Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular determinants of microglial developmental dynamics

Abstract

Microglia constitute the largest population of parenchymal macrophages in the brain and are considered a unique subset of central nervous system glial cells owing to their extra-embryonic origins in the yolk sac. During development, microglial progenitors readily proliferate and eventually colonize the entire brain. In this Review, we highlight the origins of microglial progenitors and their entry routes into the brain and discuss the various molecular and non-molecular determinants of their fate, which may inform their specific functions. Specifically, we explore recently identified mechanisms that regulate microglial colonization of the brain, including the availability of space, and describe how the expansion of highly proliferative microglial progenitors facilitates the occupation of the microglial niche. Finally, we shed light on the factors involved in establishing microglial identity in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Entry of microglia to the embryonic brain.
Fig. 2: Colonization of the mouse brain by microglia during development.
Fig. 3: Drivers of microglial proliferation.
Fig. 4: Stepwise maturation of microglia during development.

Similar content being viewed by others

References

  1. Zuchero, J. B. & Barres, B. A. Glia in mammalian development and disease. Development 142, 3805–3809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Robertson, F. A microscopic demonstration of the normal and pathological histology of mesoglia cells. J. Ment. Sci. 46, 724 (1900).

    Article  Google Scholar 

  4. Rezaie, P. & Male, D. Mesoglia & microglia — a historical review of the concept of mononuclear phagocytes within the central nervous system. J. Hist. Neurosci. 11, 325–374 (2002).

    Article  PubMed  Google Scholar 

  5. Sierra, A. et al. The “Big-Bang” for modern glial biology: translation and comments on Pío del Río-Hortega 1919 series of papers on microglia. Glia 64, 1801–1840 (2016). A paper that is essential background reading for those wishing to understand the history of microglia.

    Article  PubMed  Google Scholar 

  6. del Río-Hortega, P. El “tercer elemento” de los centros nerviosos. I. La microglía en estado normal. II. Intervención de la microglía en los procesos patológicos (células en bastoncito y cuerpos gránulo-adiposos). Bol. Soc. Esp. Biol. VIII, 69–109 (1919).

  7. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eyo, U. B., Miner, S. A., Weiner, J. A. & Dailey, M. E. Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus. Brain Behav. Immun. 55, 49–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Barry-Carroll, L. et al. Microglia colonize the developing brain by clonal expansion of highly proliferative progenitors, following allometric scaling. Cell Rep. 42, 112425 (2023). A key reference that describes the clonal dynamics of microglia in the developing mouse brain.

    Article  CAS  PubMed  Google Scholar 

  12. Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Heneka, M. T. et al. NLRP3 is activated in Alzheimer´s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016). An essential reference that enhances our understanding of microglial specification in development.

    Article  PubMed  Google Scholar 

  15. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ikezu, S. et al. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol. Psychiatry 26, 1808–1831 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Madore, C. et al. Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain. Nat. Commun. 11, 6133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oosterhof, N. et al. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104, 936–947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 (2012).

    Article  CAS  Google Scholar 

  20. Kloc, M., Kubiak, J. Z., Zdanowski, R. & Ghobrial, R. M. Memory macrophages. Int. J. Mol. Sci. 24, 38 (2023).

    Article  CAS  Google Scholar 

  21. Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Hayes, L. N. et al. Prenatal immune stress blunts microglia reactivity, impairing neurocircuitry. Nature 610, 327–334 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Mattei, D. et al. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl. Psychiatry 7, e1120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujita, S. & Kitamura, T. in Malignant Lymphomas of the Nervous System: International Symposium (eds Jellinger, K. & Seitelberger, F.) 291–296 (Springer, 1975).

  25. Kitamura, T., Miyake, T. & Fujita, S. Genesis of resting microglia in the gray matter of mouse hippocampus. J. Comp. Neurol. 226, 421–433 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Alliot, F., Lecain, E., Grima, B. & Pessac, B. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc. Natl Acad. Sci. 88, 1541–1545 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). A keystone reference that advances our understanding of the yolk sac origin of microglia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2014). Together with Kierdorf et al. (2013), a paper that is essential for reading for those wishing to understand microglial ontogeny.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Hoeffel, G. et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bian, Z. et al. Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020). A key reference that has helped us to understand human microglial development.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Z. et al. An immune cell atlas reveals the dynamics of human macrophage specification during prenatal development. Cell 186, 4454–4471.e19 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, S.-W. et al. Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors. Stem Cell Rep. 16, 1363–1380 (2021).

    Article  CAS  Google Scholar 

  38. Hasselmann, J. & Blurton-Jones, M. Human iPSC-derived microglia: a growing toolset to study the brain’s innate immune cells. Glia 68, 721–739 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. McQuade, A. & Blurton-Jones, M. in Induced Pluripotent Stem (iPS) Cells: Methods and Protocols (eds Nagy, A. & Turksen, K.) 473–482 (Springer, 2022).

  40. Amos, P. J. et al. Modulation of hematopoietic lineage specification impacts TREM2 expression in microglia-like cells derived from human stem cells. ASN Neuro 9, 1759091417716610 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bredemeyer, A. L. et al. Derivation of extra-embryonic and intra-embryonic macrophage lineages from human pluripotent stem cells. Development 149, dev200016 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cakir, B. et al. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nat. Commun. 13, 430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hislop, J. et al. Modelling post-implantation human development to yolk sac blood emergence. Nature 626, 367–376 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, S.-K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoeffel, G. & Ginhoux, F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 330, 5–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Cunningham, C. et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol. Psychiatry 65, 304–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biffi, A. et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Investig. 113, 1118–1129 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hess, D. C. et al. Hematopoietic origin of microglial and perivascular cells in brain. Exp. Neurol. 186, 134–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011). A paper that provides key evidence supporting the lack of a monocyte contribution to the adult microglial population.

    Article  CAS  PubMed  Google Scholar 

  53. Lazarevic, I. et al. The choroid plexus acts as an immune cell reservoir and brain entry site in experimental autoimmune encephalomyelitis. Fluids Barriers CNS 20, 39 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Mildner, A. et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J. Neurosci. 31, 11159–11171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De, S. et al. Two distinct ontogenies confer heterogeneity to mouse brain microglia. Development 145, dev152306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Van Deren, D. A. et al. Defining the Hoxb8 cell lineage during murine definitive hematopoiesis. Development 149, dev200200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fehrenbach, M. K., Tjwa, M., Bechmann, I. & Krueger, M. Decreased microglial numbers in Vav1-Cre+:dicer knock-out mice suggest a second source of microglia beyond yolk sac macrophages. Ann. Anat. Anatomi. Anz. 218, 190–198 (2018).

    Article  CAS  Google Scholar 

  59. Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017). A paper that is essential for reading for those wishing to understand microglial self-renewal in adulthood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, H.-R. et al. Fate mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in development and neonatal stroke. Sci. Adv. 6, eabb2119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Han, C. Z. et al. Human microglia maturation is underpinned by specific gene regulatory networks. Immunity 56, 2152–2171.e13 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Fantin, A., Vieira, J. M., Plein, A., Maden, C. H. & Ruhrberg, C. The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat. Protoc. 8, 418–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stremmel, C. et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9, 75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Menassa, D. A. et al. The spatiotemporal dynamics of microglia across the human lifespan. Dev. Cell 57, 2127–2139.e6 (2022). Foundational work that describes the dynamics of microglia in the developing human brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Monier, A. et al. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J. Neuropathol. Exp. Neurol. 66, 372–382 (2007).

    Article  PubMed  Google Scholar 

  68. Monier, A., Evrard, P., Gressens, P. & Verney, C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J. Comp. Neurol. 499, 565–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Navascues, J., Calvente, R., MarÍN-Teva, J. L. & Cuadros, M. A. Entry, dispersion and differentiation of microglia in the developing central nervous system. Anais da Acad. Bras. de Ciênc. 72, 91–102 (2000).

    Article  CAS  Google Scholar 

  70. Verney, C., Monier, A., Fallet-Bianco, C. & Gressens, P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J. Anat. 217, 436–448 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Marsters, C. M. et al. Embryonic microglia influence developing hypothalamic glial populations. J. Neuroinflamm. 17, 146 (2020).

    Article  CAS  Google Scholar 

  72. Swinnen, N. et al. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 61, 150–163 (2013).

    Article  PubMed  Google Scholar 

  73. Hattori, Y. et al. Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nat. Commun. 11, 1631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hattori, Y. et al. CD206+ macrophages transventricularly infiltrate the early embryonic cerebral wall to differentiate into microglia. Cell Rep. 42, 112092 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Easley-Neal, C., Foreman, O., Sharma, N., Zarrin, A. A. & Weimer, R. M. CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front. Immunol. 10, 2199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, S. et al. Il34-Csf1r pathway regulates the migration and colonization of microglial precursors. Dev. Cell 46, 552–563.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nandi, S. et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367, 100–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mondo, E. et al. A developmental analysis of juxtavascular microglia dynamics and interactions with the vasculature. J. Neurosci. 40, 6503–6521 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Smolders, S. M.-T. et al. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex. Glia 65, 1072–1088 (2017).

    Article  PubMed  Google Scholar 

  83. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019). A key reference that reports on microglial transcriptional heterogeneity in development.

    Article  CAS  PubMed  Google Scholar 

  84. Arnò, B. et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5, 5611 (2014).

    Article  PubMed  Google Scholar 

  85. Antony, J. M., Paquin, A., Nutt, S. L., Kaplan, D. R. & Miller, F. D. Endogenous microglia regulate development of embryonic cortical precursor cells. J. Neurosci. Res. 89, 286–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Menassa, D. A. & Gomez-Nicola, D. Microglial dynamics during human brain development. Front. Immunol. 9, 1014 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kershman, J. Genesis of microglia in the human brain. Arch. Neurol. Psychiatry 41, 24–50 (1939).

    Article  Google Scholar 

  88. Thion, M. S. et al. Biphasic impact of prenatal inflammation and macrophage depletion on the wiring of neocortical inhibitory circuits. Cell Rep. 28, 1119–1126.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N. & Audinat, E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J. Neurosci. 32, 15106–15111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J. E., Sekino, Y. & Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 34, 2231–2243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hsieh, C. L. et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem. 109, 1144–1156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blume, Z. I., Lambert, J. M., Lovel, A. G. & Mitchell, D. M. Microglia in the developing retina couple phagocytosis with the progression of apoptosis via P2RY12 signaling. Dev. Dyn. 249, 723–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Damisah, E. C. et al. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci. Adv. 6, eaba3239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sharma, K., Bisht, K. & Eyo, U. B. A comparative biology of microglia across species. Front. Cell Dev. Biol. 9, 718 (2021).

    Article  Google Scholar 

  101. Casano, Alessandra, M., Albert, M. & Peri, F. Developmental apoptosis mediates entry and positioning of microglia in the zebrafish brain. Cell Rep. 16, 897–906 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Xu, J., Wang, T., Wu, Y., Jin, W. & Wen, Z. Microglia colonization of developing zebrafish midbrain is promoted by apoptotic neuron and lysophosphatidylcholine. Dev. Cell 38, 214–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Nikodemova, M. et al. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J. Neuroimmunol. 278, 280–288 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Hope, K. T., Hawes, I. A., Moca, E. N., Bonci, A. & De Biase, L. M. Maturation of the microglial population varies across mesolimbic nuclei. Eur. J. Neurosci. 52, 3689–3709 (2020).

    Article  PubMed  Google Scholar 

  105. Réu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ratz, M. et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat. Neurosci. 25, 285–294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016). A key reference that provides a description of the ontogeny of BAMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37, 1050–1060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kana, V. et al. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. J. Exp. Med. 216, 2265–2281 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Elmore, M. R. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Obst, J. et al. Inhibition of IL-34 unveils tissue-selectivity and is sufficient to reduce microglial proliferation in a model of chronic neurodegeneration. Front. Immunol. 11, 579000 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rojo, R. et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10, 3215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kiani Shabestari, S. et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice. Cell Rep. 39, 110961 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Munro, D. A. D. et al. CNS macrophages differentially rely on an intronic Csf1r enhancer for their development. Development 147, dev194449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Olmos-Alonso, A. et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139, 891–907 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Giricz, O. et al. The RUNX1/IL-34/CSF-1R axis is an autocrinally regulated modulator of resistance to BRAF-V600E inhibition in melanoma. JCI Insight 3, e120422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Murga-Zamalloa, C. et al. Colony-stimulating factor 1 receptor (CSF1R) activates AKT/mTOR signaling and promotes T-cell lymphoma viability. Clin. Cancer Res. 26, 690–703 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Smith, A. M. et al. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J. Neuroinflamm. 10, 85 (2013).

    Article  CAS  Google Scholar 

  120. De, I. et al. Microglial responses to CSF1 overexpression do not promote the expansion of other glial lineages. J. Neuroinflamm. 18, 162 (2021).

    Article  CAS  Google Scholar 

  121. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Zheng, H. et al. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol. Aging 42, 132–141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zheng, H. et al. TREM2 promotes microglial survival by activating Wnt/β-catenin pathway. J. Neurosci. 37, 1772–1784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou, Y., Ulland, T. K. & Colonna, M. TREM2-dependent effects on microglia in Alzheimer’s disease. Front. Aging Neurosci. 10, 202–202 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Konishi, H. & Kiyama, H. Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front. Cell. Neurosci. 12, 206 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pellerin, K. et al. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain 144, 2361–2374 (2021).

    Article  PubMed  Google Scholar 

  128. Belhocine, S. et al. Context-dependent transcriptional regulation of microglial proliferation. Glia 70, 572–589 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Jiang, X. et al. Mechanoregulation of proliferation. Mol. Cell. Biol. 29, 5104–5114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mendonsa, A. M., Na, T.-Y. & Gumbiner, B. M. E-cadherin in contact inhibition and cancer. Oncogene 37, 4769–4780 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pavel, M. et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun. 9, 2961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tsuboi, A. et al. Competition for space is controlled by apoptosis-induced change of local epithelial topology. Curr. Biol. 28, 2115–2128.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Streichan, S. J., Hoerner, C. R., Schneidt, T., Holzer, D. & Hufnagel, L. Spatial constraints control cell proliferation in tissues. Proc. Natl Acad. Sci. USA 111, 5586–5591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhan, L. et al. Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. PLoS Biol. 17, e3000134 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bruttger, J. et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43, 92–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Valdivia, A. et al. Syndecan-4/PAR-3 signaling regulates focal adhesion dynamics in mesenchymal cells. Cell Commun. Signal. 18, 129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tober, J., Yzaguirre, A. D., Piwarzyk, E. & Speck, N. A. Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development 140, 3765–3776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Burda, P., Laslo, P. & Stopka, T. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia 24, 1249–1257 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019). A paper that provides an essential description of the transcriptional heterogeneity of BAMs.

    Article  PubMed  Google Scholar 

  146. Horiuchi, M. et al. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J. Neuroinflamm. 9, 227 (2012).

    Article  CAS  Google Scholar 

  147. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Zhou, N., Liu, K., Sun, Y., Cao, Y. & Yang, J. Transcriptional mechanism of IRF8 and PU.1 governs microglial activation in neurodegenerative condition. Protein Cell 10, 87–103 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Zusso, M. et al. Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J. Neurosci. 32, 11285–11298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017). A paper that provides foundational evidence for the influence of environmental cues on microglial identity.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hammond, B. P., Manek, R., Kerr, B. J., Macauley, M. S. & Plemel, J. R. Regulation of microglia population dynamics throughout development, health, and disease. Glia 68, 2771–2797 (2021).

    Article  Google Scholar 

  152. Kracht, L. et al. Human fetal microglia acquire homeostatic immune-sensing properties early in development. Science 369, 530–537 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bennett, F. C. et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98, 1170–1183.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Brioschi, S. et al. A Cre-deleter specific for embryo-derived brain macrophages reveals distinct features of microglia and border macrophages. Immunity 56, 1027–1045.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Fixsen, B. R. et al. SALL1 enforces microglia-specific DNA binding and function of SMADs to establish microglia identity. Nat. Immunol. 24, 1188–1199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Wong, K. et al. Mice deficient in NRROS show abnormal microglial development and neurological disorders. Nat. Immunol. 18, 633–641 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Schwarz, J. M., Sholar, P. W. & Bilbo, S. D. Sex differences in microglial colonization of the developing rat brain. J. Neurochem. 120, 948–963 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. VanRyzin, J. W. et al. Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron 102, 435–449.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hanamsagar, R. et al. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 65, 1504–1520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Castillo-Ruiz, A. et al. The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain Behav. Immun. 67, 218–229 (2018).

    Article  PubMed  Google Scholar 

  166. Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  PubMed  Google Scholar 

  168. Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Morris-Rosendahl, D. J. & Crocq, M.-A. Neurodevelopmental disorders — the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 22, 65–72 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Laskaris, L. E. et al. Microglial activation and progressive brain changes in schizophrenia. Br. J. Pharmacol. 173, 666–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yu, D. et al. Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. Sci. Adv. 8, eabm2545 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gildawie, K. R., Orso, R., Peterzell, S., Thompson, V. & Brenhouse, H. C. Sex differences in prefrontal cortex microglia morphology: impact of a two-hit model of adversity throughout development. Neurosci. Lett. 738, 135381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stratoulias, V. et al. ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain. Nat. Neurosci. 26, 1008–1020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Matuleviciute, R. et al. Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathol. 146, 663–683 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Holloway, R. K. et al. Localized microglia dysregulation impairs central nervous system myelination in development. Acta Neuropathol. Commun. 11, 49 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Puñal, V. M. et al. Large-scale death of retinal astrocytes during normal development is non-apoptotic and implemented by microglia. PLoS Biol. 17, e3000492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Guo, L. et al. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-Pyle disease spectrum and degenerative encephalopathy with brain malformation. Am. J. Hum. Genet. 104, 925–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were funded by the Leverhulme Trust (RPG-2016-311) and the Medical Research Council (MR/P024572/1).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Diego Gomez-Nicola.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Choroid plexus

A network of blood vessels and cells in the ventricles of the brain.

Clonal expansion

A process of cell division that results in the multiplication of genetically identical cell clones from a single-cell parent cell.

Contact inhibition

A process through which cell proliferation is arrested when cells come in contact with each other.

Fate mapping

A method of tracking cells based on unique gene expression driving reporter systems. Also known as lineage tracing.

Haematopoietic stem cell

(HSC). A stem cell that gives rise to blood cells.

Induced pluripotent stem cells

(iPS cells). Pluripotent stems cells that can be obtained by reprogramming differentiated cells.

Macrophage

A type of white blood cell specialized in the detection and destruction of harmful organisms.

Mesodermal

Related to the mesoderm, the embryonic layer that gives rise to most muscle, skeletal and connective tissues.

Microbiome

The microorganisms present in a particular environment, including the body.

Monocytes

Immune cells that originate from the bone marrow and travel through the bloodstream to tissues to become macrophages or dendritic cells.

Neuroectodermal

Related to the neuroectoderm, the part of the ectoderm that gives rise to the nervous system.

Single-cell RNA sequencing

A method that identifies and quantifies the complexity of RNA transcripts within individual cells.

Subventricular zone

A neurogenic and gliogenic niche situated on the wall of each lateral ventricle of the brain.

Yolk sac

A membranous structure attached to the embryo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barry-Carroll, L., Gomez-Nicola, D. The molecular determinants of microglial developmental dynamics. Nat. Rev. Neurosci. (2024). https://doi.org/10.1038/s41583-024-00813-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41583-024-00813-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing