Sci. USA 112, 16012–16017 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Báez-Mendoza, R., Mastrobattista, E. P., Wang, A. J. & Williams, Z. M. Social agent identity cells in the prefrontal cortex of interacting groups of primates. Science 374, eabb4149 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Falkner, A. L., Dollar, P., Perona, P., Anderson, D. J. & Lin, D. Decoding ventromedial hypothalamic neural activity during male mouse aggression. J. Neurosci. 34, 5971–5984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Remedios, R. et al. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature 550, 388–392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Krzywkowski, P., Penna, B. & Gross, C. T. Dynamic encoding of social threat and spatial context in the hypothalamus. eLife 9, e57148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Aleyasin, H., Flanigan, M. E. & Russo, S. J. Neurocircuitry of aggression and aggression seeking behavior: nose poking into brain circuitry controlling aggression. Curr. Opin. Neurobiol. 49, 184–191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Baez-Mendoza, R., Harris, C. J. & Schultz, W. Activity of striatal neurons reflects social action and own reward. Proc. Natl Acad. Sci. USA 110, 16634–16639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Elliott, R., Bohart, A. C., Watson, J. C. & Greenberg, L. S. Empathy. Psychotherapy 48, 43–49 (2011).

    Article  PubMed  Google Scholar 

  281. Batson, C. D., Lishner, D. A. & Stocks, E. L. in The Oxford Handbook of Prosocial Behavior 259–281 (Oxford Univ. Press, 2015).

  282. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  283. Decety, J. The neural pathways, development and functions of empathy. Curr. Opin. Behav. Sci. 3, 1–6 (2015).

    Article  Google Scholar 

  284. Iacoboni, M. Imitation, empathy, and mirror neurons. Annu. Rev. Psychol. 60, 653–670 (2009).

    Article  PubMed  Google Scholar 

  285. Bandura, A., Grusec, J. E. & Menlove, F. L. Observational learning as a function of symbolization and incentive set. Child. Dev. 37, 499–506 (1966).

    Article  CAS  PubMed  Google Scholar 

  286. Allsop, S. A. et al. Corticoamygdala transfer of socially derived information gates observational learning. Cell 173, 1329–1342.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Olsson, A., Nearing, K. I. & Phelps, E. A. Learning fears by observing others: the neural systems of social fear transmission. Soc. Cogn. Affect. Neurosci. 2, 3–11 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Allsop, S. A., Vander Weele, C. M., Wichmann, R. & Tye, K. M. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front. Behav. Neurosci. 8, 241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Jeon, D. et al. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat. Neurosci. 13, 482–488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.M.T. is a Howard Hughes Medical Institute (HHMI) Investigator and the Wylie Vale Professor at the Salk Institute for Biological Studies, and this work was supported by funding from Clayton Foundation, Kavli Foundation, Dolby Family Fund, R01-MH115920 (US National Institute of Mental Health (NIMH)), R37-MH102441 (NIMH) and Pioneer Award DP1-AT009925 (US National Center for Complementary and Integrative Health (NCCIH)). M.Z. is supported by K99/R00 MH108734 (NIMH), a Whitehall Foundation Award, a Sloan Fellowship and a Klingenstein-Simons Fellowship Award. N.P.-C. is supported by Burroughs Wellcome Fund and R00-MH124435 (NIMH).

Author information

Authors and Affiliations

Authors

Contributions

N.P.-C., M.Z. and K.M.T. researched data for the article. All authors made substantial contributions to the discussion of the content, wrote the article, and reviewed and edited the article before submission.

Corresponding author

Correspondence to Kay M. Tye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks N. Gogolla and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Sociability

A parameter describing the degree to which an animal seeks social contact or engages in social interactions.

Valence

The degree to which something is pleasurable (positive) or aversive (negative).

Social context

The social aspects related to the environment that an individual is in. This can include social rank and the presence or absence of others, as well any history of social interactions (such as fighting, mating and so on) in that context.

Social rank

The social position of an individual relative to others in a group (for example, social hierarchy).

Social valence

The valence assigned to a social stimulus or agent.

Cooperation

Two or more individuals with common or shared goals.

Competition

Two or more individuals with goals which are incompatible or in conflict.

Social alignment

The degree to which the goals of the self are in cooperation (‘aligned’) versus in competition (‘opposed’) with the goals of the other.

Social history

The collective social experience of an individual. This includes social memories, social rank, isolation history, group size and other related social experiences.

Social attributes

The physical attributes of a social agent including their age, size, rank, resource-holding potential and so on.

Social heuristics

Generalized associations that can facilitate rapid assessment of a social agent.

Brain state synchrony

When the internal brain state of a social agent is synchronized to the brain state of another social agent, such that changes in one produce changes in the other.

Theory of mind

The ability to create a model of another’s mind as distinct from one’s own by inferring their mental state, logic, beliefs and emotions.

Emotional contagion

The phenomenon of individuals mimicking the emotions or emotional behaviours of others.

Social homeostasis model

A conceptual model proposing that there is an optimal quality and/or quantity of social contact, regulated by a detector, control centre and effector system.

Social dominance

The repertoire of behaviours expressed by higher ranking animals including winning during competition and species-specific body poses.

Mixed selectivity

The ability of neurons to respond consistently to multiple, statistically independent variables.

Valence associative learning

Learning the association between two or more stimuli in which one of the stimuli has a positive or negative valence.

Familiarity

The degree to which two individuals know each other.

Engrams

Ensembles of neurons that undergo enduring changes during learning and facilitate memory recall.

Social preference

The preference for social stimuli (as opposed to non-social stimuli) observed in rodents.

Spatial–social memory

Memory of the space in which a social interaction occurred, often indexed by changes in the time spent in that social space.

Rebound social interaction

The increase in social interaction observed immediately after a social deficit.

Social anxiety

The decrease in social interaction and/or social preference observed following a negative social experience (for example, prolonged isolation, social defeat and so on).

Threat responsivity

The degree to which a host of behavioural responses are expressed in response to a threatening, noxious stimulus, including: freezing, darting, activity bursting, flinching, vocalizations and so on.

Homeostatic set point

Within any homeostatic system, there is a control centre that stores a ‘set point’ and computes the difference between the detected input and the optimal set point.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilla-Coreano, N., Tye, K.M. & Zelikowsky, M. Dynamic influences on the neural encoding of social valence. Nat Rev Neurosci 23, 535–550 (2022). https://doi.org/10.1038/s41583-022-00609-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00609-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing