Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Precision medicine: the precision gap in rheumatic disease

Abstract

For many oncological conditions, the application of timely and patient-tailored targeted therapies, or precision medicine, is a major therapeutic development that has provided considerable clinical benefit. However, despite the application of increasingly sophisticated technologies, alongside advanced bioinformatic and machine-learning algorithms, this success is yet to be replicated for the rheumatic diseases. In rheumatoid arthritis, for example, despite an array of targeted biologic and conventional therapeutics, treatment choice remains largely based on trial and error. The concept of the ‘precision gap’ for rheumatic disease can help us to identify factors that underpin the slow progress towards the discovery and adoption of precision-medicine approaches for rheumatic disease. In a rheumatic disease such as rheumatoid arthritis, it is possible to identify four themes that have slowed progress, solutions to which should help to close the precision gap. These themes relate to our fundamental understanding of disease pathogenesis, how we determine treatment response, confounders of treatment outcomes and trial design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The ‘precision gap’ between treatments for rheumatoid arthritis and for cancer.
Fig. 2: The four main drivers of the precision gap that hinder theragnostic stratification in rheumatoid arthritis.
Fig. 3: Disease assessment and precision biomarkers.
Fig. 4: Potential confounders in rheumatoid arthritis clinical trials and how to minimize them.

Similar content being viewed by others

References

  1. Baretta, Z., Mocellin, S., Goldin, E., Olopade, O. I. & Huo, D. Effect of BRCA germline mutations on breast cancer prognosis: a systematic review and meta-analysis. Medicine 95, e4975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bunting, S. F. & Nussenzweig, A. End-joining, translocations and cancer. Nat. Rev. Cancer 13, 443–454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lieber, M. R. Mechanisms of human lymphoid chromosomal translocations. Nat. Rev. Cancer 16, 387–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Pauletti, G., Godolphin, W., Press, M. F. & Slamon, D. J. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene 13, 63–72 (1996).

    CAS  PubMed  Google Scholar 

  6. Berger, B., Peng, J. & Singh, M. Computational solutions for omics data. Nat. Rev. Genet. 14, 333–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khagi, Y., Kurzrock, R. & Patel, S. P. Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev. 36, 179–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Falzone, L., Salomone, S. & Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol. 9, 1300 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Consortium, R.-M. RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients. Sci. Data 9, 196 (2022).

    Article  Google Scholar 

  11. Grigor, C. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 364, 263–269 (2004).

    Article  PubMed  Google Scholar 

  12. Brown, P. M., Pratt, A. G. & Isaacs, J. D. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat. Rev. Rheumatol. 12, 731–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Upchurch, K. S. & Kay, J. Evolution of treatment for rheumatoid arthritis. Rheumatology 51 (Suppl. 6), vi28–vi36 (2012).

    CAS  PubMed  Google Scholar 

  14. Madav, Y., Barve, K. & Prabhakar, B. Current trends in theranostics for rheumatoid arthritis. Eur. J. Pharm. Sci. 145, 105240 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Consortium, R.-M. Characterization of disease course and remission in early seropositive rheumatoid arthritis: results from the TACERA longitudinal cohort study. Ther. Adv. Musculoskelet. Dis. 13, 1759720X211043977 (2021).

    Google Scholar 

  16. Cortesi, L., Rugo, H. S. & Jackisch, C. An Overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol. 16, 255–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schlam, I. & Swain, S. M. HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. NPJ Breast Cancer 7, 56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alghasham, A. & Rasheed, Z. Therapeutic targets for rheumatoid arthritis: progress and promises. Autoimmunity 47, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    Article  PubMed  Google Scholar 

  23. Moots, R. J. & Naisbett-Groet, B. The efficacy of biologic agents in patients with rheumatoid arthritis and an inadequate response to tumour necrosis factor inhibitors: a systematic review. Rheumatology 51, 2252–2261 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. McInnes, I. B., Buckley, C. D. & Isaacs, J. D. Cytokines in rheumatoid arthritis — shaping the immunological landscape. Nat. Rev. Rheumatol. 12, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Robert, M. & Miossec, P. IL-17 in rheumatoid arthritis and precision medicine: from synovitis expression to circulating bioactive levels. Front. Med. 5, 364 (2018).

    Article  Google Scholar 

  26. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Krishnamurthy, A. et al. Combination of two monoclonal ACPAs induced tenosynovitis, pain and bone loss in mice in a peptidyl arginine deiminase-4 dependent manner. Arthritis Rheumatol. https://doi.org/10.1002/art.42320 (2022).

    Article  PubMed  Google Scholar 

  28. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pratt, A. G. et al. Targeting synovial fibroblast proliferation in rheumatoid arthritis (TRAFIC): an open-label, dose-finding, phase 1b trial. Lancet Rheumatol. 3, e337–e346 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, F. et al. Cellular deconstruction of inflamed synovium defines diverse inflammatory phenotypes in rheumatoid arthritis. Preprint at bioRxiv https://doi.org/10.1101/2022.02.25.481990 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Haringman, J. J. et al. Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andreev, D. et al. Regulatory eosinophils induce the resolution of experimental arthritis and appear in remission state of human rheumatoid arthritis. Ann. Rheum. Dis. 80, 451–468 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Rivellese, F. et al. Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat. Med. 28, 1256–1268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chibnik, L. B. et al. Genetic risk score predicting risk of rheumatoid arthritis phenotypes and age of symptom onset. PLoS One 6, e24380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tasaki, S. et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat. Commun. 9, 2755 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buckley, C. D. et al. Immune-mediated inflammation across disease boundaries: breaking down research silos. Nat. Immunol. 22, 1344–1348 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Hensor, E. M. A. et al. Validity of a two-component imaging-derived disease activity score for improved assessment of synovitis in early rheumatoid arthritis. Rheumatology 58, 1400–1409 (2019).

    Article  PubMed Central  Google Scholar 

  43. Radner, H. et al. The impact of multimorbidity status on treatment response in rheumatoid arthritis patients initiating disease-modifying anti-rheumatic drugs. Rheumatology 54, 2076–2084 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Gharib, M., Elbaz, W., Darweesh, E., Sabri, N. A. & Shawki, M. A. Efficacy and safety of metformin use in rheumatoid arthritis: a randomized controlled study. Front. Pharmacol. 12, 726490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lodi, S., Evans, S. J., Egger, P. & Carpenter, J. Is there an anti-inflammatory effect of statins in rheumatoid arthritis? Analysis of a large routinely collected claims database. Br. J. Clin. Pharmacol. 69, 85–94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aletaha, D. et al. Effect of disease duration and prior disease-modifying antirheumatic drug use on treatment outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 78, 1609–1615 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Alzabin, S. et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann. Rheum. Dis. 71, 1741–1748 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Salomon, B. L. et al. Tumor necrosis factor alpha and regulatory T cells in oncoimmunology. Front. Immunol. 9, 444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eng, G. P. et al. Anti-drug antibodies, drug levels, interleukin-6 and soluble TNF receptors in rheumatoid arthritis patients during the first 6 months of treatment with adalimumab or infliximab: a descriptive cohort study. PLoS One 11, e0162316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sokolove, J. et al. Impact of baseline anti-cyclic citrullinated peptide-2 antibody concentration on efficacy outcomes following treatment with subcutaneous abatacept or adalimumab: 2-year results from the AMPLE trial. Ann. Rheum. Dis. 75, 709–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Tarn, J. R. et al. Symptom-based stratification of patients with primary Sjögren’s syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials. Lancet Rheumatol. 1, e85–e94 (2019).

    Article  PubMed Central  Google Scholar 

  52. Woodcock, J. & LaVange, L. M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377, 62–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Pitzalis, C., Choy, E. H. S. & Buch, M. H. Transforming clinical trials in rheumatology: towards patient-centric precision medicine. Nat. Rev. Rheumatol. 16, 590–599 (2020).

    Article  PubMed  Google Scholar 

  54. Franks, J. M. et al. A machine learning classifier for assigning individual patients with systemic sclerosis to intrinsic molecular subsets. Arthritis Rheumatol. 71, 1701–1710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Franks, J. M. et al. Machine learning predicts stem cell transplant response in severe scleroderma. Ann. Rheum. Dis. 79, 1608–1615 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Jadon, D. R., Stober, C., Pennington, S. R. & FitzGerald, O. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat. Rev. Rheumatol. 16, 609–627 (2020).

    Article  PubMed  Google Scholar 

  57. Siebert, S., Millar, N. L. & McInnes, I. B. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis. 78, 1015–1018 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.D.I. is a National Institute for Health and Care Research (NIHR) Senior Investigator. The views expressed in this publication are those of the author(s) and not necessarily of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to John D. Isaacs.

Ethics declarations

Competing interests

J.D.I. has received research funding from GSK, Janssen and Pfizer, and speaker and/or consultancy fees from AbbVie, BMS, Gilead, Roche and UCB. F.A.H.C. has received speaker fees from AstraZeneca. A.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks D. Aletaha, A. Filer and D. Poddubnyy for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C.M.A., Cooles, F.A.H. & Isaacs, J.D. Precision medicine: the precision gap in rheumatic disease. Nat Rev Rheumatol 18, 725–733 (2022). https://doi.org/10.1038/s41584-022-00845-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00845-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing