Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engram mechanisms of memory linking and identity

Abstract

Memories are thought to be stored in neuronal ensembles referred to as engrams. Studies have suggested that when two memories occur in quick succession, a proportion of their engrams overlap and the memories become linked (in a process known as prospective linking) while maintaining their individual identities. In this Review, we summarize the key principles of memory linking through engram overlap, as revealed by experimental and modelling studies. We describe evidence of the involvement of synaptic memory substrates, spine clustering and non-linear neuronal capacities in prospective linking, and suggest a dynamic somato-synaptic model, in which memories are shared between neurons yet remain separable through distinct dendritic and synaptic allocation patterns. We also bring into focus retrospective linking, in which memories become associated after encoding via offline reactivation, and discuss key temporal and mechanistic differences between prospective and retrospective linking, as well as the potential differences in their cognitive outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sufficiency of engram cells for memory recall.
Fig. 2: Associative learning and prospective memory linking.
Fig. 3: A somato-synaptic model for dynamic memory linking and identity preservation.
Fig. 4: Retrospective linking through offline reactivation.
Fig. 5: Mechanisms and characteristics of prospective versus retrospective memory linking.

Similar content being viewed by others

References

  1. Semon, R. W. The Mneme (Allen & Unwin, 1921).

  2. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

  3. Rasmussen, W. P. A. T. The Cerebral Cortex of Man; A Clinical Study of Localization of Function (Macmillan, 1950).

  4. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Han, J. H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012). This seminal study demonstrates the sufficiency of specific engram cells for memory recall.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Ohkawa, N. et al. Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep. 11, 261–269 (2015). This study uses the co-reactivation of distinct engrams as a mechanism for memory linking.

    Article  CAS  PubMed  Google Scholar 

  10. Cowansage, K. K. et al. Direct reactivation of a coherent neocortical memory of context. Neuron 84, 432–441 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghandour, K. et al. Orchestrated ensemble activities constitute a hippocampal memory engram. Nat. Commun. 10, 2637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koya, E. et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat. Neurosci. 12, 1069–1073 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, A. et al. Formation and fate of an engram in the lateral amygdala supporting a rewarding memory in mice. Neuropsychopharmacology 48, 724–733 (2023).

    Article  PubMed  Google Scholar 

  14. Roy, D. S. et al. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat. Commun. 13, 1799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka, K. Z. et al. The hippocampal engram maps experience but not place. Science 361, 392–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367, eaaw4325 (2020). This work comprehensively reviews memory engrams.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory engram cells have come of age. Neuron 87, 918–931 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi-Takagi, A. et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015). This pioneering study demonstrates how specific synapses regulate memories by developing synaptic optogenetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, C. et al. Hippocampal engram networks for fear memory recruit new synapses and modify pre-existing synapses in vivo. Curr. Biol. 33, 507–516.e3 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, J. H., Kim, W. B., Park, E. H. & Cho, J. H. Neocortical synaptic engrams for remote contextual memories. Nat. Neurosci. 26, 259–273 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Choi, D. I. et al. Synaptic correlates of associative fear memory in the lateral amygdala. Neuron 109, 2717–2726.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016). This study provides the basis for prospective linking of contextual memories.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chowdhury, A. et al. A locus coeruleus–dorsal CA1 dopaminergic circuit modulates memory linking. Neuron 110, 3374–3388.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rashid, A. J. et al. Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeithamova, D. & Preston, A. R. Temporal proximity promotes integration of overlapping events. J. Cogn. Neurosci. 29, 1311–1323 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aly, M. H., Abdou, K., Okubo-Suzuki, R., Nomoto, M. & Inokuchi, K. Selective engram coreactivation in idling brain inspires implicit learning. Proc. Natl Acad. Sci. 119, e2201578119 (2022). This study demonstrates retrospective linking of contextual memories through offline co-reactivation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barron, H. C. et al. Neuronal computation underlying inferential reasoning in humans and mice. Cell 183, 228–243.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yokose, J. et al. Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science 355, 398–403 (2017). This study unveils the function of overlapping engram ensembles.

    Article  CAS  PubMed  Google Scholar 

  29. Shen, Y. et al. CCR5 closes the temporal window for memory linking. Nature 606, 146–152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nomoto, M. et al. Cellular tagging as a neural network mechanism for behavioural tagging. Nat. Commun. 7, 12319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abdou, K. et al. Synapse-specific representation of the identity of overlapping memory engrams. Science 360, 1227–1231 (2018). This study demonstrates how memories stored in the same neuron may have different fates.

    Article  CAS  PubMed  Google Scholar 

  32. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, G. et al. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178 (2014). In addition to the role of sleep in spine formation, this study reveals the branch specificity of dendritic allocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sehgal, M. et al. Co-allocation to overlapping dendritic branches in the retrosplenial cortex integrates memories across time. Preprint at bioRxiv https://doi.org/10.1101/2021.10.28.466343 (2021).

  35. Legenstein, R. & Maass, W. Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J. Neurosci. 31, 10787–10802 (2011). This paper provides powerful computational evidence of the merits of dendritic non-linearities in enhancing neuronal computation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kastellakis, G., Tasciotti, S., Pandi, I. & Poirazi, P. The dendritic engram. Front. Behav. Neurosci. 17, 1212139 (2023). This work comprehensively reviews dendritic non-linearities and their contribution to memory engrams.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clark, R. E. The classical origins of Pavlov’s conditioning. Integr. Physiol. Behav. Sci. 39, 279–294 (2004).

    Article  PubMed  Google Scholar 

  38. Guzowski, J. F., McNaughton, B. L., Barnes, C. A. & Worley, P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Barot, S. K., Chung, A., Kim, J. J. & Bernstein, I. L. Functional imaging of stimulus convergence in amygdalar neurons during Pavlovian fear conditioning. PLoS ONE 4, e6156 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barot, S. K., Kyono, Y., Clark, E. W. & Bernstein, I. L. Visualizing stimulus convergence in amygdala neurons during associative learning. Proc. Natl Acad. Sci. USA 105, 20959–20963 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung, A., Barot, S. K., Kim, J. J. & Bernstein, I. L. Biologically predisposed learning and selective associations in amygdalar neurons. Learn. Mem. 18, 371–374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hashikawa, K. et al. Blockade of stimulus convergence in amygdala neurons disrupts taste associative learning. J. Neurosci. 33, 4958–4963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grewe, B. F. et al. Neural ensemble dynamics underlying a long-term associative memory. Nature 543, 670–675 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nomoto, M. et al. Hippocampus as a sorter and reverberatory integrator of sensory inputs. Nat. Commun. 13, 7413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki, A. et al. A cortical cell ensemble in the posterior parietal cortex controls past experience-dependent memory updating. Nat. Commun. 13, 41 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ballarini, F., Moncada, D., Martinez, M. C., Alen, N. & Viola, H. Behavioral tagging is a general mechanism of long-term memory formation. Proc. Natl Acad. Sci. USA 106, 14599–14604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gastaldi, C., Schwalger, T., De Falco, E., Quiroga, R. Q. & Gerstner, W. When shared concept cells support associations: theory of overlapping memory engrams. PLoS Comput. Biol. 17, e1009691 (2021). This modelling study exemplifies the dynamic nature of engram overlap and memory linking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chandran, M. & Thorwart, A. Time in associative learning: a review on temporal maps. Front. Hum. Neurosci. 15, 617943 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kitamura, T. et al. Hippocampal function is not required for the precision of remote place memory. Mol. Brain 5, 5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Palmer, J. H. & Gong, P. Associative learning of classical conditioning as an emergent property of spatially extended spiking neural circuits with synaptic plasticity. Front. Comput. Neurosci. 8, 79 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arcediano, F. & Miller, R. R. Some constraints for models of timing: a temporal coding hypothesis perspective. Learn. Motiv. 33, 105–123 (2002).

    Article  Google Scholar 

  52. Nomoto, M. & Inokuchi, K. Behavioral, cellular, and synaptic tagging frameworks. Neurobiol. Learn. Mem. 153, 13–20 (2018).

    Article  PubMed  Google Scholar 

  53. Moyer, J. R. Jr., Thompson, L. T. & Disterhoft, J. F. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J. Neurosci. 16, 5536–5546 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009). This work highlights neuronal excitability as a key mechanism for memory allocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han, J. H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Sano, Y. et al. CREB regulates memory allocation in the insular cortex. Curr. Biol. 24, 2833–2837 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park, S. et al. Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41, 2987–2993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lavi, A. et al. Local memory allocation recruits memory ensembles across brain regions. Neuron 111, 470–480.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Lisman, J., Cooper, K., Sehgal, M. & Silva, A. J. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat. Neurosci. 21, 309–314 (2018). This review links somatic and synaptic mechanisms for memory formation and linking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yiu, A. P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, J. et al. c-fos regulates neuronal excitability and survival. Nat. Genet. 30, 416–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Nakagami, Y., Watakabe, A. & Yamamori, T. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset. Front. Neural Circuits 7, 43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Thompson, C. L. et al. Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front. Neurosci. 4, 165 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Mizunuma, M. et al. Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nat. Neurosci. 17, 503–505 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spiegel, I. et al. Npas4 regulates excitatory–inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ploski, J. E., Monsey, M. S., Nguyen, T., DiLeone, R. J. & Schafe, G. E. The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PLoS ONE 6, e23760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sala, C. et al. Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J. Neurosci. 23, 6327–6337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Inoue, N. et al. Requirement of the immediate early gene vesl-1S/homer-1a for fear memory formation. Mol. Brain 2, 7 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Aydin-Abidin, S., Trippe, J., Funke, K., Eysel, U. T. & Benali, A. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp. Brain Res. 188, 249–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Cole, A. J., Saffen, D. W., Baraban, J. M. & Worley, P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Xie, H. et al. In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc. Natl Acad. Sci. USA 111, 2788–2793 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, S., Kim, H. & Um, J. W. Synapse development organized by neuronal activity-regulated immediate-early genes. Exp. Mol. Med. 50, 1–7 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Minatohara, K., Akiyoshi, M. & Okuno, H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front. Mol. Neurosci. 8, 78 (2015).

    PubMed  Google Scholar 

  78. Lee, J. Y. et al. Dopamine facilitates associative memory encoding in the entorhinal cortex. Nature 598, 321–326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han, D. H., Park, P., Choi, D. I., Bliss, T. V. P. & Kaang, B. K. The essence of the engram: cellular or synaptic? Semin. Cell Dev. Biol. 125, 122–135 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu, Z., Geron, E., Perez-Cuesta, L. M., Bai, Y. & Gan, W. B. Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites. Nat. Commun. 14, 503 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ko, B. et al. Npas4-mediated dopaminergic regulation of safety memory consolidation. Cell Rep. 42, 112678 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Choi, J. H. et al. Interregional synaptic maps among engram cells underlie memory formation. Science 360, 430–435 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, D., Lin, B. J. & Lee, A. K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Sheffield, M. E. & Dombeck, D. A. Dendritic mechanisms of hippocampal place field formation. Curr. Opin. Neurobiol. 54, 1–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Sheffield, M. E. J., Adoff, M. D. & Dombeck, D. A. Increased prevalence of calcium transients across the dendritic arbor during place field formation. Neuron 96, 490–504.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lavzin, M., Rapoport, S., Polsky, A., Garion, L. & Schiller, J. Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490, 397–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Wilson, D. E., Whitney, D. E., Scholl, B. & Fitzpatrick, D. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat. Neurosci. 19, 1003–1009 (2016). This work is an experimental display of how synaptic clustering and dendritic mechanisms control neuronal tuning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active cortical dendrites modulate perception. Science 354, 1587–1590 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Mel, B. W. NMDA-based pattern discrimination in a modeled cortical neuron. Neural Comput. 4, 502–517 (1992).

    Article  Google Scholar 

  92. Poirazi, P. & Mel, B. W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Poirazi, P. & Papoutsi, A. Illuminating dendritic function with computational models. Nat. Rev. Neurosci. 21, 303–321 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Kastellakis, G. & Poirazi, P. Synaptic clustering and memory formation. Front. Mol. Neurosci. 12, 300 (2019). This work comprehensively reviews the mechanisms, patterns and outcomes of synaptic clustering.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Larkum, M. E. & Nevian, T. Synaptic clustering by dendritic signalling mechanisms. Curr. Opin. Neurobiol. 18, 321–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Nevian, T., Larkum, M. E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 10, 206–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Llinas, R., Nicholson, C., Freeman, J. A. & Hillman, D. E. Dendritic spikes and their inhibition in alligator Purkinje cells. Science 160, 1132–1135 (1968).

    Article  CAS  PubMed  Google Scholar 

  99. Wei, D. S. et al. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Larkum, M. E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Golding, N. L., Staff, N. P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Hardie, J. & Spruston, N. Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. J. Neurosci. 29, 3233–3241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Losonczy, A., Makara, J. K. & Magee, J. C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Sjostrom, P. J., Rancz, E. A., Roth, A. & Hausser, M. Dendritic excitability and synaptic plasticity. Physiol. Rev. 88, 769–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Govindarajan, A., Israely, I., Huang, S. Y. & Tonegawa, S. The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69, 132–146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Ariav, G., Polsky, A. & Schiller, J. Submillisecond precision of the input–output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 7750–7758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. d’Aquin, S. et al. Compartmentalized dendritic plasticity during associative learning. Science 376, eabf7052 (2022). This study provides powerful experimental evidence for the development of non-linear dendritic plasticity with learning.

    Article  PubMed  Google Scholar 

  111. Cichon, J. & Gan, W. B. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sheffield, M. E. & Dombeck, D. A. Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517, 200–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Voigts, J. & Harnett, M. T. Somatic and dendritic encoding of spatial variables in retrosplenial cortex differs during 2D navigation. Neuron 105, 237–245.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Schoenfeld, G. et al. Dendritic integration of sensory and reward information facilitates learning. Preprint at bioRxiv https://doi.org/10.1101/2021.12.28.474360 (2021).

  115. Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Katz, Y. et al. Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron 63, 171–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Tzilivaki, A., Kastellakis, G. & Poirazi, P. Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators. Nat. Commun. 10, 3664 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Branco, T. & Hausser, M. The single dendritic branch as a fundamental functional unit in the nervous system. Curr. Opin. Neurobiol. 20, 494–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Traub, R. D. & Llinas, R. Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J. Neurophysiol. 42, 476–496 (1979).

    Article  CAS  PubMed  Google Scholar 

  121. Magee, J. C. Dendritic integration of excitatory synaptic input. Nat. Rev. Neurosci. 1, 181–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Kastellakis, G., Silva, A. J. & Poirazi, P. Linking memories across time via neuronal and dendritic overlaps in model neurons with active dendrites. Cell Rep. 17, 1491–1504 (2016). This modelling study provides powerful insights into memory linking, especially with regards to dendritic allocation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Poirazi, P., Brannon, T. & Mel, B. W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Behabadi, B. F., Polsky, A., Jadi, M., Schiller, J. & Mel, B. W. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS Comput. Biol. 8, e1002599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Branco, T. & Hausser, M. Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69, 885–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Abraham, W. C. & Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Mockett, B. G. & Hulme, S. R. Metaplasticity: new insights through electrophysiological investigations. J. Integr. Neurosci. 7, 315–336 (2008).

    Article  PubMed  Google Scholar 

  128. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Frey, U. & Morris, R. G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Redondo, R. L. & Morris, R. G. Making memories last: the synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 12, 17–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Sajikumar, S. & Frey, J. U. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Harvey, C. D., Yasuda, R., Zhong, H. & Svoboda, K. The spread of Ras activity triggered by activation of a single dendritic spine. Science 321, 136–140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Patterson, M. A., Szatmari, E. M. & Yasuda, R. AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc. Natl Acad. Sci. USA 107, 15951–15956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Moncada, D. & Viola, H. Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J. Neurosci. 27, 7476–7481 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, S. H., Redondo, R. L. & Morris, R. G. Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc. Natl Acad. Sci. USA 107, 19537–19542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Izquierdo, I., Schroder, N., Netto, C. A. & Medina, J. H. Novelty causes time-dependent retrograde amnesia for one-trial avoidance in rats through NMDA receptor- and CaMKII-dependent mechanisms in the hippocampus. Eur. J. Neurosci. 11, 3323–3328 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Kastellakis, G., Cai, D. J., Mednick, S. C., Silva, A. J. & Poirazi, P. Synaptic clustering within dendrites: an emerging theory of memory formation. Prog. Neurobiol. 126, 19–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mel, B. W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. McBride, T. J., Rodriguez-Contreras, A., Trinh, A., Bailey, R. & Debello, W. M. Learning drives differential clustering of axodendritic contacts in the barn owl auditory system. J. Neurosci. 28, 6960–6973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Takahashi, N. et al. Locally synchronized synaptic inputs. Science 335, 353–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Iacaruso, M. F., Gasler, I. T. & Hofer, S. B. Synaptic organization of visual space in primary visual cortex. Nature 547, 449–452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Caze, R. D., Jarvis, S., Foust, A. J. & Schultz, S. R. Dendrites enable a robust mechanism for neuronal stimulus selectivity. Neural Comput. 29, 2511–2527 (2017).

    Article  PubMed  Google Scholar 

  145. Chen, X., Leischner, U., Rochefort, N. L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Varga, Z., Jia, H., Sakmann, B. & Konnerth, A. Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc. Natl Acad. Sci. USA 108, 15420–15425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Frank, A. C. et al. Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nat. Commun. 9, 422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Fu, M., Yu, X., Lu, J. & Zuo, Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483, 92–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, K. S., Vandemark, K., Mezey, D., Shultz, N. & Fitzpatrick, D. Functional synaptic architecture of callosal inputs in mouse primary visual cortex. Neuron 101, 421–428.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Druckmann, S. et al. Structured synaptic connectivity between hippocampal regions. Neuron 81, 629–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Harvey, C. D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pancholi, R., Ryan, L. & Peron, S. Learning in a sensory cortical microstimulation task is associated with elevated representational stability. Nat. Commun. 14, 3860 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sharif, F., Tayebi, B., Buzsaki, G., Royer, S. & Fernandez-Ruiz, A. Subcircuits of deep and superficial CA1 place cells support efficient spatial coding across heterogeneous environments. Neuron 109, 363–376.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Wienbar, S. & Schwartz, G. W. Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. Neuron 110, 2110–2123.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yuan, Q., Isaacson, J. S. & Scanziani, M. Linking neuronal ensembles by associative synaptic plasticity. PLoS ONE 6, e20486 (2011). This study displays the fluidity of hippocampal ensembles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Abdou, K. et al. Inspiring cognitive inference in a cortical network during REM sleep. Preprint at bioRxiv https://doi.org/10.1101/2021.04.08.439095 (2021).

  158. Losonczy, A. & Magee, J. C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Niculescu, D. et al. A BDNF-mediated push–pull plasticity mechanism for synaptic clustering. Cell Rep. 24, 2063–2074 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Fauth, M. J. & van Rossum, M. C. Self-organized reactivation maintains and reinforces memories despite synaptic turnover. eLife 8, e43717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. van de Ven, G. M., Trouche, S., McNamara, C. G., Allen, K. & Dupret, D. Hippocampal offline reactivation consolidates recently formed cell assembly patterns during sharp wave-ripples. Neuron 92, 968–974 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Joensen, B. H. et al. Targeted memory reactivation during sleep can induce forgetting of overlapping memories. Learn. Mem. 29, 401–411 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chanales, A. J. H., Oza, A., Favila, S. E. & Kuhl, B. A. Overlap among spatial memories triggers repulsion of hippocampal representations. Curr. Biol. 27, 2307–2317.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kerren, C., van Bree, S., Griffiths, B. J. & Wimber, M. Phase separation of competing memories along the human hippocampal theta rhythm. eLife 11, e80633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Das, T., Ivleva, E. I., Wagner, A. D., Stark, C. E. & Tamminga, C. A. Loss of pattern separation performance in schizophrenia suggests dentate gyrus dysfunction. Schizophr. Res. 159, 193–197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Manschreck, T. C. et al. Semantic priming in thought disordered schizophrenic patients. Schizophr. Res. 1, 61–66 (1988).

    Article  CAS  PubMed  Google Scholar 

  167. Treffert, D. A. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1351–1357 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Cohn-Sheehy, B. I. et al. Narratives bridge the divide between distant events in episodic memory. Mem. Cogn. 50, 478–494 (2022).

    Article  Google Scholar 

  169. Murphy, G., Loftus, E., Levine, L. J., Grady, R. H. & Greene, C. M. Weak correlations among 13 episodic memory tasks related to the same public event. Appl. Cogn. Psychol. 37, 1045–1058 (2023).

    Article  Google Scholar 

  170. Zou, F. et al. Re-expression of CA1 and entorhinal activity patterns preserves temporal context memory at long timescales. Nat. Commun. 14, 4350 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Terada, S. et al. Adaptive stimulus selection for consolidation in the hippocampus. Nature 601, 240–244 (2022). This work demonstrates the selective nature of neuronal reactivation during rest.

    Article  CAS  PubMed  Google Scholar 

  172. Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Joo, H. R. & Frank, L. M. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Swanson, R. A., Levenstein, D., McClain, K., Tingley, D. & Buzsaki, G. Variable specificity of memory trace reactivation during hippocampal sharp wave ripples. Curr. Opin. Behav. Sci. 32, 126–135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hahamy, A., Dubossarsky, H. & Behrens, T. E. J. The human brain reactivates context-specific past information at event boundaries of naturalistic experiences. Nat. Neurosci. 26, 1080–1089 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zaki, Y. et al. Aversive experience drives offline ensemble reactivation to link memories across days. Preprint at bioRxiv https://doi.org/10.1101/2023.03.13.532469 (2023).

  177. Pereira, S. I. R. & Lewis, P. A. The differing roles of NREM and REM sleep in the slow enhancement of skills and schemas. Curr. Opin. Physiol. 15, 82–88 (2020).

    Article  Google Scholar 

  178. Giuditta, A. Sleep memory processing: the sequential hypothesis. Front. Syst. Neurosci. 8, 219 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Cairney, S. A., Ashton, J. E., Roshchupkina, A. A. & Sobczak, J. M. A dual role for sleep spindles in sleep-dependent memory consolidation? J. Neurosci. 35, 12328–12330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sara, S. J. Sleep to remember. J. Neurosci. 37, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Poe, G. R. Sleep is for forgetting. J. Neurosci. 37, 464–473 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kaida, K., Mori, I., Kihara, K. & Kaida, N. The function of REM and NREM sleep on memory distortion and consolidation. Neurobiol. Learn. Mem. 204, 107811 (2023).

    Article  PubMed  Google Scholar 

  183. Mildner, J. N. & Tamir, D. I. Spontaneous thought as an unconstrained memory process. Trends Neurosci. 42, 763–777 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human replay spontaneously reorganizes experience. Cell 178, 640–652.e614 (2019). This study showcases retrospective recollection and reorganization of experiences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, Y., Deng, Y., Cao, L., Zhang, J. & Yang, L. Retrospective memory integration accompanies reconfiguration of neural cell assemblies. Hippocampus 32, 179–192 (2022). This network model displays many features of retrospective memory processing, and the reconfiguration of neuronal coding as associations are formed.

    Article  PubMed  Google Scholar 

  186. Ferbinteanu, J. & Shapiro, M. L. Prospective and retrospective memory coding in the hippocampus. Neuron 40, 1227–1239 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Pereira, U. & Brunel, N. Attractor dynamics in networks with learning rules inferred from in vivo data. Neuron 99, 227–238.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Naim, M., Katkov, M., Romani, S. & Tsodyks, M. Fundamental law of memory recall. Phys. Rev. Lett. 124, 018101 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Ghandour, K. & Inokuchi, K. Memory reactivations during sleep. Neurosci. Res. 189, 60–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. King, B. R., Gann, M. A., Mantini, D., Doyon, J. & Albouy, G. Persistence of hippocampal and striatal multivoxel patterns during awake rest after motor sequence learning. iScience 25, 105498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Staresina, B. P., Alink, A., Kriegeskorte, N. & Henson, R. N. Awake reactivation predicts memory in humans. Proc. Natl Acad. Sci. USA 110, 21159–21164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tambini, A. & Davachi, L. Persistence of hippocampal multivoxel patterns into postencoding rest is related to memory. Proc. Natl Acad. Sci. USA 110, 19591–19596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tambini, A., Ketz, N. & Davachi, L. Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65, 280–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang, H., Fell, J. & Axmacher, N. Electrophysiological mechanisms of human memory consolidation. Nat. Commun. 9, 4103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  196. Walker, M. P., Brakefield, T., Hobson, J. A. & Stickgold, R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Collin, S. H., Milivojevic, B. & Doeller, C. F. Memory hierarchies map onto the hippocampal long axis in humans. Nat. Neurosci. 18, 1562–1564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71, 737–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Umbach, G. et al. Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proc. Natl Acad. Sci. USA 117, 28463–28474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Guderian, S., Schott, B. H., Richardson-Klavehn, A. & Duzel, E. Medial temporal theta state before an event predicts episodic encoding success in humans. Proc. Natl Acad. Sci. USA 106, 5365–5370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Park, H. & Rugg, M. D. Prestimulus hippocampal activity predicts later recollection. Hippocampus 20, 24–28 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. van Dongen, E. V., Takashima, A., Barth, M. & Fernandez, G. Functional connectivity during light sleep is correlated with memory performance for face–location associations. Neuroimage 57, 262–270 (2011).

    Article  PubMed  Google Scholar 

  204. Yoo, J. J. et al. When the brain is prepared to learn: enhancing human learning using real-time fMRI. Neuroimage 59, 846–852 (2012).

    Article  PubMed  Google Scholar 

  205. Urgolites, Z. J. et al. Spiking activity in the human hippocampus prior to encoding predicts subsequent memory. Proc. Natl Acad. Sci. USA 117, 13767–13770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22, 1622–1627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ezzyat, Y. & Davachi, L. Similarity breeds proximity: pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron 81, 1179–1189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yetton, B. D., Cai, D. J., Spoormaker, V. I., Silva, A. J. & Mednick, S. C. Human memories can be linked by temporal proximity. Front. Hum. Neurosci. 13, 315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Hupbach, A., Gomez, R., Hardt, O. & Nadel, L. Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn. Mem. 14, 47–53 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Jones, B., Bukoski, E., Nadel, L. & Fellous, J. M. Remaking memories: reconsolidation updates positively motivated spatial memory in rats. Learn. Mem. 19, 91–98 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Elliott, R., Rubinsztein, J. S., Sahakian, B. J. & Dolan, R. J. The neural basis of mood-congruent processing biases in depression. Arch. Gen. Psychiatry 59, 597–604 (2002).

    Article  PubMed  Google Scholar 

  212. Lewis, P. A., Critchley, H. D., Smith, A. P. & Dolan, R. J. Brain mechanisms for mood congruent memory facilitation. Neuroimage 25, 1214–1223 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bierbrauer, A., Fellner, M. C., Heinen, R., Wolf, O. T. & Axmacher, N. The memory trace of a stressful episode. Curr. Biol. 31, 5204–5213.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS KAKENHI (grant numbers JP18H05213, JP23H05476), the Core Research for Evolutional Science and Technology (CREST) programme (JPMJCR23N2) of the Japan Science and Technology Agency (JST) and the Takeda Science Foundation to K.I., and by the Grant-in-Aid for AMED (grant number JP23gm6510028), the JSPS KAKENHI Scientific Research(B) (grant numbers 20H03554, 23H02785), the Takeda Science Foundation and the Tamura Science and Technology Foundation to M.N.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to the discussion of content, and reviewed and edited the manuscript before submission. A.C. and K.I. wrote the article.

Corresponding author

Correspondence to Kaoru Inokuchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Thomas McHugh; Panayiota Poirazi, who co-reviewed with George Kastellakis; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Behavioural tagging

A phenomenon in which memories for non-salient experiences are strengthened when they are immediately followed or preceded by an event of greater salience. As a result, weak events that would otherwise only elicit short-term memories are stored as long-term memories.

Dendritic compartmentalization

The non-linear segregation of dendrites by various mechanisms, such as dendritic spikes and intrinsic excitability, as well as their anatomical configuration. Synaptic potentiation or depression can thus be restricted within those compartments.

Dendritic spikes

Spatially restricted spikes in potential occurring in a localized area of the dendrite when synaptic inputs are temporally or spatially clustered. Such localized spikes may occasionally propagate to the soma and can trigger axonal action potentials. As such, dendritic spikes underlie dendritic non-linearities and compartmentalization.

Immediate early genes

(IEGs). A subset of neuronal genes that are rapidly and selectively upregulated in response to neuronal stimulation by a wide variety of stimuli. IEGs are implicated in synaptic plasticity, learning and memory.

Inferential reasoning

The ability to deduce relationships among events that were never co-presented, through common intermediaries. Using such intermediaries allows one to infer the whole hierarchy of events, from highest to lowest, on an arbitrary scale.

Long-term depression

(LTD). A synaptic plasticity mechanism in which there is a decrease in the strength of synaptic efficacy, following low-frequency stimulation.

Long-term potentiation

(LTP). A synaptic plasticity mechanism in which there is an increase in the strength of synaptic efficacy, following high-frequency stimulation. Together with LTD, LTP is believed to have a major role in various forms of learning and memory.

Memory engram

A group of neurons that are activated by an event, resulting in enduring cellular changes, and whose reactivation results in the recollection of the memory of that event.

Memory replay

The offline reinstatement of the cellular activity patterns that encoded a particular event. This replay is often observed during subsequent rest or sleep periods in a compressed manner, and is thought to have a key role in memory consolidation.

Network reverberation

A mechanism by which neuronal circuits maintain patterns of activity after an initial stimulus has ceased, by forwarding the signal from one neuron to another within a specific circuit or ensemble. This signal may coincide with a new input converging on the same ensemble, which may create an association.

Pavlovian conditioning

Behavioural and physiological changes that occur when an animal learns that a naturally neutral stimulus predicts a biologically salient event. In the original studies conducted by Pavlov, dogs salivated in response to the ticking of a metronome (a neutral stimulus), because this sound immediately preceded food delivery (a salient event) on previous occasions.

Plasticity-related proteins

(PRPs). Proteins that are synthesized in response to synaptic stimulation and are required for maintenance of the ensuing synaptic plasticity. The diffusion and capture of these proteins by weakly activated or inhibited synapses may stabilize their synaptic plasticity, according to the synaptic tagging and capture hypothesis.

Synaptic clustering

The grouping of synapses with similar response and/or input properties within relatively short stretches of the dendritic branch.

Synaptic engrams

A subset of synapses in engram cells with altered synaptic plasticity following learning.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choucry, A., Nomoto, M. & Inokuchi, K. Engram mechanisms of memory linking and identity. Nat. Rev. Neurosci. (2024). https://doi.org/10.1038/s41583-024-00814-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41583-024-00814-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing