Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment

Subjects

Abstract

Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the mTOR pathway and the consequences of its hyperactivation for epileptogenesis.
Fig. 2: Interactions between mTOR and neuroinflammation in structural epilepsies.

Similar content being viewed by others

References

  1. Chen, Z., Brodie, M. J., Ding, D. & Kwan, P. Editorial: epidemiology of epilepsy and seizures. Front. Epidemiol. 3, 1273163 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Devinsky, O. et al. Epilepsy. Nat. Rev. Dis. Prim. 4, 18024 (2018).

    Article  PubMed  Google Scholar 

  3. Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia 58, 512–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pitkanen, A., Lukasiuk, K., Dudek, F. E. & Staley, K. J. Epileptogenesis. Cold Spring Harb. Perspect. Med. 5, a022822 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galanopoulou, A. S. et al. Antiepileptogenesis and disease modification: progress, challenges, and the path forward — Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open 6, 276–296 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Curatolo, P., Moavero, R., van Scheppingen, J. & Aronica, E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Exp. Rev. Neurother. 18, 185–201 (2018).

    Article  CAS  Google Scholar 

  7. Vezzani, A., Balosso, S. & Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 15, 459–472 (2019). This review describes inflammatory pathways that are activated in pharmaco-resistant epilepsy and can be modulated in animal models to produce therapeutic effects.

    Article  CAS  PubMed  Google Scholar 

  8. Aronica, E., Specchio, N., Luinenburg, M. J. & Curatolo, P. Epileptogenesis in tuberous sclerosis complex-related developmental and epileptic encephalopathy. Brain 146, 2694–2710 (2023). This review provides an overview of the different biological mechanisms throughout the life course, even beyond the epileptogenic process, in individuals with tuberous sclerosis complex.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weichhart, T., Hengstschläger, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klein, P. et al. Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59, 37–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. McDaniel, S. S., Rensing, N. R., Thio, L. L., Yamada, K. A. & Wong, M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 52, e7–e11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simeone, T. A., Simeone, K. A. & Rho, J. M. Ketone bodies as anti-seizure agents. Neurochem. Res. 42, 2011–2018 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Girodengo, M., Ultanir, S. K. & Bateman, J. M. Mechanistic target of rapamycin signaling in human nervous system development and disease. Front. Mol. Neurosci. 15, 1005631 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andrews, M. G., Subramanian, L. & Kriegstein, A. R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 9, e58737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rostamzadeh, D. et al. mTOR signaling pathway as a master regulator of memory CD8+ T-cells, Th17, and NK cells development and their functional properties. J. Cell Physiol. 234, 12353–12368 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Mühlebner, A., Bongaarts, A., Sarnat, H. B., Scholl, T. & Aronica, E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J. Anat. 235, 521–542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gerasimenko, A., Baldassari, S. & Baulac, S. mTOR pathway: insights into an established pathway for brain mosaicism in epilepsy. Neurobiol. Dis. 182, 106144 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Okoh, J. et al. Targeted suppression of mTORC2 reduces seizures across models of epilepsy. Nat. Commun. 14, 7364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hodges, S. L. & Lugo, J. N. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res. 161, 106282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao, Z., Peng, J., Gan, N., Arafat, A. & Yin, F. Interleukin-1β plays a pivotal role via the PI3K/Akt/mTOR signaling pathway in the chronicity of mesial temporal lobe epilepsy. Neuroimmunomodulation 23, 332–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J. & Jaworski, J. Molecular neurobiology of mTOR. Neuroscience 341, 112–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Fernandes, S. A. & Demetriades, C. The multifaceted role of nutrient sensing and mTORC1 signaling in physiology and aging. Front Aging 2, 707372 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zimmer, T. S. et al. Tuberous sclerosis complex as disease model for investigating mTOR-related gliopathy during epileptogenesis. Front. Neurol. 11, 1028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Figlia, G., Gerber, D. & Suter, U. Myelination and mTOR. Glia 66, 693–707 (2018).

    Article  PubMed  Google Scholar 

  26. Galanopoulou, A. S., Gorter, J. A. & Cepeda, C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 53, 1119–1130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curatolo, P., Specchio, N. & Aronica, E. Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol. 21, 843–856 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Najm, I. et al. The ILAE consensus classification of focal cortical dysplasia: an update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 63, 1899–1919 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen, L. H. & Bordey, A. Current review in basic science: animal models of focal cortical dysplasia and epilepsy. Epilepsy Curr. 22, 234–240 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Eichmüller, O. L. et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science 375, eabf5546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moavero, R. et al. Genetic pathogenesis of the epileptogenic lesions in tuberous sclerosis complex: therapeutic targeting of the mTOR pathway. Epilepsy Behav. 131, 107713 (2022).

    Article  PubMed  Google Scholar 

  32. Bockaert, J. & Marin, P. mTOR in brain physiology and pathologies. Physiol. Rev. 95, 1157–1187 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Talos, D. M. et al. Mechanistic target of rapamycin complex 1 and 2 in human temporal lobe epilepsy. Ann. Neurol. 83, 311–327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campolo, M. et al. The inhibition of mammalian target of rapamycin (mTOR) in improving inflammatory response after traumatic brain injury. J. Cell Mol. Med. 25, 7855–7866 (2021). This study shows that treatment with mTOR inhibitors ameliorated the neuroinflammation associated with traumatic brain injury showing a diminished neuronal death and astrogliosis after trauma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Movahedpour, A. et al. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: a novel insight into targeted therapy. Cell Biochem. Funct. 40, 232–247 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, D., Zeng, L., Brody, D. L. & Wong, M. Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS ONE 8, e64078 (2013). This study provides evidence that rapamycin treatment for 1 month after traumatic brain injury decreased the seizure frequency and rate of developing post-traumatic epilepsy, showing inhibition of epileptogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McMahon, J. et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J. Neurosci. 32, 15704–15714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, M. Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed. J. 36, 40–50 (2013).

    Article  PubMed  Google Scholar 

  39. Lim, J. S. et al. Brain somatic mutations in mTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Zeng, L.-H., Xu, L., Gutmann, D. H. & Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444–453 (2008). This study reports that early or late rapamycin treatment in a genetic model of tuberous sclerosis complex suppressed seizures and prolonged survival of mice and reversed the concomitant neuropathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koike-Kumagai, M., Fujimoto, M. & Wataya-Kaneda, M. Sirolimus relieves seizures and neuropsychiatric symptoms via changes of microglial polarity in tuberous sclerosis complex model mice. Neuropharmacology 218, 109203 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Petrasek, T. et al. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J. Neurodev. Disord. 13, 14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Buckmaster, P. S., Ingram, E. A. & Wen, X. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J. Neurosci. 29, 8259–8269 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng, L. H., Rensing, N. R. & Wong, M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci. 29, 6964–6972 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng, L.-H., McDaniel, S., Rensing, N. R. & Wong, M. Regulation of cell death and epileptogenesis by the mammalian target of rapamycin (mTOR): a double-edged sword? Cell Cycle 9, 2281–2285 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Sliwa, A., Plucinska, G., Bednarczyk, J. & Lukasiuk, K. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci. Lett. 509, 105–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Drion, C. M. et al. Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo — in search of potential anti-epileptogenic strategies for temporal lobe epilepsy. J. Neuroinflammation 15, 212 (2018). This study shows that rapamycin in the post-status epilepticus rat model neither suppressed the expression of inflammatory and oxidative stress markers in bulk tissue nor reduced the levels of IL-6 and COX2 in cultured astrocytes challenged with IL-1β.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, X. et al. Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol. Dis. 40, 193–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Löscher, W. Consequences of housing conditions and interindividual diversity in rodent models of acquired epilepsy. Epilepsia 60, 2016–2019 (2019).

    Article  PubMed  Google Scholar 

  50. Brewster, A. L. et al. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS ONE 8, e57808 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Vliet, E. A. et al. Blood–brain barrier leakage after status epilepticus in rapamycin-treated rats I: magnetic resonance imaging. Epilepsia 57, 59–69 (2016).

    Article  PubMed  Google Scholar 

  52. French, J. A. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Franz, D. N. et al. Everolimus for treatment-refractory seizures in TSC: extension of a randomized controlled trial. Neurol. Clin. Pract. 8, 412–420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Overwater, I. E. et al. Sirolimus for epilepsy in children with tuberous sclerosis complex: a randomized controlled trial. Neurology 87, 1011–1018 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Krueger, D. A. et al. Short-term safety of mTOR inhibitors in infants and very young children with tuberous sclerosis complex (TSC): multicentre clinical experience. Eur. J. Paediatr. Neurol. 22, 1066–1073 (2018).

    Article  PubMed  Google Scholar 

  56. Saffari, A. et al. Safety and efficacy of mTOR inhibitor treatment in patients with tuberous sclerosis complex under 2 years of age — a multicenter retrospective study. Orphanet J. Rare Dis. 14, 96 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peters, J. M. et al. Longitudinal effects of everolimus on white matter diffusion in tuberous sclerosis complex. Pediatr. Neurol. 90, 24–30 (2019).

    Article  PubMed  Google Scholar 

  58. Cavalheiro, S., da Costa, M. D. S. & Richtmann, R. Everolimus as a possible prenatal treatment of in utero diagnosed subependymal lesions in tuberous sclerosis complex: a case report. Childs Nerv. Syst. 37, 3897–3899 (2021).

    Article  PubMed  Google Scholar 

  59. Śmiałek, D., Kotulska, K., Duda, A. & Jóźwiak, S. Effect of mTOR inhibitors in epilepsy treatment in children with tuberous sclerosis complex under 2 years of age. Neurol. Ther. 12, 931–946 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Leitner, D. F. et al. Pilot study evaluating everolimus molecular mechanisms in tuberous sclerosis complex and focal cortical dysplasia. PLoS ONE 17, e0268597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kato, M. et al. Sirolimus for epileptic seizures associated with focal cortical dysplasia type II. Ann. Clin. Transl. Neurol. 9, 181–192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shiraishi, H. et al. Efficacy of sirolimus for epileptic seizures in childhood associated with focal cortical dysplasia type II. Brain Dev. 45, 343–347 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Z. et al. Brain-restricted mTOR inhibition with binary pharmacology. Nature 609, 822–828 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garay, P. A. & McAllister, A. K. Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front. Synaptic Neurosci. 2, 136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vezzani, A., Maroso, M., Balosso, S., Sanchez, M. A. & Bartfai, T. IL-1 receptor/toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav. Immun. 25, 1281–1289 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Ravizza, T. et al. High mobility group box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav. Immun. 72, 14–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Vezzani, A. et al. Astrocytes in the initiation and progression of epilepsy. Nat. Rev. Neurol. 18, 707–722 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kıray, H., Lindsay, S. L., Hosseinzadeh, S. & Barnett, S. C. The multifaceted role of astrocytes in regulating myelination. Exp. Neurol. 283, 541–549 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vezzani, A. & Viviani, B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96, 70–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Vezzani, A., Lang, B. & Aronica, E. Immunity and inflammation in epilepsy. Cold Spring Harb. Perspect. Med. 6, a022699 (2015).

    Article  PubMed  Google Scholar 

  72. Xanthos, D. N. & Sandkuhler, J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Vezzani, A. et al. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Akin, D. et al. IL-1beta is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence. Neurobiol. Dis. 44, 259–269 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Dube, C. M. et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J. Neurosci. 30, 7484–7494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ravizza, T. et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol. Dis. 29, 142–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Sharma, R. et al. Neuroinflammation in post-traumatic epilepsy: pathophysiology and tractable therapeutic targets. Brain Sci. 9, 318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar, P. et al. Single-cell transcriptomics and surface epitope detection in human brain epileptic lesions identifies pro-inflammatory signaling. Nat. Neurosci. 25, 956–966 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mills, J. D. et al. Coding and non-coding transcriptome of mesial temporal lobe epilepsy: critical role of small non-coding RNAs. Neurobiol. Dis. 134, 104612 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Kan, A. A. et al. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. J. Neuroinflammation 9, 207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grote, A. et al. ‘Hippocampal innate inflammatory gliosis only’ in pharmacoresistant temporal lobe epilepsy. Brain 146, 549–560 (2023).

    Article  PubMed  Google Scholar 

  82. Pohlentz, M. S. et al. Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS ONE 17, e0271995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zimmer, T. S. et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol. Appl. Neurobiol. 47, 826–839 (2021). This study shows that ballon cells are crucial drivers of inflammation in focal cortical dysplasia 2b. The driving force behind the immunogenic expression profile could originate from the high mutational load and resulting intrinsic mTOR activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ravizza, T. et al. The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol. Dis. 24, 128–143 (2006). This study shows high expression of IL-1β and its functional receptor IL-1RI in focal cortical dysplasia and glioneuronal tumour specimens, together with a relative paucity of mechanisms apt to inactivate IL-1β actions. This may contribute to the high epileptogenicity of these developmental lesions.

    Article  CAS  PubMed  Google Scholar 

  85. Boer, K. et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res. 78, 7–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. van Scheppingen, J. et al. Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures. Glia 64, 1066–1082 (2016).

    Article  PubMed  Google Scholar 

  87. Prabowo, A. S. et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 23, 45–59 (2012). This study provides evidence supporting immunogenicity of giant cells and the early activation of inflammatory pathways in the brains of fetuses with tuberous sclerosis complex. The absence of dysmorphic neurons suggests the temporal evolution of these lesions, which may contribute to seizures and cognitive impairment in patients with tuberous sclerosis complex.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gelot, A. B. & Represa, A. Progression of fetal brain lesions in tuberous sclerosis complex. Front. Neurosci. 14, 899 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Iyer, A. et al. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia 51, 1736–1773 (2010).

    Article  Google Scholar 

  90. Arena, A. et al. Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathol. 29, 351–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Iffland, P. H., Carson, V., Bordey, A. & Crino, P. B. GATORopathies: the role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia 60, 2163–2173 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Broekaart, D. W. M. et al. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood–brain barrier dysfunction and seizure progression. Epilepsia 59, 1931–1944 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. van Vliet, E. A., Aronica, E., Vezzani, A. & Ravizza, T. Review: neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol. Appl. Neurobiol. 44, 91–111 (2018).

    Article  PubMed  Google Scholar 

  94. Vezzani, A., Di Sapia, R., Kebede, V., Balosso, S. & Ravizza, T. Neuroimmunology of status epilepticus. Epilepsy Behav. 140, 109095 (2023).

    Article  PubMed  Google Scholar 

  95. Maroso, M. et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 16, 413–419 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Jimenez-Pacheco, A. et al. Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J. Neurosci. 36, 5920–5932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Semple, B. D. et al. Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J. Neurosci. 37, 7864–7877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Iori, V. et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol. Dis. 99, 12–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Kwon, Y. S. et al. Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J. Neuroinflammation 10, 30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, M., Edwards, S. R. & Reutens, D. C. Complement in the development of post-traumatic epilepsy: prospects for drug repurposing. J. Neurotrauma 37, 692–705 (2020).

    Article  PubMed  Google Scholar 

  101. Ping, X. et al. Blocking receptor for advanced glycation end products (RAGE) or toll-like receptor 4 (TLR4) prevents posttraumatic epileptogenesis in mice. Epilepsia 62, 3105–3116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Broekaart, D. W. et al. The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects. J. Clin. Invest. 131, 138332 (2021).

    Article  PubMed  Google Scholar 

  103. Aronica, E. et al. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 58, 27–38 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Varvel, N. H., Jiang, J. & Dingledine, R. Candidate drug targets for prevention or modification of epilepsy. Annu. Rev. Pharmacol. Toxicol. 55, 4.1–4.19 (2015).

    Article  Google Scholar 

  105. Clossen, B. L. & Reddy, D. S. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 1519–1538 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Suleymanova, E. M. Behavioral comorbidities of epilepsy and neuroinflammation: evidence from experimental and clinical studies. Epilepsy Behav. 117, 107869 (2021).

    Article  PubMed  Google Scholar 

  107. Rojas, A., Chen, D., Ganesh, T., Varvel, N. H. & Dingledine, R. The COX-2/prostanoid signaling cascades in seizure disorders. Exp. Opin. Ther. Targets 23, 1–13 (2019).

    Article  CAS  Google Scholar 

  108. Terrone, G. et al. Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet. Epilepsia 59, 79–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Altmann, A. et al. A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathol. Appl. Neurobiol. 48, e12758 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Santello, M., Toni, N. & Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 22, 154–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Paladini, M. S., Feng, X., Krukowski, K. & Rosi, S. Microglia depletion and cognitive functions after brain injury: from trauma to galactic cosmic ray. Neurosci. Lett. 741, 135462 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Vincent, A., Irani, S. R. & Lang, B. The growing recognition of immunotherapy-responsive seizure disorders with autoantibodies to specific neuronal proteins. Curr. Opin. Neurol. 23, 144–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Tan, T. H.-L., Perucca, P., O’Brien, T. J., Kwan, P. & Monif, M. Inflammation, ictogenesis, and epileptogenesis: an exploration through human disease. Epilepsia 62, 303–324 (2021).

    Article  PubMed  Google Scholar 

  114. Zhang, X. et al. Glucocorticoid receptors participate in epilepsy in FCDII patients and MP model rats: a potential therapeutic target for epilepsy in patients with focal cortical dysplasia II (FCDII). Exp. Opin. Ther. Targets 26, 171–186 (2022).

    Article  CAS  Google Scholar 

  115. Brunson, K. L., Avishai-Eliner, S. & Baram, T. Z. ACTH treatment of infantile spasms: mechanisms of its effects in modulation of neuronal excitability. Int. Rev. Neurobiol. 49, 185–197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Thomson, A. W., Turnquist, H. R. & Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kato, H. & Perl, A. Roles of mechanistic target of rapamycin in the adaptive and innate immune systems. in Molecules to Medicine with mTOR (Elsevier, 2016).

  118. Dello Russo, C., Lisi, L., Feinstein, D. L. & Navarra, P. mTOR kinase, a key player in the regulation of glial functions: relevance for the therapy of multiple sclerosis. Glia 61, 301–311 (2013).

    Article  PubMed  Google Scholar 

  119. Chen, L. et al. Everolimus (RAD001) ameliorates vascular cognitive impairment by regulating microglial function via the mTORC1 signaling pathway. J. Neuroimmunol. 299, 164–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Li, D. et al. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J. 30, 3388–3399 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Ye, X. et al. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. J. Neuroinflammation 17, 18 (2020). This study directly links neuroinflammation in microglia with the inhibition of autophagic flux through the activation of the PI3KI–AKT–mTOR pathway and shows that enhanced microglial autophagy downregulates neuroinflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu, Y. et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia 68, 1031–1045 (2020).

    Article  PubMed  Google Scholar 

  123. Stafstrom, C. E. et al. Anticonvulsant and antiepileptic actions of 2-deoxy-D-glucose in epilepsy models. Ann. Neurol. 65, 435–447 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhao, X. et al. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Rep. 22, 2080–2093 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao, X.-F. et al. Microglial mTOR is neuronal protective and antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. J. Neurosci. 40, 7593–7608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, B. et al. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia 59, 1796–1806 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, B., Zou, J., Han, L., Rensing, N. & Wong, M. Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia 57, 1317–1325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhao, X.-F. et al. Targeting microglia using Cx3cr1-Cre lines: revisiting the specificity. eNeuro https://doi.org/10.1523/ENEURO.0114-19.2019 (2019).

  129. Sosunov, A. A. et al. The mTOR pathway is activated in glial cells in mesial temporal sclerosis. Epilepsia 53, 78–86 (2012).

    Article  PubMed  Google Scholar 

  130. Liu, J. et al. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol. Commun. 2, 71 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sosunov, A. A. et al. Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia 49, 53–62 (2008).

    Article  PubMed  Google Scholar 

  132. Rossini, L. et al. Dendritic spine loss in epileptogenic type II focal cortical dysplasia: role of enhanced classical complement pathway activation. Brain Pathol. 33, e13141 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Boer, K. et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol. 20, 704–719 (2010). This study provides a genome-wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue. The study shows increased expression of genes associated with the inflammatory response.

    Article  CAS  PubMed  Google Scholar 

  134. Maldonado, M. et al. Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol. Dis. 14, 279–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Zurolo, E. et al. Activation of TLR, RAGE and HMGB1 signaling in malformations of cortical development. Brain 134, 1015–1032 (2011).

    Article  PubMed  Google Scholar 

  136. Jansen, L. A., Uhlmann, E. J., Crino, P. B., Gutmann, D. H. & Wong, M. Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46, 1871–1880 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, B., Zou, J., Rensing, N. R., Yang, M. & Wong, M. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Neurobiol. Dis. 80, 70–79 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zimmer, T. S. et al. Chronic activation of anti-oxidant pathways and iron accumulation in epileptogenic malformations. Neuropathol. Appl. Neurobiol. 46, 546–563 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lisi, L., Navarra, P., Feinstein, D. L. & Dello Russo, C. The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes. J. Neuroinflammation 8, 1 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zeng, C., Hu, J., Chen, F., Huang, T. & Zhang, L. The coordination of mTOR signaling and non-coding RNA in regulating epileptic neuroinflammation. Front. Immunol. 13, 924642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nguyen, L. H. & Bordey, A. Convergent and divergent mechanisms of epileptogenesis in mTORopathies. Front. Neuroanat. 15, 664695 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Koene, L. M. et al. Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight 6, e150120 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Koene, L. M. C. et al. Effects of antiepileptic drugs in a new TSC/mTOR-dependent epilepsy mouse model. Ann. Clin. Transl. Neurol. 6, 1273–1291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lozovaya, N. et al. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat. Commun. 5, 4563 (2014). This study shows that NMDA receptors are candidates to explain the hyperexcitability of tuberous sclerosis complex neuronal networks. Data suggest that GluN2C subunit upregulation is of key importance in the manifestation of epileptic phenotypes associated with tuberous sclerosis complex.

    Article  CAS  PubMed  Google Scholar 

  145. LaSarge, C. L. et al. mTOR-driven neural circuit changes initiate an epileptogenic cascade. Prog. Neurobiol. 200, 101974 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Vogt, D., Cho, K. K. A., Lee, A. T., Sohal, V. S. & Rubenstein, J. L. R. The parvalbumin/somatostatin ratio is increased in Pten mutant mice and by human PTEN ASD alleles. Cell Rep. 11, 944–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hui, J. B. et al. NPRL2 inhibition of mTORC1 controls sodium channel expression and brain amino acid homeostasis. eNeuro https://doi.org/10.1523/ENEURO.0317-21.2022 (2022).

  148. Nguyen, L. H., Mahadeo, T. & Bordey, A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia. J. Neurosci. 39, 2762–2773 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hsieh, L. S. et al. Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Sci. Transl. Med. 12, eabc1492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Raab-Graham, K. F., Haddick, P. C. G., Jan, Y. N. & Jan, L. Y. Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314, 144–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Ruffolo, G. et al. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions. Neurobiol. Dis. 95, 93–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Bateup, H. S. et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78, 510–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van van Hugte, E. J. H., Schubert, D. & Nadif Kasri, N. Excitatory/inhibitory balance in epilepsies and neurodevelopmental disorders: depolarizing γ-aminobutyric acid as a common mechanism. Epilepsia 64, 1975–1990 (2023).

    Article  Google Scholar 

  154. Powell, E. M. Interneuron development and epilepsy: early genetic defects cause long-term consequences in seizures and susceptibility. Epilepsy Curr. 13, 172–176 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zeise, M. L., Espinoza, J., Morales, P. & Nalli, A. Interleukin-1beta does not increase synaptic inhibition in hippocampal CA3 pyramidal and dentate gyrus granule cells of the rat in vitro. Brain Res. 768, 341–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, S., Cheng, Q., Malik, S. & Yang, J. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 292, 497–504 (2000).

    CAS  PubMed  Google Scholar 

  157. Roseti, C. et al. GABA currents are decreased by IL-1beta in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol. Dis. 82, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Ruffolo, G. et al. GABAA receptor function is enhanced by interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by interleukin-1β. Sci. Rep. 12, 17956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Balosso, S. et al. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain 131, 3256–3265 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Balosso, S., Liu, J., Bianchi, M. E. & Vezzani, A. Disulfide-containing high mobility group box-1 promotes N-methyl-d-aspartate receptor function and excitotoxicity by activating toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid. Redox Signal. 21, 1726–1740 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Viviani, B. et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003). This study shows a post-transcriptional pathway activated in neurons by IL-1β, which is relevant for excitotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Galic, M. A., Riazi, K. & Pittman, Q. J. Cytokines and brain excitability. Front. Neuroendocrinol. 33, 116–125 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Villasana-Salazar, B. & Vezzani, A. Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol. Dis. 178, 106027 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hu, Y. et al. Microglia sense and suppress epileptic neuronal hyperexcitability. Pharmacol. Res. 195, 106881 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Patel, D. C., Tewari, B. P., Chaunsali, L. & Sontheimer, H. Neuron–glia interactions in the pathophysiology of epilepsy. Nat. Rev. Neurosci. 20, 282–297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wan, Y. et al. Microglial displacement of GABAergic synapses is a protective event during complex febrile seizures. Cell Rep. 33, 108346 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Eyo, U. B., Murugan, M. & Wu, L.-J. Microglia–neuron communication in epilepsy. Glia 65, 5–18 (2017).

    Article  PubMed  Google Scholar 

  169. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Clarke, L. E. & Barres, B. A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Aronica, E. et al. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol. Dis. 26, 497–511 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Chugh, D., Nilsson, P., Afjei, S. A., Bakochi, A. & Ekdahl, C. T. Brain inflammation induces post-synaptic changes during early synapse formation in adult-born hippocampal neurons. Exp. Neurol. 250, 176–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Scharfman, H. E. & McCloskey, D. P. Postnatal neurogenesis as a therapeutic target in temporal lobe epilepsy. Epilepsy Res. 85, 150–161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bedner, P. et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138, 1208–1222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lee, H.-G., Lee, J.-H., Flausino, L. E. & Quintana, F. J. Neuroinflammation: an astrocyte perspective. Sci. Transl. Med. 15, eadi7828 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Gorter, J. A., Aronica, E. & van Vliet, E. A. The roof is leaking and a storm is raging: repairing the blood–brain barrier in the fight against epilepsy. Epilepsy Curr. 19, 177–181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. van Vliet, E. A., Aronica, E. & Gorter, J. A. Blood–brain barrier dysfunction, seizures and epilepsy. Semin. Cell Dev. Biol. 38, 26–34 (2015).

    Article  PubMed  Google Scholar 

  178. Löscher, W. & Friedman, A. Structural, molecular, and functional alterations of the blood–brain barrier during epileptogenesis and epilepsy: a cause, consequence, or both? Int. J. Mol. Sci. 21, 591 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kim, S. Y. et al. TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci. Rep. 7, 7711 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Binder, D. K., Nagelhus, E. A. & Ottersen, O. P. Aquaporin-4 and epilepsy. Glia 60, 1203–1214 (2012).

    Article  PubMed  Google Scholar 

  181. Frigerio, F. et al. Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia 53, 1887–1897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bar-Klein, G. et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann. Neurol. 75, 864–875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bar-Klein, G. et al. Imaging blood–brain barrier dysfunction as a biomarker for epileptogenesis. Brain 140, 1692–1705 (2017).

    Article  PubMed  Google Scholar 

  184. Broekaart, D. W. M. et al. Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b in vitro. Neuropathol. Appl. Neurobiol. 46, 142–159 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Wilczynski, G. M. et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol. 180, 1021–1035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mills, J. D. et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci. Rep. 7, 8089 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Van Skike, C. E. et al. Inhibition of mTOR protects the blood–brain barrier in models of Alzheimer’s disease and vascular cognitive impairment. Am. J. Physiol. Heart Circ. Physiol. 314, H693–H703 (2018).

    Article  PubMed  Google Scholar 

  189. van Vliet, E. A. et al. Blood–brain barrier leakage after status epilepticus in rapamycin-treated rats II: potential mechanisms. Epilepsia 57, 70–78 (2016).

    Article  PubMed  Google Scholar 

  190. Xie, P. et al. Rapamycin plays an anti-epileptic role by restoring blood–brain barrier dysfunction, balancing T cell subsets and inhibiting neuronal apoptosis. Discov. Med. 35, 1043–1051 (2023).

    Article  PubMed  Google Scholar 

  191. Martin-Martin, N., Ryan, G., McMorrow, T. & Ryan, M. P. Sirolimus and cyclosporine A alter barrier function in renal proximal tubular cells through stimulation of ERK1/2 signaling and claudin-1 expression. Am. J. Physiol. Ren. Physiol. 298, F672–F682 (2010).

    Article  CAS  Google Scholar 

  192. Rempe, R. G. et al. Matrix metalloproteinase-mediated blood–brain barrier dysfunction in epilepsy. J. Neurosci. 38, 4301–4315 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Johnson, H. L., Jin, F., Pirko, I. & Johnson, A. J. Theiler’s murine encephalomyelitis virus as an experimental model system to study the mechanism of blood–brain barrier disruption. J. Neurovirol. 20, 107–112 (2014).

    Article  PubMed  Google Scholar 

  194. Klement, W. et al. Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature. Neurobiol. Dis. 113, 70–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Gruber, V.-E. et al. Impaired myelin production due to an intrinsic failure of oligodendrocytes in mTORpathies. Neuropathol. Appl. Neurobiol. 47, 812–825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mühlebner, A. et al. Myelin pathology beyond white matter in tuberous sclerosis complex (TSC) cortical tubers. J. Neuropathol. Exp. Neurol. 79, 1054–1064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Merson, T. D., Binder, M. D. & Kilpatrick, T. J. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med. 12, 99–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Song, S. et al. Microglial–oligodendrocyte interactions in myelination and neurological function recovery after traumatic brain injury. J. Neuroinflammation 19, 246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. de Curtis, M., Garbelli, R. & Uva, L. A hypothesis for the role of axon demyelination in seizure generation. Epilepsia 62, 583–595 (2021).

    Article  PubMed  Google Scholar 

  200. Limanaqi, F. et al. mTOR-related cell-clearing systems in epileptic seizures, an update. Int. J. Mol. Sci. 21, 1642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chen, Y., Chen, J., Xing, Z., Peng, C. & Li, D. Autophagy in neuroinflammation: a focus on epigenetic regulation. Aging Dis. https://doi.org/10.14336/AD.2023.0718-1 (2023).

  202. Muller, S. et al. Autophagy in neuroinflammatory diseases. Autoimmun. Rev. 16, 856–874 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Jin, M.-M. et al. A critical role of autophagy in regulating microglia polarization in neurodegeneration. Front. Aging Neurosci. 10, 378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lei, C., Li, Y., Zhu, X., Li, H. & Chang, X. HMGB1/TLR4 induces autophagy and promotes neuroinflammation after intracerebral hemorrhage. Brain Res. 1792, 148003 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Broekaart, D. W. M. et al. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway. Epilepsia 58, 1462–1472 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Mishto, M. et al. The immunoproteasome Beta5i subunit is key contributor to ictogenesis in a rat model of chronic epilepsy. Brain Behav. Immun. 49, 188–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Ferrington, D. A. & Gregerson, D. S. Immunoproteasomes: structure, function, and antigen presentation. Prog. Mol. Biol. Transl. Sci. 109, 75–112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. van Scheppingen, J. et al. Dysregulation of the (immuno)proteasome pathway in malformations of cortical development. J. Neuroinflammation 13, 202 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Tomimatsu, K. & Narita, M. Translating the effects of mTOR on secretory senescence. Nat. Cell Biol. 17, 1230–1232 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Preininger, M. K., Zaytseva, D., Lin, J. M. & Kaufer, D. Blood–brain barrier dysfunction promotes astrocyte senescence through albumin-induced TGFβ signaling activation. Aging Cell 22, e13747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ralay Ranaivo, H. & Wainwright, M. S. Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 1313, 222–231 (2010).

    Article  PubMed  Google Scholar 

  213. Cohen, J. & Torres, C. Astrocyte senescence: evidence and significance. Aging Cell 18, e12937 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Löscher, W., Potschka, H., Sisodiya, S. M. & Vezzani, A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 72, 606–638 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Löscher, W. & Klein, P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol. Ther. 229, 107934 (2022).

    Article  PubMed  Google Scholar 

  216. Yasin, S. A. et al. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol. 126, 207–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Kulkarni, A. et al. Differential regulation of autophagy during metabolic stress in astrocytes and neurons. Autophagy 16, 1651–1667 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Sourbron, J. et al. Ketogenic diet for the treatment of pediatric epilepsy: review and meta-analysis. Childs Nerv. Syst. 36, 1099–1109 (2020).

    Article  PubMed  Google Scholar 

  219. Ma, X. et al. Excessive intake of sugar: an accomplice of inflammation. Front. Immunol. 13, 988481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Santangelo, A. et al. The influence of ketogenic diet on gut microbiota: potential benefits, risks and indications. Nutrients 15, 3680 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rho, J. M. & Boison, D. The metabolic basis of epilepsy. Nat. Rev. Neurol. 18, 333–347 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Gallentine, W. B. et al. Plasma cytokines associated with febrile status epilepticus in children: a potential biomarker for acute hippocampal injury. Epilepsia 58, 1102–1111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Clarkson, B. D. S. et al. Functional deficiency in endogenous interleukin-1 receptor antagonist in patients with febrile infection-related epilepsy syndrome. Ann. Neurol. 85, 526–537 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Pollard, J. R. et al. The TARC/sICAM5 ratio in patient plasma is a candidate biomarker for drug resistant epilepsy. Front. Neurol. 3, 181 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Sun, F.-J. et al. Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. J. Neuroinflammation 13, 85 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Frigerio, F. et al. n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain 141, 3130–3143 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Pernhorst, K. et al. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 22, 675–678 (2013).

    Article  PubMed  Google Scholar 

  228. Brennan, G. P. & Henshall, D. C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat. Rev. Neurol. 16, 506–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Fuso, A. et al. Promoter-specific hypomethylation correlates with IL-1β overexpression in tuberous sclerosis complex (TSC). J. Mol. Neurosci. 59, 464–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Garattini for his insightful comments on the initial version of the article. The authors acknowledge funding which supported studies relevant for this publication: The Netherlands Organization for Health Research and Development (ZonMw; project 09120012010007; E.A.), the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 952455 (EpiEpiNet; E.A.) and Fondazione Italo Monzino (Milano; A.V.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for, and contributed to the writing of, the article. A.V., T.R., J.G. and E.A. made substantial contribution to discussions of the content. A.V., J.G. and E.A. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Eleonora Aronica or Annamaria Vezzani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Detlev Boison and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravizza, T., Scheper, M., Di Sapia, R. et al. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat. Rev. Neurosci. 25, 334–350 (2024). https://doi.org/10.1038/s41583-024-00805-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00805-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing