Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Overnight neuronal plasticity and adaptation to emotional distress

Abstract

Expressions such as ‘sleep on it’ refer to the resolution of distressing experiences across a night of sound sleep. Sleep is an active state during which the brain reorganizes the synaptic connections that form memories. This Perspective proposes a model of how sleep modifies emotional memory traces. Sleep-dependent reorganization occurs through neurophysiological events in neurochemical contexts that determine the fates of synapses to grow, to survive or to be pruned. We discuss how low levels of acetylcholine during non-rapid eye movement sleep and low levels of noradrenaline during rapid eye movement sleep provide a unique window of opportunity for plasticity in neuronal representations of emotional memories that resolves the associated distress. We integrate sleep-facilitated adaptation over three levels: experience and behaviour, neuronal circuits, and synaptic events. The model generates testable hypotheses for how failed sleep-dependent adaptation to emotional distress is key to mental disorders, notably disorders of anxiety, depression and post-traumatic stress with the common aetiology of insomnia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The systems, circuit and molecular levels of a memory trace.
Fig. 2: Increased synaptic communication through noradrenergic signalling.
Fig. 3: Memory trace consolidation through late-phase LTP inducing activity in cortico-hippocampal circuits.
Fig. 4: Neuromodulatory milieu and neurophysiology across wakefulness and sleep.
Fig. 5: A proposed mechanism to remap a novel memory trace onto the familiarity-encoding pathway.
Fig. 6: Depotentiation of amygdala–hippocampal connections through in-phase and anti-phase theta frequency coupling during REM sleep.
Fig. 7: Proposed model of memory consolidation and distress adaptation across sleep.

Similar content being viewed by others

References

  1. Hamann, S. Cognitive and neural mechanisms of emotional memory. Trends Cogn. Sci. 5, 394–400 (2001).

    CAS  PubMed  Google Scholar 

  2. LaBar, K. S. & Cabeza, R. Cognitive neuroscience of emotional memory. Nat. Rev. Neurosci. 7, 54–64 (2006).

    CAS  PubMed  Google Scholar 

  3. Crowley, R., Bendor, D. & Javadi, A.-H. A review of neurobiological factors underlying the selective enhancement of memory at encoding, consolidation, and retrieval. Prog. Neurobiol. 179, 101615 (2019).

    PubMed  Google Scholar 

  4. Ashton, J. E., Harrington, M. O., Guttesen, A. Á. V., Smith, A. K. & Cairney, S. A. Sleep preserves physiological arousal in emotional memory. Sci. Rep. 9, 5966 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Bolinger, E. et al. Sleep’s benefits to emotional processing emerge in the long term. Cortex 120, 457–470 (2019).

    PubMed  Google Scholar 

  6. Lipinska, G. & Thomas, K. G. F. The interaction of REM fragmentation and night-time arousal modulates sleep-dependent emotional memory consolidation. Front. Psychol. 10, 1766 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Conte, F., Cerasuolo, M., Giganti, F. & Ficca, G. Sleep enhances strategic thinking at the expense of basic procedural skills consolidation. J. Sleep Res. 29, e13034 (2020).

    PubMed  Google Scholar 

  8. Tucker, M. A., Humiston, G. B., Summer, T. & Wamsley, E. Comparing the effects of sleep and rest on memory consolidation. Nat. Sci. Sleep 12, 79–91 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Short, M. A., Booth, S. A., Omar, O., Ostlundh, L. & Arora, T. The relationship between sleep duration and mood in adolescents: a systematic review and meta-analysis. Sleep Med. Rev. 52, 101311 (2020).

    PubMed  Google Scholar 

  10. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Niethard, N. & Born, J. Back to baseline: sleep recalibrates synapses. Nat. Neurosci. 22, 149–151 (2019).

    CAS  PubMed  Google Scholar 

  12. Genzel, L., Kroes, M. C. W., Dresler, M. & Battaglia, F. P. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci. 37, 10–19 (2014).

    CAS  PubMed  Google Scholar 

  13. Osorio-Forero, A., Cherrad, N., Banterle, L., Fernandez, L. M. J. & Lüthi, A. When the locus coeruleus speaks up in sleep: recent insights, emerging perspectives. Int. J. Mol. Sci. 23, 5028 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kjaerby, C. et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 25, 1059–1070 (2022). This paper shows that long LC silences during sleep promote memory, sleep spindles and REM sleep, whereas shorter LC silences and more frequent increases in NA promote microarousals and decrease memory performance, thereby reinforcing the concept that NA absences are important to sleep-dependent memory consolidation.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Swift, K. M. et al. Abnormal locus coeruleus sleep activity alters sleep signatures of memory consolidation and impairs place cell stability and spatial memory. Curr. Biol. 28, 3599–3609.e4 (2018). This paper shows how aberrant activity of the LC during normally silent times (that is, REM sleep and the transition to REM sleep period) disrupts spindle generation and weakens delta and theta oscillation power, interfering with proper learning.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Osorio-Forero, A. et al. Noradrenergic circuit control of non-REM sleep substates. Curr. Biol. 31, 5009–5023.e7 (2021).

    CAS  PubMed  Google Scholar 

  17. Wassing, R. et al. Restless REM sleep impedes overnight amygdala adaptation. Curr. Biol. 29, 2351–2358.e4 (2019). This paper shows that overnight amygdala adaptation is proportional to the duration of sound REM sleep and preceding NREM sleep spindles, but that adaptation fails proportionally to the number of awakenings and arousals in REM sleep.

    CAS  PubMed  Google Scholar 

  18. Poe, G. R. Sleep is for forgetting. J. Neurosci. 37, 464–473 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Guskjolen, A. & Cembrowski, M. S. Engram neurons: encoding, consolidation, retrieval, and forgetting of memory. Mol. Psychiatry 28, 3207–3219 (2023).

    PubMed  PubMed Central  Google Scholar 

  20. Roy, D. S. et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat. Commun. 13, 1799 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghosh, V. E. & Gilboa, A. What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia 53, 104–114 (2014).

    PubMed  Google Scholar 

  22. van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J. & Fernández, G. Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J. Neurosci. 30, 15888–15894 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Takashima, A. et al. Shift from hippocampal to neocortical centered retrieval network with consolidation. J. Neurosci. 29, 10087–10093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nieuwenhuis, I. L. C. & Takashima, A. The role of the ventromedial prefrontal cortex in memory consolidation. Behav. Brain Res. 218, 325–334 (2011).

    PubMed  Google Scholar 

  25. Lubenov, E. V. & Siapas, A. G. Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58, 118–131 (2008).

    CAS  PubMed  Google Scholar 

  26. Kim, J. et al. Amygdala depotentiation and fear extinction. Proc. Natl Acad. Sci. USA 104, 20955–20960 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    CAS  PubMed  Google Scholar 

  28. Viola, H., Ballarini, F., Martínez, M. C. & Moncada, D. The tagging and capture hypothesis from synapse to memory. Prog. Mol. Biol. Transl. Sci. 122, 391–423 (2014).

    PubMed  Google Scholar 

  29. Payne, J. D. & Kensinger, E. A. Stress, sleep, and the selective consolidation of emotional memories. Curr. Opin. Behav. Sci. 19, 36–43 (2018).

    Google Scholar 

  30. Cunningham, T. J. et al. Higher post-encoding cortisol benefits the selective consolidation of emotional aspects of memory. Neurobiol. Learn. Mem. 180, 107411 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hua, S.-S. et al. NMDA receptor-dependent synaptic potentiation via APPL1 signaling is required for the accessibility of a prefrontal neuronal assembly in retrieving fear extinction. Biol. Psychiatry 94, 262–277 (2023).

    CAS  PubMed  Google Scholar 

  33. Marek, R., Sun, Y. & Sah, P. Neural circuits for a top-down control of fear and extinction. Psychopharmacology 236, 313–320 (2019).

    CAS  PubMed  Google Scholar 

  34. van Kesteren, M. T. R. et al. Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: from congruent to incongruent. Neuropsychologia 51, 2352–2359 (2013).

    PubMed  Google Scholar 

  35. Sommer, T., Hennies, N., Lewis, P. A. & Alink, A. The assimilation of novel information into schemata and its efficient consolidation. J. Neurosci. 42, 5916–5929 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cowan, E. et al. Sleep spindles promote the restructuring of memory representations in ventromedial prefrontal cortex through enhanced hippocampal-cortical functional connectivity. J. Neurosci. 40, 1909–1919 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Seibt, J. & Frank, M. G. Primed to sleep: the dynamics of synaptic plasticity across brain states. Front. Syst. Neurosci. 13, 2 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cowan, E. T., Schapiro, A. C., Dunsmoor, J. E. & Murty, V. P. Memory consolidation as an adaptive process. Psychon. Bull. Rev. 28, 1796–1810 (2021).

    PubMed  Google Scholar 

  39. Vanderheyden, W. M., Poe, G. R. & Liberzon, I. Trauma exposure and sleep: using a rodent model to understand sleep function in PTSD. Exp. Brain Res. 232, 1575–1584 (2014).

    PubMed  Google Scholar 

  40. Makino, S., Hashimoto, K. & Gold, P. W. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol. Biochem. Behav. 73, 147–158 (2002).

    CAS  PubMed  Google Scholar 

  41. Kaouane, N. et al. Glucocorticoids can induce PTSD-like memory impairments in mice. Science 335, 1510–1513 (2012).

    CAS  PubMed  Google Scholar 

  42. Atucha, E. et al. Noradrenergic activation of the basolateral amygdala maintains hippocampus-dependent accuracy of remote memory. Proc. Natl Acad. Sci. USA 114, 9176–9181 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Krenz, V., Sommer, T., Alink, A., Roozendaal, B. & Schwabe, L. Noradrenergic arousal after encoding reverses the course of systems consolidation in humans. Nat. Commun. 12, 6054 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Al Abed, A. S. et al. Preventing and treating PTSD-like memory by trauma contextualization. Nat. Commun. 11, 4220 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Desmedt, A., Marighetto, A. & Piazza, P.-V. Abnormal fear memory as a model for posttraumatic stress disorder. Biol. Psychiatry 78, 290–297 (2015).

    PubMed  Google Scholar 

  46. Lissek, S. et al. Generalized anxiety disorder is associated with overgeneralization of classically conditioned fear. Biol. Psychiatry 75, 909–915 (2014).

    PubMed  Google Scholar 

  47. Foote, S. L., Aston-Jones, G. & Bloom, F. E. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl Acad. Sci. USA 77, 3033–3037 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grant, S. J., Aston-Jones, G. & Redmond, D. E. Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Res. Bull. 21, 401–410 (1988).

    CAS  PubMed  Google Scholar 

  49. Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS  PubMed  Google Scholar 

  50. Waterhouse, B. D. & Navarra, R. L. The locus coeruleus-norepinephrine system and sensory signal processing: a historical review and current perspectives. Brain Res. 1709, 1–15 (2019).

    CAS  PubMed  Google Scholar 

  51. Axmacher, N., Mormann, F., Fernández, G., Elger, C. E. & Fell, J. Memory formation by neuronal synchronization. Brain Res. Rev. 52, 170–182 (2006).

    PubMed  Google Scholar 

  52. Jutras, M. J. & Buffalo, E. A. Synchronous neural activity and memory formation. Curr. Opin. Neurobiol. 20, 150–155 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernández-Ruiz, A. et al. Entorhinal-CA3 dual-input control of spike timing in the hippocampus by theta-gamma coupling. Neuron 93, 1213–1226.e5 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Costa, M. et al. Aversive memory formation in humans involves an amygdala-hippocampus phase code. Nat. Commun. 13, 6403 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Andrade-Talavera, Y., Fisahn, A. & Rodríguez-Moreno, A. Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits. Mol. Psychiatry 28, 2177–2188 (2023).

    PubMed  PubMed Central  Google Scholar 

  56. Teyler, T. J. & Rudy, J. W. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17, 1158–1169 (2007).

    PubMed  Google Scholar 

  57. Schlichting, M. L., Zeithamova, D. & Preston, A. R. CA1 subfield contributions to memory integration and inference. Hippocampus 24, 1248–1260 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Villano, W. J., Otto, A. R., Ezie, C. E. C., Gillis, R. & Heller, A. S. Temporal dynamics of real-world emotion are more strongly linked to prediction error than outcome. J. Exp. Psychol. Gen. 149, 1755–1766 (2020).

    PubMed  Google Scholar 

  59. Simpkiss, J. L. & Devine, D. P. Responses of the HPA axis after chronic variable stress: effects of novel and familiar stressors. Neuro Endocrinol. Lett. 24, 97–103 (2003).

    PubMed  Google Scholar 

  60. Wassing, R. et al. Haunted by the past: old emotions remain salient in insomnia disorder. Brain 142, 1783–1796 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Botvinick, M. M., Cohen, J. D. & Carter, C. S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546 (2004).

    PubMed  Google Scholar 

  62. Vinogradova, O. S. Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11, 578–598 (2001).

    CAS  PubMed  Google Scholar 

  63. Borisyuk, R., Denham, M., Hoppensteadt, F., Kazanovich, Y. & Vinogradova, O. An oscillatory neural network model of sparse distributed memory and novelty detection. BioSystems 58, 265–272 (2000).

    CAS  PubMed  Google Scholar 

  64. Albasser, M. M., Poirier, G. L. & Aggleton, J. P. Qualitatively different modes of perirhinal-hippocampal engagement when rats explore novel vs. familiar objects as revealed by c-Fos imaging. Eur. J. Neurosci. 31, 134–147 (2010).

    PubMed  Google Scholar 

  65. Kinnavane, L., Amin, E., Olarte-Sánchez, C. M. & Aggleton, J. P. Detecting and discriminating novel objects: the impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 26, 1393–1413 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Sara, S. J., Vankov, A. & Hervé, A. Locus coeruleus-evoked responses in behaving rats: a clue to the role of noradrenaline in memory. Brain Res. Bull. 35, 457–465 (1994).

    CAS  PubMed  Google Scholar 

  67. Straube, T., Korz, V., Balschun, D. & Frey, J. U. Requirement of beta-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. J. Physiol. 552, 953–960 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rajkumar, R., Kumar, J. R. & Dawe, G. S. Priming locus coeruleus noradrenergic modulation of medial perforant path-dentate gyrus synaptic plasticity. Neurobiol. Learn. Mem. 138, 215–225 (2017).

    CAS  PubMed  Google Scholar 

  69. Otmakhova, N. A. & Lisman, J. E. Dopamine, serotonin, and noradrenaline strongly inhibit the direct perforant path-CA1 synaptic input, but have little effect on the Schaffer collateral input. Ann. N. Y. Acad. Sci. 911, 462–464 (2000).

    CAS  PubMed  Google Scholar 

  70. Xiao, Z. et al. Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K+ channels. J. Biol. Chem. 284, 10980–10991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Reyes, B. A. S., Carvalho, A. F., Vakharia, K. & Van Bockstaele, E. J. Amygdalar peptidergic circuits regulating noradrenergic locus coeruleus neurons: linking limbic and arousal centers. Exp. Neurol. 230, 96–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McCall, J. G. et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87, 605–620 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lamotte, G., Shouman, K. & Benarroch, E. E. Stress and central autonomic network. Auton. Neurosci. 235, 102870 (2021).

    PubMed  Google Scholar 

  74. Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).

    PubMed  Google Scholar 

  75. Dahl, M. J., Mather, M. & Werkle-Bergner, M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn. Sci. 26, 38–52 (2022).

    PubMed  Google Scholar 

  76. O’Dell, T. J., Connor, S. A., Guglietta, R. & Nguyen, P. V. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn. Mem. 22, 461–471 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    CAS  PubMed  Google Scholar 

  78. Castillo, P. E. Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb. Perspect. Biol. 4, a005728 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Herring, B. E. & Nicoll, R. A. Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu. Rev. Physiol. 78, 351–365 (2016).

    CAS  PubMed  Google Scholar 

  80. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Diering, G. H. & Huganir, R. L. The AMPA receptor code of synaptic plasticity. Neuron 100, 314–329 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wenthold, R. J., Petralia, R. S., Blahos J, I. I. & Niedzielski, A. S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Makino, H. & Malinow, R. Compartmentalized versus global synaptic plasticity on dendrites controlled by experience. Neuron 72, 1001–1011 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Watt, A. J., Sjöström, P. J., Häusser, M., Nelson, S. B. & Turrigiano, G. G. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat. Neurosci. 7, 518–524 (2004).

    CAS  PubMed  Google Scholar 

  85. Bellone, C. & Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).

    CAS  PubMed  Google Scholar 

  86. Holehonnur, R. et al. Increasing the GluN2A/GluN2B ratio in neurons of the mouse basal and lateral amygdala inhibits the modification of an existing fear memory trace. J. Neurosci. 36, 9490–9504 (2016). This paper shows that memories are stabilized and, therefore, become more resistant to modification through an NMDA receptor subunit switch at synapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Murphy, J. A. et al. Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J. Neurosci. 34, 869–879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Renner, M. C. et al. Synaptic plasticity through activation of GluA3-containing AMPA-receptors. eLife 6, e25462 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Thomas, M. J., Moody, T. D., Makhinson, M. & O’Dell, T. J. Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482 (1996).

    CAS  PubMed  Google Scholar 

  90. Katsuki, H., Izumi, Y. & Zorumski, C. F. Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J. Neurophysiol. 77, 3013–3020 (1997).

    CAS  PubMed  Google Scholar 

  91. Hu, H. et al. Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131, 160–173 (2007).

    CAS  PubMed  Google Scholar 

  92. Hruska, M., Cain, R. E. & Dalva, M. B. Nanoscale rules governing the organization of glutamate receptors in spine synapses are subunit specific. Nat. Commun. 13, 920 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. McReynolds, J. R., Anderson, K. M., Donowho, K. M. & McIntyre, C. K. Noradrenergic actions in the basolateral complex of the amygdala modulate Arc expression in hippocampal synapses and consolidation of aversive and non-aversive memory. Neurobiol. Learn. Mem. 115, 49–57 (2014).

    CAS  PubMed  Google Scholar 

  94. Waltereit, R. et al. Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rial Verde, E. M., Lee-Osbourne, J., Worley, P. F., Malinow, R. & Cline, H. T. Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 (2006).

    PubMed  PubMed Central  Google Scholar 

  97. Okuno, H. et al. Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149, 886–898 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Okuno, H., Minatohara, K. & Bito, H. Inverse synaptic tagging: an inactive synapse-specific mechanism to capture activity-induced Arc/Arg3.1 and to locally regulate spatial distribution of synaptic weights. Semin. Cell Dev. Biol. 77, 43–50 (2018).

    CAS  PubMed  Google Scholar 

  99. El-Boustani, S. et al. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360, 1349–1354 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Newpher, T. M., Harris, S., Pringle, J., Hamilton, C. & Soderling, S. Regulation of spine structural plasticity by Arc/Arg3.1. Semin. Cell Dev. Biol. 77, 25–32 (2018).

    CAS  PubMed  Google Scholar 

  101. Holtmaat, A. J. G. D. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    CAS  PubMed  Google Scholar 

  102. Yang, G., Pan, F. & Gan, W.-B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Radley, J. J. et al. Associative Pavlovian conditioning leads to an increase in spinophilin-immunoreactive dendritic spines in the lateral amygdala. Eur. J. Neurosci. 24, 876–884 (2006).

    PubMed  Google Scholar 

  104. Hill, T. C. & Zito, K. LTP-induced long-term stabilization of individual nascent dendritic spines. J. Neurosci. 33, 678–686 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Harley, C. W. & Milway, J. S. Glutamate ejection in the locus coeruleus enhances the perforant path-evoked population spike in the dentate gyrus. Exp. Brain Res. 63, 143–150 (1986).

    CAS  PubMed  Google Scholar 

  106. Quinlan, M. A. L. et al. Locus coeruleus optogenetic light activation induces long-term potentiation of perforant path population spike amplitude in rat dentate gyrus. Front. Syst. Neurosci. 12, 67 (2018).

    CAS  PubMed  Google Scholar 

  107. Lesuis, S. L., Timmermans, W., Lucassen, P. J., Hoogenraad, C. C. & Krugers, H. J. Glucocorticoid and β-adrenergic regulation of hippocampal dendritic spines. J. Neuroendocrinol. 32, e12811 (2020).

    CAS  PubMed  Google Scholar 

  108. Genoux, D. et al. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418, 970–975 (2002).

    CAS  PubMed  Google Scholar 

  109. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Moreno, A. Molecular mechanisms of forgetting. Eur. J. Neurosci. 54, 6912–6932 (2021).

    CAS  PubMed  Google Scholar 

  111. Nabavi, S. et al. Metabotropic NMDA receptor function is required for NMDA receptor-dependent long-term depression. Proc. Natl Acad. Sci. USA 110, 4027–4032 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Holman, D., Feligioni, M. & Henley, J. M. Differential redistribution of native AMPA receptor complexes following LTD induction in acute hippocampal slices. Neuropharmacology 52, 92–99 (2007).

    CAS  PubMed  Google Scholar 

  113. Granger, A. J. & Nicoll, R. A. LTD expression is independent of glutamate receptor subtype. Front. Synaptic Neurosci. 6, 15 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sanderson, T. M. Molecular mechanisms involved in depotentiation and their relevance to schizophrenia. Chonnam Med. J. 48, 1–6 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Man, H.-Y., Sekine-Aizawa, Y. & Huganir, R. L. Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc. Natl Acad. Sci. USA 104, 3579–3584 (2007).

    PubMed  PubMed Central  Google Scholar 

  116. Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876–886 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nitz, D. & Siegel, J. M. GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 78, 795–801 (1997).

    CAS  PubMed  Google Scholar 

  118. Maquet, P. et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383, 163–166 (1996).

    CAS  PubMed  Google Scholar 

  119. Braun, A. R. et al. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120, 1173–1197 (1997).

    PubMed  Google Scholar 

  120. Nofzinger, E. A. et al. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. Brain 125, 1105–1115 (2002).

    PubMed  Google Scholar 

  121. Pace-Schott, E. F. & Hobson, J. A. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 3, 591–605 (2002).

    CAS  PubMed  Google Scholar 

  122. Hasselmo, M. E. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn. Sci. 3, 351–359 (1999).

    CAS  PubMed  Google Scholar 

  123. Clemens, Z. et al. Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur. J. Neurosci. 33, 511–520 (2011).

    PubMed  Google Scholar 

  124. Purcell, S. M. et al. Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource. Nat. Commun. 8, 15930 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fernandez, L. M. J. & Lüthi, A. Sleep spindles: mechanisms and functions. Physiol. Rev. 100, 805–868 (2020).

    PubMed  Google Scholar 

  126. Kim, J., Gulati, T. & Ganguly, K. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell 179, 514–526.e13 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cox, R., Mylonas, D. S., Manoach, D. S. & Stickgold, R. Large-scale structure and individual fingerprints of locally coupled sleep oscillations. Sleep 41, zsy175 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Dehnavi, F., Koo-Poeggel, P. C., Ghorbani, M. & Marshall, L. Spontaneous slow oscillation-slow spindle features predict induced overnight memory retention. Sleep 44, zsab127 (2021).

    PubMed  PubMed Central  Google Scholar 

  129. McCormick, D. A. & Prince, D. A. Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J. Neurophysiol. 59, 978–996 (1988).

    CAS  PubMed  Google Scholar 

  130. Lee, K. H. & McCormick, D. A. Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuron 17, 309–321 (1996).

    PubMed  Google Scholar 

  131. Kjaerby, C. et al. Reply to: “Do all norepinephrine surges disrupt sleep?”. Nat. Neurosci. 26, 957–958 (2023).

    CAS  PubMed  Google Scholar 

  132. Eschenko, O., Magri, C., Panzeri, S. & Sara, S. J. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb. Cortex 22, 426–435 (2012).

    PubMed  Google Scholar 

  133. Brodt, S., Inostroza, M., Niethard, N. & Born, J. Sleep — a brain-state serving systems memory consolidation. Neuron 111, 1050–1075 (2023).

    CAS  PubMed  Google Scholar 

  134. Hutchison, I. C. & Rathore, S. The role of REM sleep theta activity in emotional memory. Front. Psychol. 6, 1439 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Karashima, A. et al. Synchronization between hippocampal theta waves and PGO waves during REM sleep. Psychiatry Clin. Neurosci. 55, 189–190 (2001).

    CAS  PubMed  Google Scholar 

  136. Karashima, A., Nakao, M., Katayama, N. & Honda, K. Instantaneous acceleration and amplification of hippocampal theta wave coincident with phasic pontine activities during REM sleep. Brain Res. 1051, 50–56 (2005).

    CAS  PubMed  Google Scholar 

  137. Karashima, A., Katayama, N. & Nakao, M. Enhancement of synchronization between hippocampal and amygdala theta waves associated with pontine wave density. J. Neurophysiol. 103, 2318–2325 (2010).

    PubMed  Google Scholar 

  138. Lesting, J. et al. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PloS ONE 6, e21714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lesting, J. et al. Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. PloS ONE 8, e77707 (2013). This paper reports that proper extinction memory recall results from theta oscillation coherence between the CA1 and amygdala that is phase locked to that of the mPFC. Rapid extinction learning occurred when the hippocampus and amygdala were anti-phase coupled.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Totty, M. S., Chesney, L. A., Geist, P. A. & Datta, S. Sleep-dependent oscillatory synchronization: a role in fear memory consolidation. Front. Neural Circuits 11, 49 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Datta, S., Saha, S., Prutzman, S. L., Mullins, O. J. & Mavanji, V. Pontine-wave generator activation-dependent memory processing of avoidance learning involves the dorsal hippocampus in the rat. J. Neurosci. Res. 80, 727–737 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Aime, M. et al. Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep. Science 376, 724–730 (2022). This series of studies demonstrates a REM sleep-specific amplification of distal dendrite activity in the prefrontal cortex at the same time that the perisomatic area of the same cells is silent — a process involving changed interneuronal activity levels which, when perturbed, prevent normal consolidation of emotional memories.

    CAS  PubMed  Google Scholar 

  143. Brécier, A., Borel, M., Urbain, N. & Gentet, L. J. Vigilance and behavioral state-dependent modulation of cortical neuronal activity throughout the sleep/wake cycle. J. Neurosci. 42, 4852–4866 (2022).

    PubMed  PubMed Central  Google Scholar 

  144. Niethard, N., Ngo, H.-V. V., Ehrlich, I. & Born, J. Cortical circuit activity underlying sleep slow oscillations and spindles. Proc. Natl Acad. Sci. USA 115, E9220–E9229 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Niethard, N., Brodt, S. & Born, J. Cell-type-specific dynamics of calcium activity in cortical circuits over the course of slow-wave sleep and rapid eye movement sleep. J. Neurosci. 41, 4212–4222 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Katona, L. et al. Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron 82, 872–886 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kjaerby, C. et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 25, 1059–1070 (2022).

  148. Havekes, R. & Aton, S. J. Impacts of sleep loss versus waking experience on brain plasticity: parallel or orthogonal? Trends Neurosci. 43, 385–393 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Maret, S., Faraguna, U., Nelson, A. B., Cirelli, C. & Tononi, G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat. Neurosci. 14, 1418–1420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    CAS  PubMed  Google Scholar 

  152. Diering, G. H. et al. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511–515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Diering, G. H. Remembering and forgetting in sleep: selective synaptic plasticity during sleep driven by scaling factors Homer1a and Arc. Neurobiol. Stress 22, 100512 (2023).

    CAS  PubMed  Google Scholar 

  154. Miyamoto, D., Marshall, W., Tononi, G. & Cirelli, C. Net decrease in spine-surface GluA1-containing AMPA receptors after post-learning sleep in the adult mouse cortex. Nat. Commun. 12, 2881 (2021). This paper reveals that those synapses that are potentiated the most by learning are also least inclined to be weakened during sleep.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, G. et al. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178 (2014). This paper shows that cortical neurons that are activated during a learning task are reactivated during REM sleep, and that this reactivation is crucial for maintaining the newly formed spines at these neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Seibt, J. et al. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat. Commun. 8, 684 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Feld, G. B., Lange, T., Gais, S. & Born, J. Sleep-dependent declarative memory consolidation — unaffected after blocking NMDA or AMPA receptors but enhanced by NMDA coagonist D-cycloserine. Neuropsychopharmacology 38, 2688–2697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gisabella, B., Scammell, T., Bandaru, S. S. & Saper, C. B. Regulation of hippocampal dendritic spines following sleep deprivation. J. Comp. Neurol. 528, 380–388 (2020).

    CAS  PubMed  Google Scholar 

  159. Bolsius, Y. G., Meerlo, P., Kas, M. J., Abel, T. & Havekes, R. Sleep deprivation reduces the density of individual spine subtypes in a branch-specific fashion in CA1 neurons. J. Sleep Res. 31, e13438 (2022).

    PubMed  Google Scholar 

  160. Varela, C. & Wilson, M. A. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. eLife 9, e48881 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Mavanji, V. & Datta, S. Activation of the phasic pontine-wave generator enhances improvement of learning performance: a mechanism for sleep-dependent plasticity. Eur. J. Neurosci. 17, 359–370 (2003).

    PubMed  Google Scholar 

  162. Tsunematsu, T., Patel, A. A., Onken, A. & Sakata, S. State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states. eLife 9, e52244 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Shin, J. N., Doron, G. & Larkum, M. E. Memories off the top of your head. Science 374, 538–539 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Palacios-Filardo, J. & Mellor, J. R. Neuromodulation of hippocampal long-term synaptic plasticity. Curr. Opin. Neurobiol. 54, 37–43 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Nakauchi, S., Brennan, R. J., Boulter, J. & Sumikawa, K. Nicotine gates long-term potentiation in the hippocampal CA1 region via the activation of alpha2* nicotinic ACh receptors. Eur. J. Neurosci. 25, 2666–2681 (2007).

    PubMed  Google Scholar 

  166. Delorme, J. et al. Sleep loss drives acetylcholine- and somatostatin interneuron-mediated gating of hippocampal activity to inhibit memory consolidation. Proc. Natl Acad. Sci. USA 118, e2019318118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Soulé, J. et al. Balancing Arc synthesis, mRNA decay, and proteasomal degradation: maximal protein expression triggered by rapid eye movement sleep-like bursts of muscarinic cholinergic receptor stimulation. J. Biol. Chem. 287, 22354–22366 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. Stefanelli, T., Bertollini, C., Lüscher, C., Muller, D. & Mendez, P. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89, 1074–1085 (2016).

    CAS  PubMed  Google Scholar 

  169. Dannenberg, H., Young, K. & Hasselmo, M. Modulation of hippocampal circuits by muscarinic and nicotinic receptors. Front. Neural Circuits 11, 102 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. Rexrode, L. et al. Regulation of dendritic spines in the amygdala following sleep deprivation. Front. Sleep 2, 1145203 (2023).

    PubMed  PubMed Central  Google Scholar 

  171. Van Someren, E. J. W. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol. Rev. 101, 995–1046 (2021).

    PubMed  Google Scholar 

  172. Bröcher, S., Artola, A. & Singer, W. Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res. 573, 27–36 (1992).

    PubMed  Google Scholar 

  173. Suzuki, A., Yanagisawa, M. & Greene, R. W. Loss of Arc attenuates the behavioral and molecular responses for sleep homeostasis in mice. Proc. Natl Acad. Sci. USA 117, 10547–10553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Poe, G. R., Nitz, D. A., McNaughton, B. L. & Barnes, C. A. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res. 855, 176–180 (2000).

    CAS  PubMed  Google Scholar 

  175. Ramirez-Villegas, J. F. et al. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature 589, 96–102 (2021).

    CAS  PubMed  Google Scholar 

  176. Booth, V. & Poe, G. R. Input source and strength influences overall firing phase of model hippocampal CA1 pyramidal cells during theta: relevance to REM sleep reactivation and memory consolidation. Hippocampus 16, 161–173 (2006). This paper shows how the consolidation process of strengthening the familiarity-encoding temporoammonic distal hippocampal dendrites can cause CA1 neurons to fire at proximal theta troughs which, through spike timing-dependent plasticity, invokes depotentiation at novelty-encoding proximal dendrites.

    PubMed  PubMed Central  Google Scholar 

  177. Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    PubMed  Google Scholar 

  178. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Grella, S. L. et al. Locus coeruleus phasic, but not tonic, activation initiates global remapping in a familiar environment. J. Neurosci. 39, 445–455 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Andrade, K. C. et al. Sleep spindles and hippocampal functional connectivity in human NREM sleep. J. Neurosci. 31, 10331–10339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    PubMed  PubMed Central  Google Scholar 

  182. Cox, R., Rüber, T., Staresina, B. P. & Fell, J. Sharp wave-ripples in human amygdala and their coordination with hippocampus during NREM sleep. Cereb. Cortex Commun. 1, tgaa051 (2020).

    PubMed  PubMed Central  Google Scholar 

  183. Kim, W. B. & Cho, J.-H. Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala. J. Neurosci. 37, 4868–4882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, W., Ma, L., Yang, G. & Gan, W.-B. REM sleep selectively prunes and maintains new synapses in development and learning. Nat. Neurosci. 20, 427–437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhou, Y. et al. REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat. Commun. 11, 4819 (2020). This paper demonstrates that experience-dependent structural plasticity takes place during REM sleep in cortical neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Popa, D., Duvarci, S., Popescu, A. T., Léna, C. & Paré, D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc. Natl Acad. Sci. USA 107, 6516–6519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Gais, S. et al. Sleep transforms the cerebral trace of declarative memories. Proc. Natl Acad. Sci. USA 104, 18778–18783 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Sterpenich, V. et al. Sleep-related hippocampo-cortical interplay during emotional memory recollection. PloS Biol. 5, e282 (2007).

    PubMed  PubMed Central  Google Scholar 

  189. van der Helm, E. et al. REM sleep depotentiates amygdala activity to previous emotional experiences. Curr. Biol. 21, 2029–2032 (2011).

    PubMed  PubMed Central  Google Scholar 

  190. Motomura, Y. et al. Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity. PloS ONE 8, e56578 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Sollenberger, N. A. et al. Sleep fails to depotentiate amygdala-reactivity to negative emotional stimuli in youth with elevated symptoms of anxiety. Cogn. Affect. Behav. Neurosci. 23, 415–426 (2023).

    PubMed  Google Scholar 

  192. Sterpenich, V. et al. Sleep promotes the neural reorganization of remote emotional memory. J. Neurosci. 29, 5143–5152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Yoo, S.-S., Gujar, N., Hu, P., Jolesz, F. A. & Walker, M. P. The human emotional brain without sleep — a prefrontal amygdala disconnect. Curr. Biol. 17, R877–R878 (2007).

    CAS  PubMed  Google Scholar 

  194. Nowak, J. et al. Association of naturally occurring sleep loss with reduced amygdala resting-state functional connectivity following psychosocial stress. Psychoneuroendocrinology 114, 104585 (2020).

    PubMed  Google Scholar 

  195. Gilson, M. et al. REM-enriched naps are associated with memory consolidation for sad stories and enhance mood-related reactivity. Brain Sci. 6, 1 (2015).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  196. Werner, G. G., Schabus, M., Blechert, J., Kolodyazhniy, V. & Wilhelm, F. H. Pre- to postsleep change in psychophysiological reactivity to emotional films: late-night REM sleep is associated with attenuated emotional processing. Psychophysiology 52, 813–825 (2015).

    PubMed  Google Scholar 

  197. Cunningham, T. J. et al. Psychophysiological arousal at encoding leads to reduced reactivity but enhanced emotional memory following sleep. Neurobiol. Learn. Mem. 114, 155–164 (2014).

    PubMed  Google Scholar 

  198. Reinhold, F. L., Gerlicher, A. M. V., van Someren, E. J. W. & Kindt, M. Do your troubles today seem further away than yesterday? On sleep’s role in mitigating the blushing response to a reactivated embarrassing episode. Sleep 45, zsac220 (2022).

    PubMed  PubMed Central  Google Scholar 

  199. Jones, B. J. & Spencer, R. M. C. Sleep preserves subjective and sympathetic emotional response of memories. Neurobiol. Learn. Mem. 166, 107096 (2019).

    PubMed  PubMed Central  Google Scholar 

  200. Pace-Schott, E. F. et al. Napping promotes inter-session habituation to emotional stimuli. Neurobiol. Learn. Mem. 95, 24–36 (2011).

    PubMed  Google Scholar 

  201. Werner, G. G., Schabus, M., Blechert, J. & Wilhelm, F. H. Differential effects of REM sleep on emotional processing: initial evidence for increased short-term emotional responses and reduced long-term intrusive memories. Behav. Sleep Med. 19, 83–98 (2021).

    PubMed  Google Scholar 

  202. Pesonen, A.-K. et al. Presleep physiological stress is associated with a higher cortical arousal in sleep and more consolidated REM sleep. Stress 24, 667–675 (2021).

    PubMed  Google Scholar 

  203. Spoormaker, V. I., Gvozdanovic, G. A., Sämann, P. G. & Czisch, M. Ventromedial prefrontal cortex activity and rapid eye movement sleep are associated with subsequent fear expression in human subjects. Exp. Brain Res. 232, 1547–1554 (2014).

    CAS  PubMed  Google Scholar 

  204. van Marle, H. J. F., Hermans, E. J., Qin, S., Overeem, S. & Fernández, G. The effect of exogenous cortisol during sleep on the behavioral and neural correlates of emotional memory consolidation in humans. Psychoneuroendocrinology 38, 1639–1649 (2013).

    PubMed  Google Scholar 

  205. Beck, J., Loretz, E. & Rasch, B. Stress dynamically reduces sleep depth: temporal proximity to the stressor is crucial. Cereb. Cortex 33, 96–113 (2022).

    PubMed  PubMed Central  Google Scholar 

  206. Riemann, D. et al. REM sleep instability — a new pathway for insomnia? Pharmacopsychiatry 45, 167–176 (2012). This paper first describes REM sleep instability in insomnia as a transdiagnostic risk factor for disturbed emotion regulation and mental health problems.

    CAS  PubMed  Google Scholar 

  207. Germain, A. Sleep disturbances as the hallmark of PTSD: where are we now? Am. J. Psychiatry 170, 372–382 (2013).

    PubMed  PubMed Central  Google Scholar 

  208. Pesonen, A.-K. et al. REM sleep fragmentation associated with depressive symptoms and genetic risk for depression in a community-based sample of adolescents. J. Affect. Disord. 245, 757–763 (2019).

    PubMed  Google Scholar 

  209. Galbiati, A. et al. The association between emotional dysregulation and REM sleep features in insomnia disorder. Brain Cogn. 146, 105642 (2020).

    PubMed  Google Scholar 

  210. Halonen, R., Kuula, L., Makkonen, T., Kauramäki, J. & Pesonen, A.-K. Self-conscious affect is modulated by rapid eye movement sleep but not by targeted memory reactivation — a pilot study. Front. Psychol. 12, 730924 (2021).

    PubMed  PubMed Central  Google Scholar 

  211. Bottary, R. et al. Fear extinction memory is negatively associated with REM sleep in insomnia disorder. Sleep 43, zsaa007 (2020).

    PubMed  PubMed Central  Google Scholar 

  212. Seo, J. et al. Delayed fear extinction in individuals with insomnia disorder. Sleep 41, zsy095 (2018).

    PubMed  PubMed Central  Google Scholar 

  213. Insana, S. P., Kolko, D. J. & Germain, A. Early-life trauma is associated with rapid eye movement sleep fragmentation among military veterans. Biol. Psychol. 89, 570–579 (2012).

    PubMed  PubMed Central  Google Scholar 

  214. Mellman, T. A., Bustamante, V., Fins, A. I., Pigeon, W. R. & Nolan, B. REM sleep and the early development of posttraumatic stress disorder. Am. J. Psychiatry 159, 1696–1701 (2002).

    PubMed  Google Scholar 

  215. Mellman, T. A., Pigeon, W. R., Nowell, P. D. & Nolan, B. Relationships between REM sleep findings and PTSD symptoms during the early aftermath of trauma. J. Trauma. Stress. 20, 893–901 (2007).

    PubMed  Google Scholar 

  216. Cowdin, N., Kobayashi, I. & Mellman, T. A. Theta frequency activity during rapid eye movement (REM) sleep is greater in people with resilience versus PTSD. Exp. Brain Res. 232, 1479–1485 (2014).

    PubMed  PubMed Central  Google Scholar 

  217. Gong, L. et al. The abnormal functional connectivity in the locus coeruleus-norepinephrine system associated with anxiety symptom in chronic insomnia disorder. Front. Neurosci. 15, 678465 (2021). This paper has found direct evidence for the links between altered functional connectivity between the LC and salience network in insomnia and clinically relevant anxiety.

    PubMed  PubMed Central  Google Scholar 

  218. Talamini, L. M., Bringmann, L. F., de Boer, M. & Hofman, W. F. Sleeping worries away or worrying away sleep? Physiological evidence on sleep-emotion interactions. PloS ONE 8, e62480 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Cellini, N., Mercurio, M. & Sarlo, M. The fate of emotional memories over a week: does sleep play any role? Front. Psychol. 10, 481 (2019).

    PubMed  PubMed Central  Google Scholar 

  220. Gujar, N., McDonald, S. A., Nishida, M. & Walker, M. P. A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions. Cereb. Cortex 21, 115–123 (2011).

    PubMed  Google Scholar 

  221. Kleim, B. et al. Sleep enhances exposure therapy. Psychol. Med. 44, 1511–1519 (2014).

    CAS  PubMed  Google Scholar 

  222. Wassing, R., Benjamins, J. S., Talamini, L. M., Schalkwijk, F. & Van Someren, E. J. W. Overnight worsening of emotional distress indicates maladaptive sleep in insomnia. Sleep 42, zsz051 (2019).

  223. Baran, B., Pace-Schott, E. F., Ericson, C. & Spencer, R. M. C. Processing of emotional reactivity and emotional memory over sleep. J. Neurosci. 32, 1035–1042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Tempesta, D., De Gennaro, L., Natale, V. & Ferrara, M. Emotional memory processing is influenced by sleep quality. Sleep. Med. 16, 862–870 (2015).

    PubMed  Google Scholar 

  225. Harrington, M. O., Nedberge, K. M. & Durrant, S. J. The effect of sleep deprivation on emotional memory consolidation in participants reporting depressive symptoms. Neurobiol. Learn. Mem. 152, 10–19 (2018).

    PubMed  Google Scholar 

  226. Lau, E. Y. Y. et al. Effects of REM sleep during a daytime nap on emotional perception in individuals with and without depression. J. Affect. Disord. 260, 687–694 (2020).

    PubMed  Google Scholar 

  227. Zeng, S., Lin, X., Wang, J. & Hu, X. Sleep’s short-term memory preservation and long-term affect depotentiation effect in emotional memory consolidation: behavioral and EEG evidence. Sleep 44, zsab155 (2021).

    PubMed  Google Scholar 

  228. Davidson, P. & Pace-Schott, E. Go to bed and you MIGHT feel better in the morning — the effect of sleep on affective tone and intrusiveness of emotional memories. Curr. Sleep Med. Rep. 7, 31–46 (2021).

    Google Scholar 

  229. Etkin, A., Büchel, C. & Gross, J. J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 16, 693–700 (2015).

    CAS  PubMed  Google Scholar 

  230. Wiesner, C. D. et al. The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories. Neurobiol. Learn. Mem. 122, 131–141 (2015).

    PubMed  Google Scholar 

  231. Wagner, U., Fischer, S. & Born, J. Changes in emotional responses to aversive pictures across periods rich in slow-wave sleep versus rapid eye movement sleep. Psychosom. Med. 64, 627–634 (2002).

    PubMed  Google Scholar 

  232. Lara-Carrasco, J., Nielsen, T. A., Solomonova, E., Levrier, K. & Popova, A. Overnight emotional adaptation to negative stimuli is altered by REM sleep deprivation and is correlated with intervening dream emotions. J. Sleep Res. 18, 178–187 (2009).

    PubMed  Google Scholar 

  233. Greenberg, R., Pillard, R. & Pearlman, C. The effect of dream (stage REM) deprivation on adaptation to stress. Psychosom. Med. 34, 257–262 (1972).

    CAS  PubMed  Google Scholar 

  234. Rosales-Lagarde, A. et al. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study. Front. Behav. Neurosci. 6, 25 (2012).

    PubMed  PubMed Central  Google Scholar 

  235. Llewellyn, S. & Hobson, J. A. Not only … but also: REM sleep creates and NREM stage 2 instantiates landmark junctions in cortical memory networks. Neurobiol. Learn. Mem. 122, 69–87 (2015).

    PubMed  Google Scholar 

  236. Cairney, S. A., Durrant, S. J., Power, R. & Lewis, P. A. Complementary roles of slow-wave sleep and rapid eye movement sleep in emotional memory consolidation. Cereb. Cortex 25, 1565–1575 (2015).

    PubMed  Google Scholar 

  237. Rihm, J. S. & Rasch, B. Replay of conditioned stimuli during late REM and stage N2 sleep influences affective tone rather than emotional memory strength. Neurobiol. Learn. Mem. 122, 142–151 (2015).

    PubMed  Google Scholar 

  238. Hutchison, I. C. et al. Targeted memory reactivation in REM but not SWS selectively reduces arousal responses. Commun. Biol. 4, 404 (2021). This paper shows that targeted memory reactivation during REM sleep enhances overnight adaptation in subjective arousal ratings to multisensory emotional stimuli.

    PubMed  PubMed Central  Google Scholar 

  239. Xia, T. et al. Updating memories of unwanted emotions during human sleep. Curr. Biol. 33, 309–320.e5 (2023).

    CAS  PubMed  Google Scholar 

  240. Groch, S. et al. Targeted reactivation during sleep differentially affects negative memories in socially anxious and healthy children and adolescents. J. Neurosci. 37, 2425–2434 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Pereira, S. I. R. et al. Cueing emotional memories during slow wave sleep modulates next-day activity in the orbitofrontal cortex and the amygdala. NeuroImage 253, 119120 (2022).

    PubMed  Google Scholar 

  242. Borghese, F. et al. Targeted memory reactivation during REM sleep in patients with social anxiety disorder. Front. Psychiatry 13, 904704 (2022).

    PubMed  PubMed Central  Google Scholar 

  243. Hauner, K. K., Howard, J. D., Zelano, C. & Gottfried, J. A. Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat. Neurosci. 16, 1553–1555 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Spencer, R. L. & Bland, S. T. in Stress: Physiology, Biochemistry, and Pathology (ed. Fink, G.) 57–68 (Academic, 2019).

Download references

Acknowledgements

Y.C. discloses support for this work from the Cota Robles Fellowship. G.R.P. discloses support from the National Institute of Mental Health (R01 Grant MH60670). H.W.K. discloses support from the Brain Foundation Netherlands (DR-2018-00252). E.J.W.V.S. discloses support from the European Research Council (ERC-ADG-2014-671084 INSOMNIA and ERC-2021-ADG-101055383 OVERNIGHT) and from the Netherlands Organisation for Health Research and Development (ZonMw) project REMOVE 09120011910032. R.W. discloses support from the Sydney Local Health District and the Australian National Health and Medical Research Council (Investigator Grant GNT1196636).

Author information

Authors and Affiliations

Authors

Contributions

All authors drafted, edited and revised the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Rick Wassing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Anu-Katriina Pesonen and Julie Seibt for their contribution to the peer review of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, Y., Koymans, K.J., Poe, G.R. et al. Overnight neuronal plasticity and adaptation to emotional distress. Nat. Rev. Neurosci. 25, 253–271 (2024). https://doi.org/10.1038/s41583-024-00799-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00799-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing