Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Attractor and integrator networks in the brain

Abstract

In this Review, we describe the singular success of attractor neural network models in describing how the brain maintains persistent activity states for working memory, corrects errors and integrates noisy cues. We consider the mechanisms by which simple and forgetful units can organize to collectively generate dynamics on the long timescales required for such computations. We discuss the myriad potential uses of attractor dynamics for computation in the brain, and showcase notable examples of brain systems in which inherently low-dimensional continuous-attractor dynamics have been concretely and rigorously identified. Thus, it is now possible to conclusively state that the brain constructs and uses such systems for computation. Finally, we highlight recent theoretical advances in understanding how the fundamental trade-offs between robustness and capacity and between structure and flexibility can be overcome by reusing and recombining the same set of modular attractors for multiple functions, so they together produce representations that are structurally constrained and robust but exhibit high capacity and are flexible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of attractor formation.
Fig. 2: The utility of low-dimensional attractor networks.
Fig. 3: Evidence of discrete attractor dynamics in the brain.
Fig. 4: Linear attractor dynamics generated by network feedback in the oculomotor integrator.
Fig. 5: The head-direction circuit: a ring attractor in the brain.
Fig. 6: Two-dimensional toroidal attractors in the grid cell system.

Similar content being viewed by others

References

  1. Amari, S.-I. Neural theory of association and concept-formation. Biol. Cybern. 26, 175–185 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Little, W. A. The existence of persistent states in the brain. Math. Biosci. 19, 101–120 (1974).

    Article  Google Scholar 

  4. Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973).

    Article  CAS  PubMed  Google Scholar 

  5. Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088–3092 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen, M. A. & Grossberg, S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. SMC-13, 815–826 (1983).

    Article  Google Scholar 

  7. Amari, S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Cannon, S. C., Robinson, D. A. & Shamma, S. A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49, 127–136 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Seung, H. S. How the brain keeps the eyes still. Proc. Natl Acad. Sci. USA 93, 13339–13344 (1996). This work constructs and pedagogically describes a mathematical theory of line attractor dynamics for the oculomotor system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben-Yishai, R., Bar-Or, R. L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl Acad. Sci. USA 92, 3844–3848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ermentrout, B. Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353 (1998). 

    Article  Google Scholar 

  12. Stringer, S., Trappenberg, T., Rolls, E. & Araujo, I. Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Network 13, 217–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Xie, X., Hahnloser, R. H. R. & Seung, H. S. Double-ring network model of the head-direction system. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 041902 (2002).

    Article  PubMed  Google Scholar 

  14. Fuhs, M. C. & Touretzky, D. S. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266–4276 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009). For a single module of grid cells, this work construct a faithful continuous-attractor network model based on the principles of pattern formation.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 15, 2112–2126 (1996). This work constructs a continuous-attractor network model of the head-direction system, showing how intrinsic dynamics contribute to shaping population firing rates.

    Article  Google Scholar 

  18. Milnor, J. W. Attractor. Scholarpedia 1, 1815 (2006).

    Article  Google Scholar 

  19. Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22, 1512–1520 (2019). This work tests and verifies the predictions of continuous-attractor dynamics for the head-direction cell circuit in the anterodorsal thalamic nucleus in rodents by analysing data across behavioural states.

    Article  CAS  PubMed  Google Scholar 

  20. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022). This work using large-scale recordings of several hundred cells verifies predictions of continuous-attractor dynamics in single modules of grid cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC, 2018).

  22. Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford Univ. Press, 2004).

  23. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanus, C. & Schuman, E. M. Proteostasis in complex dendrites. Nat. Rev. Neurosci. 14, 638 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. James, W. The Principles of Psychology (Henry Holt, 1890).

  26. McDougall, W. On the seat of the psycho-physical processes. Brain 24, 579–630 (1901).

    Article  Google Scholar 

  27. Hebb, D. O. The Organization of Behavior (Wiley, 1949).

  28. Brown, R. E., Bligh, T. W. B. & Garden, J. F. The Hebb synapse before Hebb: theories of synaptic function in learning and memory before, with a discussion of the long-lost synaptic theory of William McDougall. Front. Behav. Neurosci. 15, 732195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abraham, W. C., Jones, O. D. & Glanzman, D. L. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci. Learn. 4, 1–10 (2019).

    Article  Google Scholar 

  30. Takeuchi, T., Duszkiewicz, A. J. & Morris, R. G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos. Trans. R. Soc. B: Biol. Sci. 369, 20130288 (2014).

    Article  Google Scholar 

  31. Martin, S., Grimwood, P. & Morris, R. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, H., Wang, Z. & Liu, D. A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 1229–1262 (2014).

    Article  Google Scholar 

  34. Renart, A., Song, P. & Wang, X.-J. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38, 473–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Itskov, V., Hansel, D. & Tsodyks, M. Short-term facilitation may stabilize parametric working memory trace. Front. Comput. Neurosci. 5, 40 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952).

    Article  Google Scholar 

  37. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993).

    Article  CAS  Google Scholar 

  38. Koch, A. J. & Meinhardt, H. Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 1481–1507 (1994).

    Article  Google Scholar 

  39. Schweisguth, F. & Corson, F. Self organization in pattern formation. Dev. Cell 49, 659–677 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Shraiman, B. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sekimura, T., Noji, S., Ueno, N. & Maini, P., Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models (Springer, 2003).

  42. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972).

    Article  CAS  PubMed  Google Scholar 

  43. Boucheny, C., Brunel, N. & Arleo, A. A continuous attractor network model without recurrent excitation: maintenance and integration in the head direction cell system. J. Comput. Neurosci. 18, 205–227 (2005).

    Article  PubMed  Google Scholar 

  44. Couey, J. J. et al. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16, 318–324 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Burak, Y. & Fiete, I. R. Fundamental limits on persistent activity in networks of noisy neurons. Proc. Natl Acad. Sci. USA 109, 17645–17650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sorscher, B., Mel, G., Ganguli, S. & Ocko, S. A unified theory for the origin of grid cells through the lens of pattern formation. In Advances in Neural Information Processing Systems 10003–10013 (NeurIPS, 2019).

  47. Khona, M., Chandra, S. & Fiete, I. Spontaneous emergence of topologically robust grid cell modules: a multiscale instability theory. Preprint at bioRxiv https://doi.org/10.1101/2021.10.28.466284 (2021).

    Article  Google Scholar 

  48. Seung, H. S. Amplification, attenuation, and integration. Handb. Brain Theory Neural Netw. 2, 94–97 (2003).

    Google Scholar 

  49. Sompolinsky, H., Crisanti, A. & Sommers, H.-J. Chaos in random neural networks. Phys. Rev. Lett. 61, 259 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274 5293, 1724–1726 (1996).

    Article  PubMed  Google Scholar 

  51. Engelken, R., Wolf, F. & Abbott, L. Lyapunov spectra of chaotic recurrent neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.2006.02427 (2020).

    Article  Google Scholar 

  52. Murphy, B. K. & Miller, K. D. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61, 635–648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X.-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    Article  PubMed  Google Scholar 

  57. Baum, E. B., Moody, J. & Wilczek, F. Internal representations for associative memory. Biol. Cybern. 59, 217–228 (1988).

    Article  Google Scholar 

  58. Saul, L. K. & Jordan, M. I. Attractor dynamics in feedforward neural networks. Neural Comput. 12, 1313–1335 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Sharma, S., Chandra, S. & Fiete, I. R. Content addressable memory without catastrophic forgetting by heteroassociation with a fixed scaffold. In Int. Conf. Machine Learning, ICML 2022 (eds Chaudhuri, K. et al.) Vol. 162, 19658-19682 (PMLR, 2022).

  60. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Curtis, C. E. & D’Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7, 415–423 (2003).

    Article  PubMed  Google Scholar 

  62. Chaudhuri, R. & Fiete, I. Bipartite expander Hopfield networks as self-decoding high-capacity error correcting codes. In Advances in Neural Information Processing Systems 7686–7697 (NeurIPS, 2019).

  63. Song, P. & Wang, X.-J. Angular path integration by moving “hill of activity”: a spiking neuron model without recurrent excitation of the head-direction system. J. Neurosci. 25, 1002–1014 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Redish, D., Elga, A. N. & Touretzky, D. S. A coupled attractor model of the rodent head direction system. Netwk. Comput. Neural Syst. 7, 671–685 (1996).

    Article  Google Scholar 

  65. Wang, X.-J. Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kriener, B., Chaudhuri, R. & Fiete, I. Robust parallel decision-making in neural circuits with nonlinear inhibition. Proc. Natl Acad. Sci. USA 117, 25505–25516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J. & Seung, H. S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405, 947 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Bogacz, R. & Gurney, K. The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput. 19, 442–477 (2007).

    Article  PubMed  Google Scholar 

  71. Prat-Ortega, G., Wimmer, K., Roxin, A. & de la Rocha, J. Flexible categorization in perceptual decision making. Nat. Commun. 12, 1–15 (2021).

    Article  Google Scholar 

  72. Pfeiffer, B. E. & Foster, D. J. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science 349, 180–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Laje, R. & Buonomano, D. V. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kleinfeld, D. Sequential state generation by model neural networks. Proc. Natl Acad. Sci. USA 83, 9469–9473 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sompolinsky, H. & Kanter, I. Temporal association in asymmetric neural networks. Phys. Rev. Lett. 57, 2861 (1986).

    Article  CAS  PubMed  Google Scholar 

  76. Fiete, I. R., Senn, W., Wang, C. Z. H. & Hahnloser, R. H. R. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron 65, 563–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. II. effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoon, K., Buice, M., Barry, R. C., Hayman, B. N. & Fiete, I. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16, 1077–1084 (2013). By analysing grid cell data across environments, this work shows that pairwise correlations are preserved within a grid cell module, in agreement with continuous-attractor models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McNaughton, B. L., O’Keefe, J. & Barnes, C. A. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397 (1983).

    Article  CAS  PubMed  Google Scholar 

  82. Wilt, B. A. et al. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Obaid, A. M. et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci. Adv. https://doi.org/10.1126/sciadv.aay2789 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Weisenburger, S. & Vaziri, A. A guide to emerging technologies for large-scale and whole-brain optical imaging of neuronal activity. Annu. Rev. Neurosci. 41, 431–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2020).

    Article  Google Scholar 

  86. Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wimmer, K., Nykamp, D. Q., Constantinidis, C. & Compte, A. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17, 431–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Low, R. J., Lewallen, S., Aronov, D., Nevers, R. & Tank, D. W. Probing variability in a cognitive map using manifold inference from neural dynamics. Preprint at bioRxiv https://doi.org/10.1101/418939 (2018).

    Article  Google Scholar 

  89. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Roweis, S. T. & Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  92. Tenenbaum, J. B. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Wu, A., Pashkovski, S., Datta, S. R. & Pillow, J. W. Learning a latent manifold of odor representations from neural responses in piriform cortex. In Advances in Neural Information Processing Systems 5378–5388 (NeurIPS, 2018).

  94. Zomorodian, A. & Carlsson, G. Computing persistent homology. Discret. Comput. Geom. 33, 249–274 (2005).

    Article  Google Scholar 

  95. Ghrist, R. Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45, 61–75 (2008).

    Article  Google Scholar 

  96. Carlsson, G., Ishkhanov, T., de Silva, V. & Zornorodian, A. On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76, 1–12 (2008).

    Article  Google Scholar 

  97. Rybakken, E., Baas, N. & Dunn, B. Decoding of neural data using cohomological feature extraction. Neural Comput. 31, 68–93 (2019).

    Article  PubMed  Google Scholar 

  98. Singh, G. et al. Topological analysis of population activity in visual cortex. J. Vis. 8, 11 (2008).

    Article  PubMed  Google Scholar 

  99. Taube, J. S., Muller, R. U. & Ranck, J. B. Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yoganarasimha, D., Yu, X. & Knierim, J. J. Head direction cell representations maintain internal coherence during conflicting proximal and distal cue rotations: comparison with hippocampal place cells. J. Neurosci. 26, 622–631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Trettel, S., Trimper, J., Hwaun, E., Fiete, I. & Colgin, L. Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. Nat. Neurosci. 22, 609–617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gardner, R. J., Lu, L., Wernle, T., Moser, M.-B. & Moser, E. I. Correlation structure of grid cells is preserved during sleep. Nat. Neurosci. 22, 598–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Widloski, J., Marder, M. P. & Fiete, I. R. Inferring circuit mechanisms from sparse neural recording and global perturbation in grid cells. eLife 7, e33503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network up states in the neocortex. Nature 423, 283–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Jercog, D. et al. UP–DOWN cortical dynamics reflect state transitions in a bistable network. eLife 6, e22425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sanchez-Vives, M. V., Massimini, M. & Mattia, M. Shaping the default activity pattern of the cortical network. Neuron 94, 993–1001 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Scarpetta, S. & de Candia, A. Alternation of up and down states at a dynamical phase-transition of a neural network with spatiotemporal attractors. Front. Syst. Neurosci. 8, 88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jercog, D. et al. Up-down cortical dynamics reflect state transitions in a bistable network. eLife 6, e22425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Latham, P. E., Richmond, B., Nelson, P. & Nirenberg, S. Intrinsic dynamics in neuronal networks. I. Theory. J. Neurophysiol. 83, 808–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Compte, A., Sanchez-Vives, M. V., McCormick, D. A. & Wang, X.-J. Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003).

    Article  PubMed  Google Scholar 

  111. Kasanetz, F., Riquelme, L. A., O’Donnell, P. & Murer, M. G. Turning off cortical ensembles stops striatal up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. J. Physiol. 577, 97–113 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rigas, P. & Castro-Alamancos, M. A. Thalamocortical up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity. J. Neurosci. 27, 4261–4272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McCormick, D. A., McGinley, M. J. & Salkoff, D. B. Brain state dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 31, 133–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Deutsch, D. An auditory illusion. Nature 251, 307–309 (1974).

    Article  CAS  PubMed  Google Scholar 

  115. Ward, E. J. & Scholl, B. J. Stochastic or systematic? Seemingly random perceptual switching in bistable events triggered by transient unconscious cues. J. Exp. Psychol. Hum. Percept. Perform. 41, 929 (2015).

    Article  PubMed  Google Scholar 

  116. Blake, R. & Logothetis, N. K. Visual competition. Nat. Rev. Neurosci. 3, 13–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. McWalter, R. & McDermott, J. H. Illusory sound texture reveals multi-second statistical completion in auditory scene analysis. Nat. Commun. 10, 1–18 (2019).

    Article  CAS  Google Scholar 

  118. Wang, M., Arteaga, D. & He, B. J. Brain mechanisms for simple perception and bistable perception. Proc. Natl Acad. Sci. USA 110, E3350–E3359 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Vattikuti, S. et al. Canonical cortical circuit model explains rivalry, intermittent rivalry, and rivalry memory. PLoS Comput. Biol. 12, e1004903 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Moreno-Bote, R., Rinzel, J. & Rubin, N. Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98, 1125–1139 (2007).

    Article  PubMed  Google Scholar 

  121. Inagaki, H. K., Fontolan, L., Romani, S. & Svoboda, K. Discrete attractor dynamics underlies persistent activity in the frontal cortex. Nature 566, 212–217 (2019). This work tests the predictions of discrete attractor dynamics in the rodent ALM using optogenetic perturbations.

    Article  CAS  PubMed  Google Scholar 

  122. Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459–464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Piet, A. T., Erlich, J. C., Kopec, C. D. & Brody, C. D. Rat prefrontal cortex inactivations during decision making are explained by bistable attractor dynamics. Neural Comput. 29, 2861–2886 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife 4, e05457 (2015).

    Article  PubMed Central  Google Scholar 

  125. Inagaki, H. K., Inagaki, M., Romani, S. & Svoboda, K. Low-dimensional and monotonic preparatory activity in mouse anterior lateral motor cortex. J. Neurosci. 38, 4163–4185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Daie, K., Svoboda, K. & Druckmann, S. Targeted photostimulation uncovers circuit motifs supporting short-term memory. Nat. Neurosci. 24, 259–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Lazzaro, J., Ryckebusch, S., Mahowald, M. A. & Mead, C. A. Winner-take-all networks of O(N) complexity. In Advances in Neural Information Processing Systems 703–711 (NeurIPS, 1989).

  128. Xie, X., Hahnloser, R. H. & Seung, H. S. Selectively grouping neurons in recurrent networks of lateral inhibition. Neural Comput. 14, 2627–2646 (2002).

    Article  PubMed  Google Scholar 

  129. Majani, E., Erlanson, R. & Abu-Mostafa, Y. S. On the K-winners-take-all network. In Advances in Neural Information Processing Systems 634–642 (NeurIPS, 1989).

  130. Bolding, K. A. & Franks, K. M. Recurrent cortical circuits implement concentration-invariant odor coding. Science 361, eaat6904 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sreenivasan, S. & Fiete, I. Grid cells generate an analog error-correcting code for singularly precise neural computation. Nat. Neurosci. 14, 1330–1337 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. de Almeida, L., Idiart, M. & Lisman, J. E. The input–output transformation of the hippocampal granule cells: from grid cells to place fields. J. Neurosci. 29, 7504–7512 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Espinoza, C., Guzman, S. J., Zhang, X. & Jonas, P. Parvalbumin + interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nat. Commun. 9, 4605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kurt, S. et al. Auditory cortical contrast enhancing by global winner-take-all inhibitory interactions. PLoS ONE 3, e1735 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367 6473, eaaw4325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lin, A. C., Bygrave, A. M., de Calignon, A., Lee, T. & Miesenböck, G. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat. Neurosci. 17, 559–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stevens, C. F. What the fly’s nose tells the fly’s brain. Proc. Natl Acad. Sci. USA 112, 9460–9465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arnold, D. & Robinson, D. The oculomotor integrator: testing of a neural network model. Exp. Brain Res. 113, 57–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R. & Tank, D. W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4, 184–193 (2001). This work tests the predictions of line attractor dynamics in the goldfish oculomotor integrator using in vivo intracellular current perturbations.

    Article  CAS  PubMed  Google Scholar 

  140. Pastor, A., Cruz, L. D. R. & Baker, R. Eye position and eye velocity integrators reside in separate brainstem nuclei. Proc. Natl Acad. Sci. USA 91, 807–811 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cannon, C. & Robinson, D. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J. Neurophys. 57, 1383–1409 (1987).

    Article  CAS  Google Scholar 

  142. Mettens, P., Godaux, E., Cheron, G. & Galiana, H. Effect of muscimol microinjections into the prepositus hypoglossi and the medial vestibular nuclei on cat eye movements. J. Neurophysiol. 72, 785–802 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Kaneko, C. R. Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J. Neurophysiol. 78, 1753–1768 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Major, G. et al. Plasticity and tuning by visual feedback of the stability of a neural integrator. Proc. Natl Acad. Sci. USA 101, 7739–7744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vishwanathan, A. et al. Electron microscopic reconstruction of functionally identified cells in a neural integrator. Curr. Biol. 27, 2137–2147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vishwanathan, A. et al. Predicting modular functions and neural coding of behavior from a synaptic wiring diagram. Preprint at bioRxiv https://doi.org/10.1101/2020.10.28.359620 (2021).

    Article  Google Scholar 

  147. Taube, J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J. Neurosci. 15, 70–86 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, S. S., Hermundstad, A. M., Romani, S., Abbott, L. F. & Jayaraman, V. Generation of stable heading representations in diverse visual scenes. Nature 576, 126–131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yoder, R. M. & Taube, J. S. The vestibular contribution to the head direction signal and navigation. Front. Integr. Neurosci. 8, 32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Yoder, R. M., Peck, J. R. & Taube, J. S. Visual landmark information gains control of the head direction signal at the lateral mammillary nuclei. J. Neurosci. 35, 1354–1367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hulse, B. K. & Jayaraman, V. Mechanisms underlying the neural computation of head direction. Annu. Rev. Neurosci. 43, 31–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Fisher, Y. E., Lu, J., D’Alessandro, I. & Wilson, R. I. Sensorimotor experience remaps visual input to a heading-direction network. Nature 576, 121–125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Angelaki, D. E. & Laurens, J. The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties. Curr. Opin. Neurobiol. 60, 136–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849–853 (2017). This work uses calcium imaging and optogenetics in the ellipsoid body to identify network motifs and dynamics corresponding to ring attractors.

    Article  CAS  PubMed  Google Scholar 

  155. Green, J. et al. A neural circuit architecture for angular integration in Drosophila. Nature 546, 101–106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Turner-Evans, D. B. et al. The neuroanatomical ultrastructure and function of a biological ring attractor. Neuron 108, 145–163.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. A model of the neural basis of the rat’s sense of direction. In Advances in Neural Information Processing Systems. 173–180 (NeurIPS, 1995). 

  158. Stone, T. et al. An anatomically constrained model for path integration in the bee brain. Curr. Biol. 27, 3069–3085 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lyu, C., Abbott, L. & Maimon, G. Building an allocentric travelling direction signal via vector computation. Nature 601, 92–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Asumbisa, K., Peyrache, A. & Trenholm, S. Flexible cue anchoring strategies enable stable head direction coding in both sighted and blind animals. Nat. Commun. 13, 5483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Guanella, A., Kiper, D. & Verschure, P. A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 17, 231–240 (2007).

    Article  PubMed  Google Scholar 

  163. Burak, Y. & Fiete, I. Do we understand the emergent dynamics of grid cell activity? J. Neurosci. 26, 9352–9354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Fyhn, M., Hafting, T., Treves, A., Moser, M.-B. & Moser, E. I. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Yoon, K., Lewallen, S., Kinkhabwala, A. A., Tank, D. W. & Fiete, I. R. Grid cell responses in 1D environments assessed as slices through a 2D lattice. Neuron 89, 1086–1099 (2016). This work shows that grid cell firing fields in linear tracks are well predicted by a one-dimensional slice through a two-dimensional hexagonal lattice, consistent with continuous-attractor dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kropff, E. & Treves, A. The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18, 1256–1269 (2008).

    Article  PubMed  Google Scholar 

  168. Dordek, Y., Soudry, D., Meir, R. & Derdikman, D. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. eLife 5, e10094 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Barry, C., Hayman, R., Burgess, N. & Jeffery, K. J. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 10, 682–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Boccara, C. N., Nardin, M., Stella, F., O’Neill, J. & Csicsvari, J. The entorhinal cognitive map is attracted to goals. Science 363, 1443–1447 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Butler, W. N., Hardcastle, K. & Giocomo, L. M. Remembered reward locations restructure entorhinal spatial maps. Science 363, 1447–1452 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Krupic, J., Bauza, M., Burton, S., Barry, C. & O’Keefe, J. Grid cell symmetry is shaped by environmental geometry. Nature 518, 232–235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hayman, R. M. A., Casali, G., Wilson, J. J. & Jeffery, K. J. Grid cells on steeply sloping terrain: evidence for planar rather than tric encoding. Front. Psychol. 6, 925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ginosar, G. et al. Locally ordered representation of 3D space in the entorhinal cortex. Nature 596, 404–409 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Grieves, R. M. et al. Irregular distribution of grid cell firing fields in rats exploring a 3D volumetric space. Nat. Neurosci. 24, 1567–1573 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Keinath, A. T., Epstein, R. A. & Balasubramanian, V. Environmental deformations dynamically shift the grid cell spatial metric. eLife 7, e38169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Welinder, P. E., Burak, Y. & Fiete, I. R. Grid cells: the position code, neural network models of activity, and the problem of learning. Hippocampus 18, 1283–1300 (2008).

    Article  PubMed  Google Scholar 

  179. Widloski, J. & Fiete, I. R. A model of grid cell development through spatial exploration and spike time-dependent plasticity. Neuron 83, 481–495 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Hardcastle, K., Ganguli, S. & Giocomo, L. M. Environmental boundaries as an error correction mechanism for grid cells. Neuron 86, 827–839 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Fiete, I. R., Burak, Y. & Brookings, T. What grid cells convey about rat location. J. Neurosci. 28, 6858–6871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

    Article  CAS  PubMed  Google Scholar 

  183. Constantinidis, C., Franowicz, M. N. & Goldman-Rakic, P. S. Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J. Neurosci. 21, 3646–3655 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Izhikevich, E. M. Dynamical Systems in Neuroscience (MIT Press, 2007).

  185. Ashwin, P., Coombes, S. & Nicks, R. Mathematical frameworks for oscillatory network dynamics in neuroscience. Math. Neurosci. 6, 1–92 (2016).

    Google Scholar 

  186. Adamantidis, A. R., Herrera, C. G. & Gent, T. C. Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 20, 746–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Bruno, A. M., Frost, W. N. & Humphries, M. D. A spiral attractor network drives rhythmic locomotion. eLife 6, e27342 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Nichols, A. L., Eichler, T., Latham, R. & Zimmer, M. A global brain state underlies C. elegans sleep behavior. Science 356, eaam6851 (2017).

    Article  PubMed  Google Scholar 

  189. Bucher, D., Haspel, G., Golowasch, J. & Nadim, F. Central pattern generators. eLS https://doi.org/10.1002/9780470015902.a0000032.pub2 (2015).

    Article  Google Scholar 

  190. Sauerbrei, B. A. et al. Cortical pattern generation during dexterous movement is input-driven. Nature 577, 386–391 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Marder, E. & Calabrese, R. L. Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996).

    Article  CAS  PubMed  Google Scholar 

  193. Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yuste, R., MacLean, J. N., Smith, J. & Lansner, A. The cortex as a central pattern generator. Nat. Rev. Neurosci. 6, 477–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. von der Heydt, R., Peterhans, E. & Baumgartner, G. Illusory contours and cortical neuron responses. Science 224, 1260–1262 (1984).

    Article  PubMed  Google Scholar 

  198. Grosof, D. H., Shapley, R. M. & Hawken, M. J. Macaque V1 neurons can signal ‘illusory’ contours. Nature 365, 550–552 (1993).

    Article  CAS  PubMed  Google Scholar 

  199. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986).

    Article  CAS  PubMed  Google Scholar 

  200. Zhong, W., Lu, Z., Schwab, D. J. & Murugan, A. Non-equilibrium statistical mechanics of continuous attractors. Neural Comput. 32, 1033–1068 (2020).

    Article  PubMed  Google Scholar 

  201. Fung, C. C. A. et al. Discrete-attractor-like tracking in continuous attractor neural networks. Phys. Rev. Lett. 122, 018102 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).

    Article  CAS  PubMed  Google Scholar 

  203. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  204. Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. & Miller, K. D. The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron 98, 846–860.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  PubMed  Google Scholar 

  206. Quirk, G. J., Muller, R. U. & Kubie, J. L. The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 10, 2008–2017 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  208. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    Article  CAS  PubMed  Google Scholar 

  209. Tsodyks, M. & Sejnowski, T. Associative memory and hippocampal place cells. Int. Neural Syst. 6, 81–86 (1995).

    Google Scholar 

  210. Samsonovich, A. & McNaughton, B. L. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17, 5900–5920 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Samsonovich, A. V. Attractor Map Theory of the Hippocampal Representation of Space. Ph.D. thesis (Univ. Arizona, 1997).

  212. Battista, A. & Monasson, R. Capacity-resolution trade-off in the optimal learning of multiple low-dimensional manifolds by attractor neural networks. Phys. Rev. Lett. 124, 048302 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Yim, M. Y., Sadun, L. A., Fiete, I. R. & Taillefumier, T. Place-cell capacity and volatility with grid-like inputs. eLife 10, e62702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Colgin, L. L., Moser, E. I. & Moser, M.-B. Understanding memory through hippocampal remapping. Trends Neurosci. 31, 469–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Alme, C. B. et al. Place cells in the hippocampus: eleven maps for eleven rooms. Proc. Natl Acad. Sci. USA 111, 18428–18435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Solstad, T., Moser, E. I. & Einevoll, G. T. From grid cells to place cells: a mathematical model. Hippocampus 16, 1026–1031 (2006).

    Article  PubMed  Google Scholar 

  217. Barry, C. et al. The boundary vector cell model of place cell firing and spatial memory. Rev. Neurosci. 17, 71–98 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Whittington, J. C. R. et al. The Tolman–Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kudrimoti, H., Barnes, C. & McNaughton, B. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Agmon, H. & Burak, Y. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability. eLife 9, e56894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Moran, D. W. & Schwartz, A. B. Motor cortical representation of speed and direction during reaching. J. Neurophysiol. 82, 2676–2692 (1999).

    Article  CAS  PubMed  Google Scholar 

  224. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Gallego, J. A. et al. Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. Nat. Commun. 9, 4233 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wehr, M. & Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  228. Rokni, U. & Sompolinsky, H. How the brain generates movement. Neural Comput. 24, 289–331 (2012).

    Article  PubMed  Google Scholar 

  229. Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5, e10989 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Klukas, M., Lewis, M. & Fiete, I. Efficient and flexible representation of higher-dimensional cognitive variables with grid cells. PLoS Comput. Biol. 16, e1007796 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state inference. eLife 9, e51140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Killian, N. J., Jutras, M. J. & Buffalo, E. A. A map of visual space in the primate entorhinal cortex. Nature 491, 761–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Hillar, C. J. & Tran, N. M. Robust exponential memory in Hopfield networks. Math. Neurosci. 8, 1 (2018).

    Article  Google Scholar 

  237. Fiete, I., Schwab, D. & Tran, N. M. in Proc. 2nd Workshop on Biological Distributed Algorithms https://fietelabmit.files.wordpress.com/2018/12/Ngoc_BDA_2014.pdf (2014).

  238. Mosheiff, N. & Burak, Y. Velocity coupling of grid cell modules enables stable embedding of a low dimensional variable in a high dimensional neural attractor. eLife 8, 48494 (2019).

    Article  Google Scholar 

  239. Muscinelli, S. P., Gerstner, W. & Brea, J. Exponentially long orbits in Hopfield neural networks. Neural Comput. 29, 458–484 (2017).

    Article  PubMed  Google Scholar 

  240. Mathis, A., Herz, A. & Stemmler, M. Optimal population codes for space: grid cells outperform place cells. Neural Comput. 24, 2280–2317 (2012).

    Article  PubMed  Google Scholar 

  241. Gardner, E. The space of interactions in neural network models. J. Phys. A Math. Gen. 21, 257 (1988).

    Article  Google Scholar 

  242. Gripon, V. & Berrou, C. Sparse neural networks with large learning diversity. IEEE Trans. Neural Netw. 22, 1087–1096 (2011).

    Article  PubMed  Google Scholar 

  243. Abu-Mostafa, Y. S. & St Jacques, J. Information capacity of the Hopfield model. IEEE Trans. Inf. Theory 31, 461–464 (1985).

    Article  Google Scholar 

  244. McEliece, R. J., Posner, E. C., Rodemich, E. R. & Venkatesh, S. S. The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theory 33, 461–482 (1987).

    Article  Google Scholar 

  245. Amit, D. J., Gutfreund, H. & Sompolinsky, H. Statistical mechanics of neural networks near saturation. Ann. Phys. 173, 30–67 (1987).

    Article  Google Scholar 

  246. Maheswaranathan, N., Williams, A. H., Golub, M. D., Ganguli, S. & Sussillo, D. Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics. In Advances in Neural Information Processing Systems 15696–15705 (NeurIPS, 2019). 

  247. Kanitscheider, I. & Fiete, I. Emergence of dynamically reconfigurable hippocampal responses by learning to perform probabilistic spatial reasoning. Preprint at bioRxiv https://doi.org/10.1101/231159 (2017).

    Article  Google Scholar 

  248. Schaeffer, R., Khona, M., Meshulam, L., International Brain Laboratory & Fiete, I. Reverse-engineering recurrent neural network solutions to a hierarchical inference task for mice. In Advances in Neural Information Processing Systems 4584–4596 (NeurIPS 2020).

  249. Kanitscheider, I. & Fiete, I. R. Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems. In Advances in Neural Information Processing Systems 4529–4538 (NeurIPS, 2017).

  250. Wang, X.-J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ermentrout, G. B. & Kopell, N. Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991).

    Article  Google Scholar 

  252. Boerlin, M., Machens, C. K. & Denève, S. Predictive coding of dynamical variables in balanced spiking networks. PLoS Comput. Biol. 9, e1003258 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Frady, E. P. & Sommer, F. T. Robust computation with rhythmic spike patterns. Proc. Natl Acad. Sci. USA 116, 18050–18059 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Darshan, R. & Rivkind, A. Learning to represent continuous variables in heterogeneous neural networks. Cell Rep. 39, 110612 (2021).

    Article  Google Scholar 

  255. Arnold, D. B. & Robinson, D. A. A learning network model of the neural integrator of the oculomotor system. Biol. Cybern. 64, 447–454 (1991).

    Article  CAS  PubMed  Google Scholar 

  256. Hahnloser, R. H. R., Seung, H. S. & Slotine, J.-J. Permitted and forbidden sets in symmetric threshold-linear networks. Neural Comput. 15, 621–638 (2003).

    Article  PubMed  Google Scholar 

  257. Seung, H. S. Learning continuous attractors in recurrent networks. In Advances in Neural Information Processing Systems 654–660 (NeurIPS, 1998).

  258. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Cueva, C. J. & Wei, X.-X. Emergence of functional and structural properties of the head direction system by optimization of recurrent neural networks. In Intl Conf. on Learning Representations 2020 https://openreview.net/forum?id=HklSeREtPB (2020).

  260. Schaeffer, R., Khona, M. & Fiete, I. R. in ICML 2022 2nd AI for Science Workshop https://openreview.net/forum?id=mxi1xKzNFrb (2022).

  261. Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Latham, P. E., Deneve, S. & Pouget, A. Optimal computation with attractor networks. J. Physiol. 97, 683–694 (2003).

    Google Scholar 

  263. Bouchacourt, F. & Buschman, T. J. A flexible model of working memory. Neuron 103, 147–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hasenstaub, A., Sachdev, R. N. S. & McCormick, D. A. State changes rapidly modulate cortical neuronal responsiveness. J. Neurosci. 27, 9607–9622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Aksay, E., Baker, R., Seung, H. S. & Tank, D. W. Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. J. Neurophysiol. 84, 1035–1049 (2000).

    Article  CAS  PubMed  Google Scholar 

  266. Godaux, E., Mettens, P. & Chéron, G. Differential effect of injections of kainic acid into the prepositus and the vestibular nuclei of the cat. J. Physiol. 472, 459–482 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 10, e66039 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Gu, Y. et al. A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell 175, 736–750.e30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Koulakov, A. A. & Chklovskii, D. B. Orientation preference patterns in mammalian visual cortex: a wire length minimization approach. Neuron 29, 519–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  270. Wills, T. J., Cacucci, F., Burgess, N. & O’Keefe, J. Development of the hippocampal cognitive map in preweanling rats. Science 328, 1573–1576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Langston, R. F. et al. Development of the spatial representation system in the rat. Science 328, 1576–1580 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I.R.F. acknowledges funding from the Simons Foundation, the Office of Naval Research, the Howard Hughes Medical Institute (HHMI) through the Faculty Scholars Program, the Department of Brain and Cognitive Sciences, MIT, and the McGovern Institute, MIT. M.K. is supported by a Friends of the McGovern Institute Fellowship, a MathWorks Fellowship and the Department of Physics, MIT. The authors thank X. J. Wang for helpful discussion on short-term memory and persistent activity, and K. Daie, the anonymous reviewers, S. Chandra and other members of the Fiete laboratory for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ila R. Fiete.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks A. Compte, who co-reviewed with J. Barbosa, and the other, anonymous, referee(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Associative memory

The ability to remember and recall the relationship (association) between arbitrary items or concepts.

Autonomous

Characterized by time evolution through internal dynamics, without external driving forces.

Eccentricity

The degree of deflection of the gaze in the horizontal plane relative to a neutral centred position.

Error backpropagation

A procedure for updating the weights of all layers in artificial neural networks (ANNs) based on gradients of an objective function.

Euclidean

A space where it is possible to construct an orthogonal coordinate system and define a particular metric structure.

Hippocampal replay

Ordered sequences of place cell activity during rest or sleep, typically corresponding to sequences that occurred during normal behaviour or their time-reversed counterparts.

Homeostatic plasticity

Plasticity mechanisms that maintain the state of a system by counteracting induced changes.

Hopfield networks

Content-addressable associative memory networks, in which distributed activity states are stabilized as attractor states by synaptic weights using Hebbian learning.

Nearest-neighbour computation

Identifying the closest target out of a set of target states from any starting state, where closest is usually defined by a standard distance metric (for example, Euclidean or Hamming).

Nonlinear neurons

Neurons with input–output response relationships that are nonlinear; that is, the change in the output is not directly proportional to the change of the input.

Non-trivial attractor states

Any attractor states other than the null activity state.

Persistent activity

Maintenance of the firing rate of a neuron about a non-trivial value after removal of the stimulus that induced elevated firing, for durations that exceed the membrane time constant.

Positive feedback

Interactions between elements in which increasing the level of one element increases the level of the other. Positive feedback includes mutual excitation and disinhibition or inhibition of one’s inhibitor.

Presynaptic facilitation

A form of short-term synaptic plasticity where the effect of presynaptic activity on the post-synaptic response is enhanced following recent presynaptic activity.

Simple cells

Neurons in the primary visual cortex (V1) of many vertebrate species that respond strongly to oriented edges and gratings of a particular spatial phase.

State space

The coordinate system in which each dimension corresponds to one of the variables of the dynamical system; often, the space is approximated by the spike counts of single neurons.

Synaptic hypothesis

The hypothesis that synaptic change is the substrate of learning and memory in the brain.

Symmetric weight matrices

Weight matrices W that satisfy WT = W; that is, that are invariant to reflection of their entries about their diagonal.

Turing pattern formation

A dynamic process dependent on positive feedback in which a spatial pattern of a particular wavelength is amplified whereas others are suppressed.

Unsupervised

Characterization of the structure in data without any prior training data that contains information about the relationship between the data and external variables.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khona, M., Fiete, I.R. Attractor and integrator networks in the brain. Nat Rev Neurosci 23, 744–766 (2022). https://doi.org/10.1038/s41583-022-00642-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00642-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing