Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defensive responses: behaviour, the brain and the body

Abstract

Most animals live under constant threat from predators, and predation has been a major selective force in shaping animal behaviour. Nevertheless, defence responses against predatory threats need to be balanced against other adaptive behaviours such as foraging, mating and recovering from infection. This behavioural balance in ethologically relevant contexts requires adequate integration of internal and external signals in a complex interplay between the brain and the body. Despite this complexity, research has often considered defensive behaviour as entirely mediated by the brain processing threat-related information obtained via perception of the external environment. However, accumulating evidence suggests that the endocrine, immune, gastrointestinal and reproductive systems have important roles in modulating behavioural responses to threat. In this Review, we focus on how predatory threat defence responses are shaped by threat imminence and review the circuitry between subcortical brain regions involved in mediating defensive behaviours. Then, we discuss the intersection of peripheral systems involved in internal states related to infection, hunger and mating with the neurocircuits that underlie defence responses against predatory threat. Through this process, we aim to elucidate the interconnections between the brain and body as an integrated network that facilitates appropriate defensive responses to threat and to discuss the implications for future behavioural research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defensive responses across the three phases of the threat imminence continuum and the underlying brain circuits.
Fig. 2: Transmission routes of infection signals to the brain.
Fig. 3: Crosstalk between the digestive system and the brain.
Fig. 4: Brain–body interactions modulating defensive behaviours.

Similar content being viewed by others

References

  1. Kozlowska, K., Walker, P., McLean, L. & Carrive, P. Fear and the defense cascade: clinical implications and management. Harv. Rev. Psychiatry 23, 263–287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bolles, R. C. Species-specific defense reactions and avoidance learning. Psychol. Rev. 77, 32–48 (1970).

    Article  Google Scholar 

  3. Miller, N. E. Studies of fear as an acquirable drive: I. Fear as motivation and fear-reduction as reinforcement in the learning of new responses. J. Exp. Psychol. Gen. 38, 89–101 (1948).

    Article  CAS  Google Scholar 

  4. Mowrer, O. H. Two-factor learning theory: summary and comment. Psychol. Rev. 58, 350–354 (1951).

    Article  CAS  PubMed  Google Scholar 

  5. Bolles, R. C. & Fanselow, M. S. A perceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3, 291–301 (1980).

    Article  Google Scholar 

  6. Fanselow, M. S. & Lester, L. S. in Evolution and Learning (eds Bolles, R. C. & Beecher, M. D.) 185–212 (Lawrence Erlbaum Associates, 1988).

  7. Qi, S. et al. How cognitive and reactive fear circuits optimize escape decisions in humans. Proc. Natl Acad. Sci. USA 115, 3186–3191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vieira, J. B., Schellhaas, S., Enström, E. & Olsson, A. Help or flight? Increased threat imminence promotes defensive helping in humans. Proc. Biol. Sci. 287, 20201473 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Mobbs, D., Headley, D. B., Ding, W. & Dayan, P. Space, time, and fear: survival computations along defensive circuits. Trends Cogn. Sci. 24, 228–241 (2020).

    Article  PubMed  Google Scholar 

  10. Kawai, N., Kono, R. & Sugimoto, S. Avoidance learning in the crayfish (Procambarus clarkii) depends on the predatory imminence of the unconditioned stimulus: a behavior systems approach to learning in invertebrates. Behav. Brain Res. 150, 229–237 (2004).

    Article  PubMed  Google Scholar 

  11. Fanselow, M. S. Negative valence systems: sustained threat and the predatory imminence continuum. Emerg. Top. Life Sci. 6, 467–477 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cantor, C. Post-traumatic stress disorder: evolutionary perspectives. Aust. N. Z. J. Psychiatry 43, 1038–1048 (2009).

    Article  PubMed  Google Scholar 

  13. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Larson, S. J. & Dunn, A. J. Behavioral effects of cytokines. Brain Behav. Immun. 15, 371–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Dantzer, R. Cytokine-induced sickness behavior: where do we stand? Brain Behav. Immun. 15, 7–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Alzarea, S. & Rahman, S. Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice. Behav. Brain Res. 366, 19–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Wieczorek, M., Swiergiel, A. H., Pournajafi-Nazarloo, H. & Dunn, A. J. Physiological and behavioral responses to interleukin-1beta and LPS in vagotomized mice. Physiol. Behav. 85, 500–511 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tillinger, A. & Mravec, B. Vagotomy affects lipopolysaccharide-induced changes of urocortin 2 gene expression in the brain and on the periphery. Neurochem. Res. 46, 159–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Bercik, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol. Motil. 23, 1132–1139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanida, M. et al. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci. Lett. 389, 109–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bitran, D., Kellogg, C. K. & Hilvers, R. J. Treatment with an anabolic-androgenic steroid affects anxiety-related behavior and alters the sensitivity of cortical GABAA receptors in the rat. Horm. Behav. 27, 568–583 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Singh, D. K., Hari Dass, S. A., Abdulai-Saiku, S. & Vyas, A. Testosterone acts within the medial amygdala of rats to reduce innate fear to predator odor akin to the effects of Toxoplasma gondii infection. Front. Psychiatry 11, 630 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Frye, C. A. & Seliga, A. M. Testosterone increases analgesia, anxiolysis, and cognitive performance of male rats. Cogn. Affect. Behav. Neurosci. 1, 371–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Pentkowski, N. S., Litvin, Y., Blanchard, D. C. & Blanchard, R. J. Effects of estrus cycle stage on defensive behavior in female Long–Evans hooded rats. Physiol. Behav. 194, 41–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Pham, T. A. & Lawley, T. D. Emerging insights on intestinal dysbiosis during bacterial infections. Curr. Opin. Microbiol. 17, 67–74 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Comeras, L. B., Herzog, H. & Tasan, R. O. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann. N. Y. Acad. Sci. 1455, 59–80 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Verma, D. et al. Hunger promotes fear extinction by activation of an amygdala microcircuit. Neuropsychopharmacology 41, 431–439 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, C. C., Chou, D., Yeh, C. M. & Hsu, K. S. Acute food deprivation enhances fear extinction but inhibits long-term depression in the lateral amygdala via ghrelin signaling. Neuropharmacology 101, 36–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Jensen, M. et al. Anxiolytic-like effects of increased ghrelin receptor signaling in the amygdala. Int. J. Neuropsychopharmacol. 19, pyv123 (2016).

    Article  PubMed  Google Scholar 

  35. Tóth, K., László, K., Lukács, E. & Lénárd, L. Intraamygdaloid microinjection of acylated-ghrelin influences passive avoidance learning. Behav. Brain Res. 202, 308–311 (2009).

    Article  PubMed  Google Scholar 

  36. Flavell, S. W., Gogolla, N., Lovett-Barron, M. & Zelikowsky, M. The emergence and influence of internal states. Neuron 110, 2545–2570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marx, W., Moseley, G., Berk, M. & Jacka, F. Nutritional psychiatry: the present state of the evidence. Proc. Nutr. Soc. 76, 427–436 (2017).

    Article  PubMed  Google Scholar 

  38. Tang, F., Wang, G. & Lian, Y. Association between anxiety and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies. Psychoneuroendocrinology 77, 112–121 (2017).

    Article  PubMed  Google Scholar 

  39. Wang, J. et al. Influence of gut microbiota on resilience and its possible mechanisms. Int. J. Biol. Sci. 19, 2588–2598 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J. & Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 42, 254–270 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Colombetti, G. & Zavala, E. Are emotional states based in the brain? A critique of affective brainocentrism from a physiological perspective. Biol. Philos. 34, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carr, J. A. I’ll take the low road: the evolutionary underpinnings of visually triggered fear. Front. Neurosci. 9, 414 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blanchard, D. C., Hynd, A. L., Minke, K. A., Minemoto, T. & Blanchard, R. J. Human defensive behaviors to threat scenarios show parallels to fear- and anxiety-related defense patterns of non-human mammals. Neurosci. Biobehav. Rev. 25, 761–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Perusini, J. N. & Fanselow, M. S. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn. Mem. 22, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moscarello, J. M. & Penzo, M. A. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat. Neurosci. 25, 999–1008 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Roelofs, K. & Dayan, P. Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat. Rev. Neurosci. 23, 568–580 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Mobbs, D. et al. From threat to fear: the neural organization of defensive fear systems in humans. J. Neurosci. 29, 12236–12243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lerner, M. Comparative aspects of human and animal hypnosis. Am. J. Clin. Hypn. 5, 57–60 (1962).

    Article  CAS  PubMed  Google Scholar 

  49. Blanchard, D. C. & Blanchard, R. J. Ethoexperimental approaches to the biology of emotion. Annu. Rev. Psychol. 39, 43–68 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Lang, P. J. et al. (eds) Attention and Orienting: Sensory and Motivational Processes (Lawrence Erlbaum Associates, 1997).

  51. Li, Z. et al. Corticostriatal control of defense behavior in mice induced by auditory looming cues. Nat. Commun. 12, 1040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wei, P. et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9, 1232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zelikowsky, M. et al. The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell 173, 1265–1279.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blanchard, R. J. & Blanchard, D. C. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry 13, S3–S14 (1989).

    Article  PubMed  Google Scholar 

  57. Bracha, H. S. Freeze, flight, fight, fright, faint: adaptationist perspectives on the acute stress response spectrum. CNS Spectr. 9, 679–685 (2004).

    Article  PubMed  Google Scholar 

  58. Bracha, H. S., Ralston, T. C., Matsukawa, J. M., Williams, A. E. & Bracha, A. S. Does “fight or flight” need updating? Psychosomatics 45, 448–449 (2004).

    Article  PubMed  Google Scholar 

  59. Humphreys, R. K. & Ruxton, G. D. A review of thanatosis (death feigning) as an anti-predator behaviour. Behav. Ecol. Sociobiol. 72, 22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carli, G. & Farabollini, F. (eds) Defence from Invertebrates to Mammals: Focus on Tonic Immobility Vol. 271 (Elsevier, 2022).

  61. Crawford, M. & Masterson, F. A. Species-specific defense reactions and avoidance learning. An evaluative review. Pavlov. J. Biol. Sci. 17, 204–214 (1982).

    Article  CAS  PubMed  Google Scholar 

  62. Blanchard, D. C., Blanchard, R. J. & Griebel, G. Defensive responses to predator threat in the rat and mouse. Curr. Protoc. Neurosci. https://doi.org/10.1002/0471142301.ns0819s30 (2005).

  63. Blanchard, D. C., Yang, M., Hebert, M. & Blanchard, R. J. in Encyclopedia of Stress 2nd edn (ed Fink, G. J.) pp. 722–726 (Academic, 2007).

  64. Mobbs, D., Hagan, C. C., Dalgleish, T., Silston, B. & Prévost, C. The ecology of human fear: survival optimization and the nervous system. Front. Neurosci. 9, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martínez-García, F. & Lanuza, E. Evolution of vertebrate survival circuits. Curr. Opin. Behav. Sci. 24, 113–123 (2018).

    Article  Google Scholar 

  66. Sewards, T. V. & Sewards, M. A. Innate visual object recognition in vertebrates: some proposed pathways and mechanisms. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 132, 861–891 (2002).

    Article  Google Scholar 

  67. Vagnoni, E., Lourenco, S. F. & Longo, M. R. Threat modulates perception of looming visual stimuli. Curr. Biol. 22, R826–R827 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Blanchard, R. J. & Blanchard, D. C. Defensive reactions in the albino rat. Learn. Motiv. 2, 351–362 (1971).

    Article  Google Scholar 

  69. Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Schiff, W., Caviness, J. A. & Gibson, J. J. Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science 136, 982–983 (1962).

    Article  CAS  PubMed  Google Scholar 

  71. Ghazanfar, A. A., Neuhoff, J. G. & Logothetis, N. K. Auditory looming perception in rhesus monkeys. Proc. Natl Acad. Sci. USA 99, 15755–15757 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maier, J. X., Neuhoff, J. G., Logothetis, N. K. & Ghazanfar, A. A. Multisensory integration of looming signals by rhesus monkeys. Neuron 43, 177–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Romei, V., Murray, M. M., Cappe, C. & Thut, G. Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Curr. Biol. 19, 1799–1805 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Baumgartner, R. et al. Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proc. Natl Acad. Sci. USA 114, 9743–9748 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Basso, M. A., Bickford, M. E. & Cang, J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 109, 918–937 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Franceschi, G., Vivattanasarn, T., Saleem, A. B. & Solomon, S. G. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26, 2150–2154 (2016).

    Article  PubMed  Google Scholar 

  77. Wang, F., Li, E., De, L., Wu, Q. & Zhang, Y. OFF-transient alpha RGCs mediate looming triggered innate defensive response. Curr. Biol. 31, 2263–2273.e2263 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Cai, D., Luo, X., Shen, K. & Shen, Y. GABAergic retinal ganglion cells regulate innate defensive responses. Neuroreport 32, 643–649 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Perry, V. H. & Cowey, A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12, 1125–1137 (1984).

    Article  CAS  PubMed  Google Scholar 

  80. Wurtz, R. H. & Goldberg, M. E. Superior colliculus cell responses related to eye movements in awake monkeys. Science 171, 82–84 (1971).

    Article  CAS  PubMed  Google Scholar 

  81. Stein, B. E. Development of the superior colliculus. Annu. Rev. Neurosci. 7, 95–125 (1984).

    Article  CAS  PubMed  Google Scholar 

  82. Koller, K., Rafal, R. D., Platt, A. & Mitchell, N. D. Orienting toward threat: contributions of a subcortical pathway transmitting retinal afferents to the amygdala via the superior colliculus and pulvinar. Neuropsychologia 128, 78–86 (2019).

    Article  PubMed  Google Scholar 

  83. Shang, C. et al. BRAIN CIRCUITS. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348, 1472–1477 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, Z. et al. A VTA GABAergic neural circuit mediates visually evoked innate defensive responses. Neuron 103, 473–488.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Terburg, D. et al. The basolateral amygdala is essential for rapid escape: a human and rodent study. Cell 175, 723–735.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McFadyen, J., Dolan, R. J. & Garrido, M. I. The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat. Rev. Neurosci. 21, 264–276 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 19, 269–282 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Lefler, Y., Campagner, D. & Branco, T. The role of the periaqueductal gray in escape behavior. Curr. Opin. Neurobiol. 60, 115–121 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Bandler, R. & Carrive, P. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res. 439, 95–106 (1988).

    Article  CAS  PubMed  Google Scholar 

  91. Meller, S. T. & Dennis, B. J. Afferent projections to the periaqueductal gray in the rabbit. Neuroscience 19, 927–964 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Klop, E. M., Mouton, L. J. & Holstege, G. Periparabigeminal and adjoining mesencephalic tegmental field projections to the dorsolateral periaqueductal grey in cat — a possible role for oculomotor input in the defensive system. Eur. J. Neurosci. 23, 2145–2157 (2006).

    Article  PubMed  Google Scholar 

  93. Fanselow, M. S., Decola, J. P., De Oca, B. M. & Landeira-Fernandez, J. Ventral and dorsolateral regions of the midbrain periaqueductal gray (PAG) control different stages of defensive behavior: dorsolateral PAG lesions enhance the defensive freezing produced by massed and immediate shock. Aggress. Behav. 21, 63–77 (1995).

    Article  Google Scholar 

  94. Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Kennedy, A. et al. Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature 586, 730–734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, L., Chen, I. Z. & Lin, D. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344–1358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wilent, W. B. et al. Mapping of microstimulation evoked responses and unit activity patterns in the lateral hypothalamic area recorded in awake humans. Technical note. J. Neurosurg. 115, 295–300 (2011).

    Article  PubMed  Google Scholar 

  99. Wilent, W. B. et al. Induction of panic attack by stimulation of the ventromedial hypothalamus. J. Neurosurg. 112, 1295–1298 (2010).

    Article  PubMed  Google Scholar 

  100. Wang, W. et al. Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. eLife 10, e69178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, D. J., Lee, A. S., Yttredahl, A. A., Gómez-Rodríguez, R. & Anderson, B. J. Repeated threat (without direct harm) alters metabolic capacity in select regions that drive defensive behavior. Neuroscience 353, 106–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Cezario, A. F., Ribeiro-Barbosa, E. R., Baldo, M. V. & Canteras, N. S. Hypothalamic sites responding to predator threats — the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. Eur. J. Neurosci. 28, 1003–1015 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, W. et al. Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron 109, 1848–1860.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xie, Z. et al. Mechanically evoked defensive attack is controlled by GABAergic neurons in the anterior hypothalamic nucleus. Nat. Neurosci. 25, 72–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Rossier, D., La Franca, V., Salemi, T., Natale, S. & Gross, C. T. A neural circuit for competing approach and defense underlying prey capture. Proc. Natl Acad. Sci. USA 118, e2013411118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barbano, M. F. et al. VTA glutamatergic neurons mediate innate defensive behaviors. Neuron 107, 368–382.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, S. Y. et al. Control of behavioral arousal and defense by a glutamatergic midbrain-amygdala pathway in mice. Front. Neurosci. 16, 850193 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Daviu, N. et al. Paraventricular nucleus CRH neurons encode stress controllability and regulate defensive behavior selection. Nat. Neurosci. 23, 398–410 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Tseng, Y. T. et al. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 110, 1223–1239.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Monassi, C. R., Leite-Panissi, C. R. & Menescal-de-Oliveira, L. Ventrolateral periaqueductal gray matter and the control of tonic immobility. Brain Res. Bull. 50, 201–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Donatti, A. F. & Leite-Panissi, C. R. GABAergic antagonist blocks the reduction of tonic immobility behavior induced by activation of 5-HT2 receptors in the basolateral nucleus of the amygdala in guinea pigs. Brain Res. Bull. 79, 358–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. de Oliveira, L., Hoffmann, A. & Menescal-de-Oliveira, L. The lateral hypothalamus in the modulation of tonic immobility in guinea pigs. Neuroreport 8, 3489–3493 (1997).

    Article  PubMed  Google Scholar 

  113. Griessner, J. et al. Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Mol. Psychiatry 26, 534–544 (2021).

    Article  PubMed  Google Scholar 

  114. Sun, Y., Qian, L., Xu, L., Hunt, S. & Sah, P. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala. Mol. Psychiatry https://doi.org/10.1038/s41380-020-00894-1 (2020).

  115. Adhikari, A. et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527, 179–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiao, Q. et al. A new GABAergic somatostatin projection from the BNST onto accumbal parvalbumin neurons controls anxiety. Mol. Psychiatry 26, 4719–4741 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Avery, S. N., Clauss, J. A. & Blackford, J. U. The human BNST: functional role in anxiety and addiction. Neuropsychopharmacology 41, 126–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Kim, S.-Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Andreatta, M. et al. Initial and sustained brain responses to contextual conditioned anxiety in humans. Cortex 63, 352–363 (2015).

    Article  PubMed  Google Scholar 

  120. Buff, C. et al. Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder. Soc. Cogn. Affect. Neurosci. 12, 1766–1774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Deng, H., Xiao, X. & Wang, Z. Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. J. Neurosci. 36, 7580–7588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sukikara, M. H., Mota-Ortiz, S. R., Baldo, M. V., Felicio, L. F. & Canteras, N. S. The periaqueductal gray and its potential role in maternal behavior inhibition in response to predatory threats. Behav. Brain Res. 209, 226–233 (2010).

    Article  PubMed  Google Scholar 

  123. Damasio, A. & Carvalho, G. B. The nature of feelings: evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14, 143–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Evans, D. A., Stempel, A. V., Vale, R. & Branco, T. Cognitive control of escape behaviour. Trends Cogn. Sci. 23, 334–348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Quagliato, L. A. & Nardi, A. E. Cytokine alterations in panic disorder: a systematic review. J. Affect. Disord. 228, 91–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Banks, W. A., Kastin, A. J. & Broadwell, R. D. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2, 241–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Miller, A. H. Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: psychoneuroimmunology at the translational interface. Brain Behav. Immun. 23, 149–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Engler, H. et al. Acute amygdaloid response to systemic inflammation. Brain Behav. Immun. 25, 1384–1392 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Hassanain, M., Bhatt, S., Zalcman, S. & Siegel, A. Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat. Brain Res. 1048, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Bhatt, S., Bhatt, R., Zalcman, S. S. & Siegel, A. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat. Brain Behav. Immun. 22, 224–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Steinberg, B. E. et al. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectron. Med. 3, 7–17 (2016).

    Article  PubMed  Google Scholar 

  132. Salvador, A. F., de Lima, K. A. & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21, 526–541 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Wan, W., Wetmore, L., Sorensen, C. M., Greenberg, A. H. & Nance, D. M. Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res. Bull. 34, 7–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Niijima, A. The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat. J. Auton. Nerv. Syst. 61, 287–291 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Kurosawa, M., Uvnäs-Moberg, K., Miyasaka, K. & Lundeberg, T. Interleukin-1 increases activity of the gastric vagal afferent nerve partly via stimulation of type A CCK receptor in anesthetized rats. J. Auton. Nerv. Syst. 62, 72–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Ericsson, A., Kovács, K. J. & Sawchenko, P. E. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J. Neurosci. 14, 897–913 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Kawai, Y. Differential ascending projections from the male rat caudal nucleus of the tractus solitarius: an interface between local microcircuits and global macrocircuits. Front. Neuroanat. 12, 63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ghosal, S., Bundzikova-Osacka, J., Dolgas, C. M., Myers, B. & Herman, J. P. Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses. Psychoneuroendocrinology 45, 142–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Holt, M. K., Valderrama, N., Polanco, M. J. & Rinaman, L. Modulation of stress-related behaviour by hypothalamic engagement of preproglucagon neurons in the nucleus of the solitary tract. Preprint at bioRxiv https://doi.org/10.1101/2022.02.04.479117 (2022).

  141. Harrison, N. A. et al. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol. Psychiatry 66, 407–414 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Clark, S. M. et al. Immune status influences fear and anxiety responses in mice after acute stress exposure. Brain Behav. Immun. 38, 192–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Fan, K. Q. et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 179, 864–879.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Brebner, K., Hayley, S., Zacharko, R., Merali, Z. & Anisman, H. Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology 22, 566–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Manley, K., Han, W., Zelin, G. & Lawrence, D. A. Crosstalk between the immune, endocrine, and nervous systems in immunotoxicology. Curr. Opin. Toxicol. 10, 37–45 (2018).

    Article  Google Scholar 

  146. Sternberg, E. M., Chrousos, G. P., Wilder, R. L. & Gold, P. W. The stress response and the regulation of inflammatory disease. Ann. Intern. Med. 117, 854–866 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Swanson, L. W. & Sawchenko, P. E. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31, 410–417 (1980).

    Article  CAS  PubMed  Google Scholar 

  148. Bains, J. S., Wamsteeker Cusulin, J. I. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat. Rev. Neurosci. 16, 377–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Denver, R. J. Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann. N. Y. Acad. Sci. 1163, 1–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Gentsch, C., Lichtsteiner, M. & Feer, H. Locomotor activity, defecation score and corticosterone levels during an openfield exposure: a comparison among individually and group-housed rats, and genetically selected rat lines. Physiol. Behav. 27, 183–186 (1981).

    Article  CAS  PubMed  Google Scholar 

  151. Myers, B., McKlveen, J. M. & Herman, J. P. Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front. Neuroendocrinol. 35, 180–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Kalin, N. H., Shelton, S. E., Rickman, M. & Davidson, R. J. Individual differences in freezing and cortisol in infant and mother rhesus monkeys. Behav. Neurosci. 112, 251–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Buss, K. A., Davidson, R. J., Kalin, N. H. & Goldsmith, H. H. Context-specific freezing and associated physiological reactivity as a dysregulated fear response. Dev. Psychol. 40, 583–594 (2004).

    Article  PubMed  Google Scholar 

  154. Walf, A. A. & Frye, C. A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2, 322–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lyte, M., Li, W., Opitz, N., Gaykema, R. P. & Goehler, L. E. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89, 350–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Kittana, H. et al. Commensal Escherichia coli strains can promote intestinal inflammation via differential interleukin-6 production. Front. Immunol. 9, 2318 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Messaoudi, M. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burnett, C. J. et al. Hunger-driven motivational state competition. Neuron 92, 187–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Su, Z., Alhadeff, A. L. & Betley, J. N. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 21, 2724–2736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Baver, S. B. et al. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J. Neurosci. 34, 5486–5496 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Deem, J. D., Faber, C. L. & Morton, G. J. AgRP neurons: regulators of feeding, energy expenditure, and behavior. FEBS J. 289, 2362–2381 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat. Neurosci. 19, 734–741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Aklan, I. et al. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab. 31, 313–326.e315 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Fritz, E. M., Singewald, N. & De Bundel, D. The good, the bad and the unknown aspects of ghrelin in stress coping and stress-related psychiatric disorders. Front. Synaptic Neurosci. 12, 594484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kharitonenkov, A. & DiMarchi, R. FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol. Metab. 26, 608–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 78, 223–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Sa-Nguanmoo, P., Chattipakorn, N. & Chattipakorn, S. C. Potential roles of fibroblast growth factor 21 in the brain. Metab. Brain Dis. 31, 239–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Usui, N. et al. Roles of fibroblast growth factor 21 in the control of depression-like behaviours after social defeat stress in male rodents. J. Neuroendocrinol. 33, e13026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, Y. et al. Exposure of male mice to perfluorooctanoic acid induces anxiety-like behaviors by increasing corticotropin-releasing factor in the basolateral amygdala complex. Chemosphere 287, 132170 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Frederich, R. C. et al. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J. Clin. Invest. 96, 1658–1663 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Finger, B. C., Dinan, T. G. & Cryan, J. F. Leptin-deficient mice retain normal appetitive spatial learning yet exhibit marked increases in anxiety-related behaviours. Psychopharmacology 210, 559–568 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Liu, J., Perez, S. M., Zhang, W., Lodge, D. J. & Lu, X. Y. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol. Psychiatry 16, 1024–1038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, W. et al. Leptin: a potential anxiolytic by facilitation of fear extinction. CNS Neurosci. Ther. 21, 425–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Harvey, J. Leptin: a diverse regulator of neuronal function. J. Neurochem. 100, 307–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Appleton, J. The gut-brain axis: influence of microbiota on mood and mental health. Integr. Med. 17, 28–32 (2018).

    Google Scholar 

  178. Leeuwendaal, N. K., Cryan, J. F. & Schellekens, H. Gut peptides and the microbiome: focus on ghrelin. Curr. Opin. Endocrinol. Diabetes Obes. 28, 243–252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Asakawa, A. et al. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology 74, 143–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Spencer, S. J. et al. Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress. Biol. Psychiatry 72, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Heiman, M. L. et al. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 138, 3859–3863 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Bonnavion, P., Jackson, A. C., Carter, M. E. & de Lecea, L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat. Commun. 6, 6266 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Liang, Q. et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63, 4064–4075 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Hsuchou, H., Pan, W. & Kastin, A. J. The fasting polypeptide FGF21 can enter brain from blood. Peptides 28, 2382–2386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kaprara, A. & Huhtaniemi, I. T. The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism 86, 3–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Roselli, C. F. Brain aromatase: roles in reproduction and neuroprotection. J. Steroid Biochem. Mol. Biol. 106, 143–150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Celotti, F., Negri-Cesi, P. & Poletti, A. Steroid metabolism in the mammalian brain: 5alpha-reduction and aromatization. Brain Res. Bull. 44, 365–375 (1997).

    Article  CAS  PubMed  Google Scholar 

  188. Kauffman, A. S. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front. Neurosci. 16, 953252 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fink, G. Oestrogen and progesterone interactions in the control of gonadotrophin and prolactin secretion. J. Steroid Biochem. 30, 169–178 (1988).

    Article  CAS  PubMed  Google Scholar 

  190. Harding, C. F. Social modulation of circulating hormone levels in the male1. Am. Zool. 21, 223–231 (2015).

    Article  Google Scholar 

  191. Grebe, N. M., Sarafin, R. E., Strenth, C. R. & Zilioli, S. Pair-bonding, fatherhood, and the role of testosterone: a meta-analytic review. Neurosci. Biobehav. Rev. 98, 221–233 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Ventura-Aquino, E., Fernández-Guasti, A. & Paredes, R. G. Hormones and the Coolidge effect. Mol. Cell. Endocrinol. 467, 42–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. He, F., Yu, P. & Wu, R. Relationship between sexual satiety and motivation, brain androgen receptors and testosterone in male mandarin voles. Behav. Brain Res. 250, 257–263 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Aikey, J. L., Nyby, J. G., Anmuth, D. M. & James, P. J. Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm. Behav. 42, 448–460 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Tong, W. H., Abdulai-Saiku, S. & Vyas, A. Testosterone reduces fear and causes drastic hypomethylation of arginine vasopressin promoter in medial extended amygdala of male mice. Front. Behav. Neurosci. 13, 33 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Auger, C. J., Coss, D., Auger, A. P. & Forbes-Lorman, R. M. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. Proc. Natl Acad. Sci. USA 108, 4242–4247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Viau, V. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J. Neuroendocrinol. 14, 506–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Magnhagen, C. Predation risk as a cost of reproduction. Trends Ecol. Evol. 6, 183–186 (1991).

    Article  CAS  PubMed  Google Scholar 

  199. Handy, A. B., Greenfield, S. F., Yonkers, K. A. & Payne, L. A. Psychiatric symptoms across the menstrual cycle in adult women: a comprehensive review. Harv. Rev. Psychiatry 30, 100–117 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Nillni, Y. I., Rasmusson, A. M., Paul, E. L. & Pineles, S. L. The impact of the menstrual cycle and underlying hormones in anxiety and PTSD: what do we know and where do we go from here? Curr. Psychiatry Rep. 23, 8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Green, S. A. & Graham, B. M. Symptom fluctuation over the menstrual cycle in anxiety disorders, PTSD, and OCD: a systematic review. Arch. Women’s Ment. Health 25, 71–85 (2022).

    Article  Google Scholar 

  202. Dallman, M. F. et al. in Hormones, Brain and Behavior (eds Pfaff, D. W. et al.) 571–631 (Academic, 2002).

  203. Nesse, R. M. Evolutionary psychiatry: foundations, progress and challenges. World Psychiatry 22, 177–202 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Silva, B. A., Gross, C. T. & Graff, J. The neural circuits of innate fear: detection, integration, action, and memorization. Learn. Mem. 23, 544–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Branco, T. & Redgrave, P. The neural basis of escape behavior in vertebrates. Annu. Rev. Neurosci. 43, 417–439 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  208. Vazquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Willmore, L., Cameron, C., Yang, J., Witten, I. B. & Falkner, A. L. Behavioural and dopaminergic signatures of resilience. Nature 611, 124–132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Campagner, D. et al. A cortico-collicular circuit for orienting to shelter during escape. Nature 613, 111–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Signoret-Genest, J. et al. Integrated cardio-behavioral responses to threat define defensive states. Nat. Neurosci. 26, 447–457 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wiltschko, A. B. et al. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat. Neurosci. 23, 1433–1443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tseng, Y. T. et al. Systematic evaluation of a predator stress model of depression in mice using a hierarchical 3D-motion learning framework. Transl. Psychiatry 13, 178 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Urai, A. E., Doiron, B., Leifer, A. M. & Churchland, A. K. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all scientists whose studies were reviewed in this paper and apologize to those whose work was not cited owing to space limitations. The authors thank B. H. Zhao for assistance with illustrations. This work was supported by grants from the National Natural Science Foundation of China (32230042 and 31930047 to L.W., 32200826 to Y.-T.T. and 32222036 to P.W.), the Shenzhen Science and Technology Program (KCXFZ20211020163549011 to B.S. and JCYJ20220530154412028 to Y.-T.T.) and the Financial Support for Outstanding Talents Training Fund in Shenzhen (L.W.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Liping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Moriel Zelikowsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adaptive behaviour

Behaviour is adaptive in an evolutionary sense if it increases genetic fitness, usually by promoting the survival and reproduction of an organism or that of close kin, which can coincide with negative emotional states such as anxiety or fear.

Auditory looming assay

Behavioural test in which an animal is exposed to sudden increasing sounds induced by broadband white noise, triggering circa-strike phase defensive behaviours.

Conditioned fear

A learned defensive response elicited by a previously neutral stimulus (conditioned stimulus) that has been paired with an aversive event (unconditioned stimulus).

Defence vigour

Physical strength of the execution of defensive behaviours. For example, an increase in speed during escape and increased durations of avoidance or persistent freezing can be considered increased defence vigour.

Dysbiotic microbiota

An imbalance or disruption in bacterial composition, metabolic activities or distribution within the intestinal tract, often leading to negative health consequences such as inflammation and disease.

Elevated plus maze

Behavioural test in which an animal explores elevated open and enclosed arms and in which reduced entries into open arms indicate enhanced defensive behaviour in the pre-encounter phase and an anxiety-like state.

Maladaptive behaviour

Behaviour patterns that are adaptive in some contexts can become maladaptive in an evolutionary sense when they are displayed in the wrong context or with excessive vigour and, thereby, prevent the execution of adequate adaptive behaviours, ultimately reducing the survival chances and reproductive success of the organism.

Open field test

Behavioural test in which an animal explores an unstructured open arena and the increased avoidance of central areas indicates enhanced defensive behaviours in the pre-encounter phase (often referred to as anxiety-related behaviour).

Optogenetics

An approach involving the expression of light-sensitive ion channels or pumps in specific cells, allowing cellular or organ activity to be manipulated by light with high spatial and temporal precision.

Phase shifts in the threat imminence continuum

Phase shifts in the threat imminence continuum refer to the phenomenon when behaviour patterns typical for one phase of the continuum are activated earlier (at lower imminence) or later (at higher imminence) than typically observed. They may be adaptive in some contexts or maladaptive in others.

Visual looming assay

Behavioural test in which an animal is exposed to rapidly expanding dark overhead spots that serve as visual cues simulating approaching threats, triggering circa-strike phase defensive behaviours.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, YT., Schaefke, B., Wei, P. et al. Defensive responses: behaviour, the brain and the body. Nat. Rev. Neurosci. 24, 655–671 (2023). https://doi.org/10.1038/s41583-023-00736-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00736-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing