Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease

Abstract

The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Network pathophysiology in mouse models of familial Alzheimer disease.
Fig. 2: A new paradigm for the transition from presymptomatic to symptomatic phases of Alzheimer disease.

Similar content being viewed by others

References

  1. Jack, C. R. Jr et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    PubMed  Google Scholar 

  2. Vermunt, L. et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 15, 888–898 (2019).

    PubMed  Google Scholar 

  3. Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Price, J. L. & Morris, J. C. Tangles and plaques in nondemented aging and ‘preclinical’ Alzheimer’s disease. Ann. Neurol. 45, 358–368 (1999).

    CAS  PubMed  Google Scholar 

  6. Price, J. L. et al. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol. Aging 30, 1026–1036 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Bejanin, A. et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140, 3286–3300 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Efthymiou, A. G. & Goate, A. M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener. 12, 43 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    PubMed  Google Scholar 

  10. Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B. L. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 16, 311–322 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Frere, S. & Slutsky, I. Alzheimer’s disease: from firing instability to homeostasis network collapse. Neuron 97, 32–58 (2018).

    CAS  PubMed  Google Scholar 

  12. Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann. Neurol. 80, 858–870 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23, 678–680 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kam, K., Duffy, Á. M., Moretto, J., LaFrancois, J. J. & Scharfman, H. E. Interictal spikes during sleep are an early defect in the Tg2576 mouse model of β-amyloid neuropathology. Sci. Rep. 6, 20119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zarhin, D. et al. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep. 38, 110268 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Winer, J. R. et al. Sleep disturbance forecasts β-amyloid accumulation across subsequent years. Curr. Biol. 30, 4291–4298.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lucey, B. P. et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 83, 197–204 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Holth, J. K. et al. The sleep–wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363, 880–884 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Roh, J. H. et al. Disruption of the sleep–wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci. Transl. Med. 4, 150ra122 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Holth, J. K., Mahan, T. E., Robinson, G. O., Rocha, A. & Holtzman, D. M. Altered sleep and EEG power in the P301S tau transgenic mouse model. Ann. Clin. Transl. Neurol. 4, 180–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, C. & Holtzman, D. M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 45, 104–120 (2020).

    CAS  PubMed  Google Scholar 

  22. Styr, B. & Slutsky, I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat. Neurosci. 21, 463–473 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

    CAS  PubMed  Google Scholar 

  24. Borbély, A. A., Baumann, F., Brandeis, D., Strauch, I. & Lehmann, D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 51, 483–493 (1981).

    PubMed  Google Scholar 

  25. Brunner, D. P., Dijk, D.-J. & Borbély, A. A. Repeated partial sleep deprivation progressively changes the EEG during sleep and wakefulness. Sleep 16, 100–113 (1993).

    CAS  PubMed  Google Scholar 

  26. Lorenzo, I., Ramos, J., Arce, C., Guevara, M. & Corsi-Cabrera, M. Effect of total sleep deprivation on reaction time and waking EEG activity in man. Sleep 18, 346–354 (1995).

    CAS  PubMed  Google Scholar 

  27. Ambrosius, U. et al. Heritability of sleep electroencephalogram. Biol. Psychiatry 64, 344–348 (2008).

    PubMed  Google Scholar 

  28. De Gennaro, L. et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann. Neurol. 64, 455–460 (2008).

    PubMed  Google Scholar 

  29. Gais, S., Mölle, M., Helms, K. & Born, J. Learning-dependent increases in sleep spindle density. J. Neurosci. 22, 6830–6834 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mander, B. A., Winer, J. R. & Walker, M. P. Sleep and human aging. Neuron 94, 19–36 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).

    PubMed  Google Scholar 

  32. Della Monica, C., Johnsen, S., Atzori, G., Groeger, J. A. & Dijk, D. J. Rapid eye movement sleep, sleep continuity and slow wave sleep as predictors of cognition, mood, and subjective sleep quality in healthy men and women, aged 20–84 years. Front. Psychiatry 9, 255 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Mander, B. A. Local sleep and Alzheimer’s disease pathophysiology. Front. Neurosci. 14, 525970 (2020).

    PubMed  PubMed Central  Google Scholar 

  34. Reda, F. et al. In search of sleep biomarkers of Alzheimer’s disease: K-complexes do not discriminate between patients with mild cognitive impairment and healthy controls. Brain Sci. 7, 51 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Gorgoni, M. et al. Parietal fast sleep spindle density decrease in Alzheimer’s disease and amnesic mild cognitive impairment. Neural Plast. 2016, 8376108 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. De Gennaro, L. et al. The fall of sleep K-complex in Alzheimer disease. Sci. Rep. 7, 39688 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Prinz, P. N. et al. Sleep, EEG and mental function changes in senile dementia of the Alzheimer’s type. Neurobiol. Aging 3, 361–370 (1982).

    CAS  PubMed  Google Scholar 

  38. Brunetti, V. et al. Subclinical epileptiform activity during sleep in Alzheimer’s disease and mild cognitive impairment. Clin. Neurophysiol. 131, 1011–1018 (2020).

    PubMed  Google Scholar 

  39. D’Atri, A. et al. EEG alterations during wake and sleep in mild cognitive impairment and Alzheimer’s disease. iScience 24, 102386 (2021).

    Google Scholar 

  40. Liguori, C. et al. Sleep dysregulation, memory impairment, and CSF biomarkers during different levels of neurocognitive functioning in Alzheimer’s disease course. Alzheimers Res. Ther. 12, 5 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. Liguori, C. et al. Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol. 71, 1498–1505 (2014).

    PubMed  Google Scholar 

  42. Bliwise, D. L. et al. REM latency in Alzheimer’s disease. Biol. Psychiatry 25, 320–328 (1989).

    CAS  PubMed  Google Scholar 

  43. Chen, R. et al. Elevation of serum TNF-α levels in mild and moderate Alzheimer patients with daytime sleepiness. J. Neuroimmunol. 244, 97–102 (2012).

    CAS  PubMed  Google Scholar 

  44. Bonakis, A. et al. Sleep in frontotemporal dementia is equally or possibly more disrupted, and at an earlier stage, when compared to sleep in Alzheimer’s disease. J. Alzheimers Dis. 38, 85–91 (2014).

    PubMed  Google Scholar 

  45. Bonanni, E. et al. Daytime sleepiness in mild and moderate Alzheimer’s disease and its relationship with cognitive impairment. J. Sleep. Res. 14, 311–317 (2005).

    PubMed  Google Scholar 

  46. Dykierek, P. et al. The value of REM sleep parameters in differentiating Alzheimer’s disease from old-age depression and normal aging. J. Psychiatr. Res. 32, 1–9 (1998).

    CAS  PubMed  Google Scholar 

  47. Liu, S. et al. Sleep spindles, K-complexes, limb movements and sleep stage proportions may be biomarkers for amnestic mild cognitive impairment and Alzheimer’s disease. Sleep Breath. 24, 637–651 (2020).

    PubMed  Google Scholar 

  48. Gagnon, J.-F. et al. REM sleep behavior disorder and REM sleep without atonia in probable Alzheimer disease. Sleep 29, 1321–1325 (2006).

    PubMed  Google Scholar 

  49. Maestri, M. et al. Non-rapid eye movement sleep instability in mild cognitive impairment: a pilot study. Sleep Med. 16, 1139–1145 (2015).

    PubMed  Google Scholar 

  50. Vitiello, M. V., Prinz, P. N., Williams, D. E., Frommlet, M. S. & Ries, R. K. Sleep disturbances in patients with mild-stage Alzheimer’s disease. J. Gerontol. 45, M131–M138 (1990).

    CAS  PubMed  Google Scholar 

  51. Hatfield, C. F., Herbert, J., Van Someren, E. J., Hodges, J. & Hastings, M. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home‐dwelling patients with early Alzheimer’s dementia. Brain 127, 1061–1074 (2004).

    CAS  PubMed  Google Scholar 

  52. Crowley, K., Sullivan, E. V., Adalsteinsson, E., Pfefferbaum, A. & Colrain, I. M. Differentiating pathologic delta from healthy physiologic delta in patients with Alzheimer disease. Sleep 28, 865–870 (2005).

    PubMed  Google Scholar 

  53. Montplaisir, J., Petit, D., Lorrain, D. & Gauthier, S. Sleep in Alzheimer’s disease: further considerations on the role of brainstem and forebrain cholinergic populations in sleep–wake mechanisms. Sleep 18, 145–148 (1995).

    CAS  PubMed  Google Scholar 

  54. Westerberg, C. E. et al. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. J. Int. Neuropsychol. Soc. 18, 490–500 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Zhang, Y. et al. Sleep in Alzheimer’s disease: a systematic review and meta-analysis of polysomnographic findings. Transl. Psychiatry 12, 136 (2022).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  56. Mander, B. A. et al. β-Amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 18, 1051–1057 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hassainia, F., Petit, D., Nielsen, T., Gauthier, S. & Montplaisir, J. Quantitative EEG and statistical mapping of wakefulness and REM sleep in the evaluation of mild to moderate Alzheimer’s disease. Eur. Neurol. 37, 219–224 (1997).

    CAS  PubMed  Google Scholar 

  58. Brayet, P. et al. Quantitative EEG of rapid-eye-movement sleep: a marker of amnestic mild cognitive impairment. Clin. EEG Neurosci. 47, 134–141 (2016).

    PubMed  Google Scholar 

  59. Carnicelli, L. et al. A longitudinal study of polysomnographic variables in patients with mild cognitive impairment converting to Alzheimer’s disease. J. Sleep Res. 28, e12821 (2019).

    PubMed  Google Scholar 

  60. Hita-Yañez, E., Atienza, M., Gil-Neciga, E., Cantero, L. & Disturbed, J. Sleep patterns in elders with mild cognitive impairment: the role of memory decline and ApoE ε 4 genotype. Curr. Alzheimer Res. 9, 290–297 (2012).

    PubMed  Google Scholar 

  61. D’Rozario, A. L. et al. Objective measurement of sleep in mild cognitive impairment: a systematic review and meta-analysis. Sleep Med. Rev. 52, 101308 (2020).

    PubMed  Google Scholar 

  62. Jyoti, A., Plano, A., Riedel, G. & Platt, B. EEG, activity, and sleep architecture in a transgenic AβPP swe/PSEN1 A246E Alzheimer’s disease mouse. J. Alzheimers Dis. 22, 873–887 (2010).

    PubMed  Google Scholar 

  63. Colby-Milley, J. et al. Sleep–wake cycle dysfunction in the TgCRND8 mouse model of Alzheimer’s disease: from early to advanced pathological stages. PLoS ONE 10, e0130177 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Horvath, A. A. et al. Subclinical epileptiform activity accelerates the progression of Alzheimer’s disease: a long-term EEG study. Clin. Neurophysiol. 132, 1982–1989 (2021).

    PubMed  Google Scholar 

  65. Horváth, A., Szűcs, A., Barcs, G. & Kamondi, A. Sleep EEG detects epileptiform activity in Alzheimer’s disease with high sensitivity. J. Alzheimers Dis. 56, 1175–1183 (2017).

    PubMed  Google Scholar 

  66. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Minkeviciene, R. et al. Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy. J. Neurosci. 29, 3453–3462 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lisgaras, C. P. & Scharfman, H. E. Interictal spikes in Alzheimer’s disease: preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol. Dis. 187, 106294 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson, E. C. B. et al. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer’s disease mutations but not by inhibition of BACE1. Mol. Neurodegener. 15, 53 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Soula, M. et al. Interictal epileptiform discharges affect memory in an Alzheimer’s disease mouse model. Proc. Natl Acad. Sci. USA 120, e2302676120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  PubMed  Google Scholar 

  73. Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Replay of cortical spiking sequences during human memory retrieval. Science 367, 1131–1134 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shoob, S. et al. Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer’s disease mouse model. Nat. Commun. 14, 7002 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Soula, M. et al. Forty-hertz light stimulation does not entrain native gamma oscillations in Alzheimer’s disease model mice. Nat. Neurosci. 26, 570–578 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vyazovskiy, V. V. et al. Cortical firing and sleep homeostasis. Neuron 63, 865–878 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bharioke, A. et al. General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron 110, 2024–2040.e10 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Booth, C. A. et al. Altered intrinsic pyramidal neuron properties and pathway-specific synaptic dysfunction underlie aberrant hippocampal network function in a mouse model of tauopathy. J. Neurosci. 36, 350–363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cacucci, F., Yi, M., Wills, T. J., Chapman, P. & O’Keefe, J. Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc. Natl Acad. Sci. USA 105, 7863–7868 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cayzac, S. et al. Altered hippocampal information coding and network synchrony in APP-PS1 mice. Neurobiol. Aging 36, 3200–3213 (2015).

    CAS  PubMed  Google Scholar 

  81. Cheng, J. & Ji, D. Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. eLife 2, e00647 (2013).

    Google Scholar 

  82. Ciupek, S. M., Cheng, J., Ali, Y. O., Lu, H.-C. & Ji, D. Progressive functional impairments of hippocampal neurons in a tauopathy mouse model. J. Neurosci. 35, 8118–8131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Galloway, C. R. et al. Hippocampal place cell dysfunction and the effects of muscarinic M1 receptor agonism in a rat model of Alzheimer’s disease. Hippocampus 28, 568–585 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jun, H. et al. Disrupted place cell remapping and impaired grid cells in a knockin model of Alzheimer’s disease. Neuron 107, 1095–1112.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin, X. et al. Spatial coding defects of hippocampal neural ensemble calcium activities in the triple-transgenic Alzheimer’s disease mouse model. Neurobiol. Dis. 162, 105562 (2022).

    PubMed  Google Scholar 

  86. Prince, S. M. et al. Alzheimer’s pathology causes impaired inhibitory connections and reactivation of spatial codes during spatial navigation. Cell Rep. 35, 109008 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, H. et al. Degenerate mapping of environmental location presages deficits in object-location encoding and memory in the 5xFAD mouse model for Alzheimer’s disease. Neurobiol. Dis. 176, 105939 (2023).

    CAS  PubMed  Google Scholar 

  88. Zhao, R., Fowler, S. W., Chiang, A. C., Ji, D. & Jankowsky, J. L. Impairments in experience‐dependent scaling and stability of hippocampal place fields limit spatial learning in a mouse model of Alzheimer’s disease. Hippocampus 24, 963–978 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, H. et al. Disruption of hippocampal neuronal circuit function depends upon behavioral state in the APP/PS1 mouse model of Alzheimer’s disease. Sci. Rep. 12, 21022 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fu, H. et al. Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron 93, 533–541.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakazono, T. et al. Impaired in vivo gamma oscillations in the medial entorhinal cortex of knock-in Alzheimer model. Front. Syst. Neurosci. 11, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Rodriguez, G. A., Barrett, G. M., Duff, K. E. & Hussaini, S. A. Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus. PLoS Biol. 18, e3000851 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ying, J. et al. Disruption of the grid cell network in a mouse model of early Alzheimer’s disease. Nat. Commun. 13, 886 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nuriel, T. et al. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology. Nat. Commun. 8, 1464 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Busche, M. A. et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 109, 8740–8745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Šišková, Z. et al. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer’s disease. Neuron 84, 1023–1033 (2014).

    PubMed  Google Scholar 

  97. Xu, W., Fitzgerald, S., Nixon, R. A., Levy, E. & Wilson, D. A. Early hyperactivity in lateral entorhinal cortex is associated with elevated levels of AβPP metabolites in the Tg2576 mouse model of Alzheimer’s disease. Exp. Neurol. 264, 82–91 (2015).

    CAS  PubMed  Google Scholar 

  98. Busche, M. A. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321, 1686–1689 (2008).

    CAS  PubMed  Google Scholar 

  99. Busche, M. A. et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat. Neurosci. 22, 57–64 (2019).

    CAS  PubMed  Google Scholar 

  100. Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 14, 750–756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dolev, I. et al. Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nat. Neurosci. 16, 587–595 (2013).

    CAS  PubMed  Google Scholar 

  102. Cirrito, J. R. et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J. Clin. Investig. 115, 3285–3290 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sohn, P. D. et al. Pathogenic tau impairs axon initial segment plasticity and excitability homeostasis. Neuron 104, 458–470.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chang, C.-W., Shao, E. & Mucke, L. Tau: enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 371, eabb8255 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Styr, B. et al. Mitochondrial regulation of the hippocampal firing rate set point and seizure susceptibility. Neuron 102, 1009–1024.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sanchez, P. E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl Acad. Sci. USA 109, E2895–E2903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Vossel, K. et al. Effect of levetiracetam on cognition in patients with Alzheimer disease with and without epileptiform activity: a randomized clinical trial. JAMA Neurol. 78, 1345–1354 (2021).

    PubMed  Google Scholar 

  109. Davis, G. W. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29, 307–323 (2006).

    CAS  PubMed  Google Scholar 

  110. Bernard, C. in Homeostasis: Origins of the Concept (ed. Langley, L. L.) 129–151 (Dowden, Hutchinson & Ross, Inc., 1973).

  111. Cannon, W. B. Organization for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929).

    Google Scholar 

  112. Hardy, J. D. Control of heat loss and heat production in physiologic temperature regulation. Harvey Lect. 49, 242–270 (1953).

    PubMed  Google Scholar 

  113. Davis, G. W. Homeostatic signaling and the stabilization of neural function. Neuron 80, 718–728 (2013).

    CAS  PubMed  Google Scholar 

  114. Turrigiano, G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

    CAS  PubMed  Google Scholar 

  115. Zullo, J. M. et al. Regulation of lifespan by neural excitation and REST. Nature 574, 359–364 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, Z., Golowasch, J., Marder, E. & Abbott, L. F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18, 2309–2320 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Alonso, L. M., Rue, M. C. P. & Marder, E. Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations. Proc. Natl Acad. Sci. USA 120, e2222016120 (2023).

    PubMed  PubMed Central  Google Scholar 

  118. Chipman, P. H. et al. NMDAR-dependent presynaptic homeostasis in adult hippocampus: synapse growth and cross-modal inhibitory plasticity. Neuron 110, 3302–3317.e7 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Slomowitz, E. et al. Interplay between population firing stability and single neuron dynamics in hippocampal networks. eLife 4, e04378 (2015).

    Google Scholar 

  120. Keck, T. et al. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80, 327–334 (2013).

    CAS  PubMed  Google Scholar 

  121. Hengen, K. B., Lambo, M. E., Van Hooser, S. D., Katz, D. B. & Turrigiano, G. G. Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80, 335–342 (2013).

    CAS  PubMed  Google Scholar 

  122. Tatavarty, V. et al. Autism-associated Shank3 is essential for homeostatic compensation in rodent V1. Neuron 106, 769–777.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Orr, B. O. et al. Presynaptic homeostasis opposes disease progression in mouse models of ALS-like degeneration: evidence for homeostatic neuroprotection. Neuron 107, 95–111.e116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).

    CAS  PubMed  Google Scholar 

  125. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).

    CAS  PubMed  Google Scholar 

  126. Marom, S. & Marder, E. A biophysical perspective on the resilience of neuronal excitability across timescales. Nat. Rev. Neurosci. 24, 640–652 (2023).

    CAS  PubMed  Google Scholar 

  127. Radulescu, C. I. et al. Age-related dysregulation of homeostatic control in neuronal microcircuits. Nat. Neurosci. 26, 2158–2170 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pratt, K. G., Zimmerman, E. C., Cook, D. G. & Sullivan, J. M. Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling. Nat. Neurosci. 14, 1112–1114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gilbert, J. et al. β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity. Acta Neuropathol. Commun. 4, 131 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Galanis, C. et al. Amyloid-beta mediates homeostatic synaptic plasticity. J. Neurosci. 41, 5157–5172 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid ß-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750–754 (2007).

    CAS  PubMed  Google Scholar 

  132. Zott, B. et al. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science 365, 559–565 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Abramov, E. et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci. 12, 1567–1576 (2009).

    MathSciNet  CAS  PubMed  Google Scholar 

  134. Lerdkrai, C. et al. Intracellular Ca2+ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 115, E1279–E1288 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Fogel, H. et al. APP homodimers transduce an amyloid-β-mediated increase in release probability at excitatory synapses. Cell Rep. 7, 1560–1576 (2014).

    CAS  PubMed  Google Scholar 

  136. Kelly, S. C. et al. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol. Commun. 5, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 (2012).

    CAS  PubMed  Google Scholar 

  138. Ding, F. et al. Changes in the composition of brain interstitial ions control the sleep–wake cycle. Science 352, 550–555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ju, Y.-E. S., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology — a bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).

    CAS  PubMed  Google Scholar 

  140. Senzai, Y., Fernandez-Ruiz, A. & Buzsáki, G. Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. Neuron 101, 500–513.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cirelli, C. & Tononi, G. The why and how of sleep-dependent synaptic down-selection. Semin. Cell Dev. Biol. 125, 91–100 (2022).

    CAS  PubMed  Google Scholar 

  143. Li, S. et al. Soluble oligomers of amyloid-beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Shao, L., Zhang, Y., Hao, Y. & Ping, Y. Upregulation of IP(3) receptor mediates APP-induced defects in synaptic downscaling and sleep homeostasis. Cell Rep. 38, 110594 (2022).

    CAS  PubMed  Google Scholar 

  145. Pacheco, A. T., Bottorff, J., Gao, Y. & Turrigiano, G. G. Sleep promotes downward firing rate homeostasis. Neuron 109, 530–544.e6 (2021).

    Google Scholar 

  146. Hengen, K. B., Pacheco, A. T., McGregor, J. N., Van Hooser, S. D. & Turrigiano, G. G. Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. Cell 165, 180–191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Calafate, S. et al. Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 1021–1031 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Westwood, A. J. et al. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology 82, 1613–1619 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Katsenelson, M. et al. IGF-1 receptor regulates upward firing rate homeostasis via the mitochondrial calcium uniporter. Proc. Natl Acad. Sci. USA 119, e2121040119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Chennaoui, M., Léger, D. & Gomez-Merino, D. Sleep and the GH/IGF-1 axis: consequences and countermeasures of sleep loss/disorders. Sleep Med. Rev. 49, 101223 (2020).

    PubMed  Google Scholar 

  151. Wan, Y. et al. Role of IGF-1 in neuroinflammation and cognition deficits induced by sleep deprivation. Neurosci. Lett. 776, 136575 (2022).

    CAS  PubMed  Google Scholar 

  152. Levenstein, D., Watson, B. O., Rinzel, J. & Buzsáki, G. Sleep regulation of the distribution of cortical firing rates. Curr. Opin. Neurobiol. 44, 34–42 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Watson, B. O. et al. Network homeostasis and state dynamics of neocortical sleep. Neuron 90, 839–852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Miyawaki, H. & Diba, K. Regulation of hippocampal firing by network oscillations during sleep. Curr. Biol. 26, 893–902 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. McGregor, J. N. et al. Tauopathy severely disrupts homeostatic set-points in emergent neural dynamics but not in the activity of individual neurons. Preprint at bioRxiv, https://doi.org/10.1101/2023.09.01.555947 (2023).

  156. Thomas, C. W. et al. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 9, e54148 (2020).

    PubMed  PubMed Central  Google Scholar 

  157. Xu, Y., Schneider, A., Wessel, R. & Hengen, K. B. Sleep restores an optimal computational regime in cortical networks. Nat. Neurosci. https://doi.org/10.1038/s41593-023-01536-9 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Noya, S. B. et al. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366, eaav2642 (2019).

    CAS  PubMed  Google Scholar 

  159. Selkoe, D. J. Alzheimer’s disease is a synaptic failure. Science 298, 789–791 (2002).

    CAS  PubMed  Google Scholar 

  160. Nir, Y. & de Lecea, L. Sleep and vigilance states: embracing spatiotemporal dynamics. Neuron 111, 1998–2011 (2023).

    CAS  PubMed  Google Scholar 

  161. Jagirdar, R. et al. Restoring activity in the thalamic reticular nucleus improves sleep architecture and reduces Aβ accumulation in mice. Sci. Transl. Med. 13, eabh4284 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, S.-B. et al. Hyperexcitable arousal circuits drive sleep instability during aging. Science 375, eabh3021 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  164. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    CAS  PubMed  Google Scholar 

  165. Kang, J. E. et al. Amyloid-beta dynamics are regulated by orexin and the sleep–wake cycle. Science 326, 1005–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Huang, Y. et al. Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system. Arch. Neurol. 69, 51–58 (2012).

    PubMed  Google Scholar 

  167. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  168. Peng, W. et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93, 215–225 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76, 845–861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Brodt, S., Inostroza, M., Niethard, N. & Born, J. Sleep — a brain-state serving systems memory consolidation. Neuron 111, 1050–1075 (2023).

    CAS  PubMed  Google Scholar 

  171. Klerman, E. B. & Dijk, D. J. Age-related reduction in the maximal capacity for sleep — implications for insomnia. Curr. Biol. 18, 1118–1123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    CAS  PubMed  Google Scholar 

  173. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    CAS  PubMed  Google Scholar 

  174. Masliah, E. et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56, 127–129 (2001).

    CAS  PubMed  Google Scholar 

  175. Rueda-Carrasco, J. et al. Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 42, e113246 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2012).

    PubMed  PubMed Central  Google Scholar 

  177. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2012).

    PubMed  PubMed Central  Google Scholar 

  178. Filipello, F. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48, 979–991.e8 (2018).

    CAS  PubMed  Google Scholar 

  179. Das, M. et al. Alzheimer risk-increasing TREM2 variant causes aberrant cortical synapse density and promotes network hyperexcitability in mouse models. Neurobiol. Dis. 186, 106263 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Miyamoto, D., Marshall, W., Tononi, G. & Cirelli, C. Net decrease in spine-surface GluA1-containing AMPA receptors after post-learning sleep in the adult mouse cortex. Nat. Commun. 12, 2881 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. De Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. Liu, Y. W., Li, J. & Ye, J. H. Histamine regulates activities of neurons in the ventrolateral preoptic nucleus. J. Physiol. 588, 4103–4116 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Maret, S., Faraguna, U., Nelson, A. B., Cirelli, C. & Tononi, G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat. Neurosci. 14, 1418–1420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Choudhury, M. E. et al. Phagocytic elimination of synapses by microglia during sleep. Glia 68, 44–59 (2020).

    PubMed  Google Scholar 

  185. Tuan, L.-H. & Lee, L.-J. Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol. Dis. 130, 104517 (2019).

    CAS  PubMed  Google Scholar 

  186. Bellesi, M. et al. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J. Neurosci. 37, 5263–5273 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Tremblay, M., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    PubMed  PubMed Central  Google Scholar 

  188. Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Lesku, J. A. et al. Adaptive sleep loss in polygynous pectoral sandpipers. Science 337, 1654–1658 (2012).

    CAS  PubMed  Google Scholar 

  191. Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).

    CAS  PubMed  Google Scholar 

  192. Neligan, A. et al. The long-term risk of premature mortality in people with epilepsy. Brain 134, 388–395 (2011).

    PubMed  Google Scholar 

  193. Rasch, B. & Born, J. About sleep’s role in memory. Physiol. Rev. 93, 681–766 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Irwin, M. R. Sleep and inflammation: partners in sickness and in health. Nat. Rev. Immunol. 19, 702–715 (2019).

    CAS  PubMed  Google Scholar 

  195. Castellani, G., Croese, T., Peralta Ramos, J. M. & Schwartz, M. Transforming the understanding of brain immunity. Science 380, eabo7649 (2023).

    CAS  PubMed  Google Scholar 

  196. Geva-Sagiv, M. et al. Augmenting hippocampal–prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nat. Neurosci. 26, 1100–1110 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Bezzina, C. et al. Early onset of hypersynchronous network activity and expression of a marker of chronic seizures in the Tg2576 mouse model of Alzheimer’s disease. PLoS ONE 10, e0119910 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Brown, R. et al. Circadian and brain state modulation of network hyperexcitability in Alzheimer’s disease. eNeuro 5, ENEURO.0426-17.2018 (2018).

  199. Roberson, E. D. et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J. Neurosci. 31, 700–711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Beker, S. et al. Amyloid-β disrupts ongoing spontaneous activity in sensory cortex. Brain Struct. Funct. 221, 1173–1188 (2016).

    CAS  PubMed  Google Scholar 

  201. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Armstrong, R. A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 57, 87–105 (2019).

    Google Scholar 

  203. Hanseeuw, B. J. et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study. JAMA Neurol. 76, 915–924 (2019).

    PubMed  PubMed Central  Google Scholar 

  204. Petersen, R. C. et al. Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74, 201–209 (2010).

    PubMed  PubMed Central  Google Scholar 

  205. Devanand, D. et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 68, 828–836 (2007).

    CAS  PubMed  Google Scholar 

  206. Jack, C. R. et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52, 1397–1397 (1999).

    PubMed  Google Scholar 

  207. Frisoni, G. et al. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 52, 91–91 (1999).

    CAS  PubMed  Google Scholar 

  208. Jack, C. R. Jr et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49, 786–794 (1997).

    PubMed  Google Scholar 

  209. Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P. & Barnes, C. A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 12, 585–601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Du, A.-T. et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130, 1159–1166 (2007).

    PubMed  Google Scholar 

  211. McDonald, C. et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73, 457–465 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Feng, X. et al. Brain regions vulnerable and resistant to aging without Alzheimer’s disease. PLoS ONE 15, e0234255 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Steriade, M., Nunez, A. & Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J. & Steriade, M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199 (2000).

    CAS  PubMed  Google Scholar 

  215. Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T. J. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22, 8691–8704 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Shu, Y., Hasenstaub, A. & McCormick, D. A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    CAS  PubMed  Google Scholar 

  217. Haider, B., Duque, A., Hasenstaub, A. R. & McCormick, D. A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Rudolph, M., Pospischil, M., Timofeev, I. & Destexhe, A. Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J. Neurosci. 27, 5280–5290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Amzica, F. & Steriade, M. The K-complex: its slow (<1-Hz) rhythmicity and relation to delta waves. Neurology 49, 952–959 (1997).

    CAS  PubMed  Google Scholar 

  220. Cash, S. S. et al. The human K-complex represents an isolated cortical down-state. Science 324, 1084–1087 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Colrain, I. M. The K-complex: a 7-decade history. Sleep 28, 255–273 (2005).

    PubMed  Google Scholar 

  222. Fernandez, L. M. & Lüthi, A. Sleep spindles: mechanisms and functions. Physiol. Rev. 100, 805–868 (2020).

    PubMed  Google Scholar 

  223. Burrone, J., O’Byrne, M. & Murthy, V. N. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418 (2002).

    CAS  PubMed  Google Scholar 

  224. Tyssowski, K. M. et al. Firing rate homeostasis can occur in the absence of neuronal activity-regulated transcription. J. Neurosci. 39, 9885–9899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Barnes, S. J. et al. Subnetwork-specific homeostatic plasticity in mouse visual cortex in vivo. Neuron 86, 1290–1303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Vertkin, I. et al. GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proc. Natl Acad. Sci. USA 112, E3291–E3299 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks L. Heim for the comments on the manuscript and for help with the figures, Y. Nir for the comments on the manuscript, T. Langberg for his contribution to the initial version of the article, V. Vyazovskiy and all the laboratory members for fruitful discussions. This Perspective benefited by support from the European Research Council (CoG-724866 and AdG-101097788), the Israel Science Foundation (1663/18), The Deutsche Forschungsgemeinschaft (440813539 and 448865644), BIRAX Regenerative Medicine Initiative (46BX18TKIS) and Rosetrees Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Slutsky.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Kei Igarashi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slutsky, I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat. Rev. Neurosci. 25, 272–284 (2024). https://doi.org/10.1038/s41583-024-00797-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00797-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing