Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current and emerging strategies to curb antibiotic-resistant urinary tract infections

Abstract

Rising rates of antibiotic resistance in uropathogenic bacteria compromise patient outcomes and prolong hospital stays. Consequently, new strategies are needed to prevent and control the spread of antibiotic resistance in uropathogenic bacteria. Over the past two decades, sizeable clinical efforts and research advances have changed urinary tract infection (UTI) treatment and prevention strategies to conserve antibiotic use. The emergence of antimicrobial stewardship, policies from national societies, and the development of new antimicrobials have shaped modern UTI practices. Future UTI management practices could be driven by the evolution of antimicrobial stewardship, improved and readily available diagnostics, and an improved understanding of how the microbiome affects UTI. Forthcoming UTI treatment and prevention strategies could employ novel bactericidal compounds, combinations of new and classic antimicrobials that enhance bacterial killing, medications that prevent bacterial attachment to uroepithelial cells, repurposing drugs, and vaccines to curtail the rising rates of antibiotic resistance in uropathogenic bacteria and improve outcomes in people with UTI.

Key points

  • Uropathogenic Escherichia coli is the most common cause of urinary tract infections (UTIs), but up to 90% of E. coli strains worldwide are resistant to at least one antibiotic.

  • Global, regional and community programmes educating clinicians on the current states of antibiotic use and resistance, monitoring or guiding antibiotic use, expanding pathogen testing, and promoting vaccination could reduce the prevalence of antibiotic resistance in uropathogenic bacteria.

  • Antibiotic and diagnostic stewardship programmes have benefited UTI management by reducing antibiotic use, improving patient outcomes, minimizing health-care costs and decreasing the incidence of antibiotic-resistant uropathogens.

  • Translational research efforts are leading to the development of nanoparticles, antimicrobial peptides and small molecules as promising antibiotic-conserving therapies for UTIs.

  • Diverse and healthy gastrointestinal and genitourinary microbiomes might prevent UTI recurrence and identifying avenues to prevent their dysbiosis could reduce antibiotic use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between diagnostic and antimicrobial stewardship.
Fig. 2: Antimicrobial synergy shows promise to reduce antibiotic use for urinary tract infection.
Fig. 3: The gastrointestinal and genitourinary microbiomes influence urinary tract infection susceptibility.

Similar content being viewed by others

References

  1. Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 7, 653–660 (2010).

    Article  PubMed  Google Scholar 

  2. Foxman, B., Barlow, R., D’Arcy, H., Gillespie, B. & Sobel, J. D. Urinary tract infection: self-reported incidence and associated costs. Ann. Epidemiol. 10, 509–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Al Lawati, H., Blair, B. M. & Larnard, J. Urinary tract infections: core curriculum 2024. Am. J. Kidney Dis. 83, 90–100 (2023).

    Article  PubMed  Google Scholar 

  4. Johnson, J. R. & Russo, T. A. Acute pyelonephritis in adults. N. Engl. J. Med. 378, 48–59 (2018).

    Article  PubMed  Google Scholar 

  5. Schwartz, L., de Dios Ruiz-Rosado, J., Stonebrook, E., Becknell, B. & Spencer, J. D. Uropathogen and host responses in pyelonephritis. Nat. Rev. Nephrol. 19, 658–671 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113, 5S–13S (2002).

    Article  PubMed  Google Scholar 

  7. Dolk, F. C. K., Pouwels, K. B., Smith, D. R. M., Robotham, J. V. & Smieszek, T. Antibiotics in primary care in England: which antibiotics are prescribed and for which conditions? J. Antimicrob. Chemother. 73, ii2–ii10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goebel, M. C., Trautner, B. W. & Grigoryan, L. The five Ds of outpatient antibiotic stewardship for urinary tract infections. Clin. Microbiol. Rev. 34, e0000320 (2021).

    Article  PubMed  Google Scholar 

  9. Antimicrobial Resistance Collaborators. The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. Lancet Reg. Health Am. 25, 100561 (2023).

    Google Scholar 

  10. World Health Organization. Antimicrobial resistance. WHO https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (2023).

  11. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article  Google Scholar 

  12. Centers for Disease Control. Antibiotic resistance threats in the United States, 2019. CDC https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (2019).

  13. Nelson, R. E. et al. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin. Infect. Dis. 72, S17–S26 (2021).

    Article  PubMed  Google Scholar 

  14. Jonas, O. B. et al. Drug-resistant infections: a threat to our economic future. Vol. 2: Final report (English). http://documents.worldbank.org/curated/en/323311493396993758/final-report (World Bank Group, 2017) .

  15. Poolman, J. T. & Wacker, M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J. Infect. Dis. 213, 6–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zowawi, H. M. et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 12, 570–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Kot, B. Antibiotic resistance among uropathogenic Escherichia coli. Pol. J. Microbiol. 68, 403–415 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, T. Z., Kodiyanplakkal, R. P. L. & Calfee, D. P. Antimicrobial resistance in nephrology. Nat. Rev. Nephrol. 15, 463–481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. MacFadden, D. R. et al. A platform for monitoring regional antimicrobial resistance, using online data sources: ResistanceOpen. J. Infect. Dis. 214, S393–S398 (2016).

    Article  PubMed  Google Scholar 

  21. Oldenkamp, R., Schultsz, C., Mancini, E. & Cappuccio, A. Filling the gaps in the global prevalence map of clinical antimicrobial resistance. Proc. Natl Acad. Sci. USA 118, 2013515118 (2021).

    Article  Google Scholar 

  22. OneHealthTrust. ResistanceMap: Antibiotic resistance. 2024. ResistanceMap https://resistancemap.onehealthtrust.org/AntibioticResistance.php (2024).

  23. Gupta, K. et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 52, e103–e120 (2011).

    Article  PubMed  Google Scholar 

  24. Anger, J. T. et al. Updates to recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline. J. Urol. 208, 536–541 (2022).

    Article  PubMed  Google Scholar 

  25. Roberts, K. B. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 128, 595–610 (2011).

    Article  PubMed  Google Scholar 

  26. Mori, R., Lakhanpaul, M. & Verrier-Jones, K. Diagnosis and management of urinary tract infection in children: summary of NICE guidance. BMJ 335, 395–397 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tamma, P. D. et al. Infectious Diseases Society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciad428 (2023).

  28. Naber, K. G., Bonkat, G. & Wagenlehner, F. M. E. The EAU and AUA/CUA/SUFU guidelines on recurrent urinary tract infections: what is the difference? Eur. Urol. 78, 645–646 (2020).

    Article  PubMed  Google Scholar 

  29. Ansari, M. S., Shekar, P. A., Singh, C. & Joshi, S. S. The Urological Society of India guidelines for the management of pediatric urinary tract infection (executive summary). Indian. J. Urol. 37, 10–12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamasuna, R. et al. The JAID/JSC guidelines to Clinical Management of Infectious Disease 2017 concerning male urethritis and related disorders. J. Infect. Chemother. 27, 546–554 (2021).

    Article  Google Scholar 

  31. Haddad, J. M. et al. Latin American consensus on uncomplicated recurrent urinary tract infection – 2018. Int. Urogynecol. J. 31, 35–44 (2020).

    Article  PubMed  Google Scholar 

  32. Kang, C. I. et al. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect. Chemother. 50, 67–100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Selekman, R. E., Allen, I. E. & Copp, H. L. Determinants of practice patterns in pediatric UTI management. J. Pediatr. Urol. 12, 308.e1–308.e6 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Langner, J. L., Chiang, K. F. & Stafford, R. S. Current prescribing practices and guideline concordance for the treatment of uncomplicated urinary tract infections in women. Am. J. Obstet. Gynecol. 225, 272.e1–272.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Kikuchi, J. Y., Banaag, A. & Koehlmoos, T. P. Antibiotic prescribing patterns and guideline concordance for uncomplicated urinary tract infections among adult women in the US military health system. JAMA Netw. Open. 5, e2225730 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alrosan, S. et al. An audit to reevaluate the adherence to the guidelines in patients with urinary tract infection at the Al-karak Hospital in Jordan. Cureus 15, e39509 (2023).

    PubMed  PubMed Central  Google Scholar 

  37. Lugtenberg, M., Burgers, J. S., Zegers-van Schaick, J. M. & Westert, G. P. Guidelines on uncomplicated urinary tract infections are difficult to follow: perceived barriers and suggested interventions. BMC Fam. Pract. 11, 51 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Markowitz, M. A. et al. Lack of uniformity among United States recommendations for diagnosis and management of acute, uncomplicated cystitis. Int. Urogynecol J. 30, 1187–1194 (2019).

    Article  PubMed  Google Scholar 

  39. Christiaens, T., De Backer, D., Burgers, J. & Baerheim, A. Guidelines, evidence, and cultural factors. Scand. J. Prim. Health Care 22, 141–145 (2004).

    Article  PubMed  Google Scholar 

  40. Zatorski, C. et al. A single center observational study on emergency department clinician non-adherence to clinical practice guidelines for treatment of uncomplicated urinary tract infections. BMC Infect. Dis. 16, 638 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Barlam, T. F. et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 62, e51–e77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nathwani, D. et al. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob. Resist. Infect. Control. 8, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zay Ya, K., Win, P. T. N., Bielicki, J., Lambiris, M. & Fink, G. Association between antimicrobial stewardship programs and antibiotic use globally: a systematic review and meta-analysis. JAMA Netw. Open. 6, e2253806 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Daley, M. F., Arnold Rehring, S. M., Glenn, K. A., Reifler, L. M. & Steiner, J. F. Improving antibiotic prescribing for pediatric urinary tract infections in outpatient settings. Pediatrics 145, e20192503 (2020).

    Article  PubMed  Google Scholar 

  45. Grigoryan, L. et al. Analysis of an antibiotic stewardship program for asymptomatic bacteriuria in the Veterans Affairs health care system. JAMA Netw. Open. 5, e2222530 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jorgensen, S. C. J. et al. Leveraging antimicrobial stewardship in the emergency department to improve the quality of urinary tract infection management and outcomes. Open. Forum Infect. Dis. 5, ofy101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jover-Saenz, A. et al. Impact of a primary care antimicrobial stewardship program on bacterial resistance control and ecological imprint in urinary tract infections. Antibiotics (Basel) 11, 1776 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Landry, E., Sulz, L., Bell, A., Rathgeber, L. & Balogh, H. Urinary tract infections: leading initiatives in selecting empiric outpatient treatment (UTILISE). Can. J. Hosp. Pharm. 67, 116–125 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Nace, D. A. et al. A multifaceted antimicrobial stewardship program for the treatment of uncomplicated cystitis in nursing home residents. JAMA Intern. Med. 180, 944–951 (2020).

    Article  PubMed  Google Scholar 

  50. Percival, K. M. et al. Impact of an antimicrobial stewardship intervention on urinary tract infection treatment in the ED. Am. J. Emerg. Med. 33, 1129–1133 (2015).

    Article  PubMed  Google Scholar 

  51. Hartman, E. A. R. et al. Effect of a multifaceted antibiotic stewardship intervention to improve antibiotic prescribing for suspected urinary tract infections in frail older adults (ImpresU): pragmatic cluster randomised controlled trial in four European countries. BMJ 380, e072319 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abbo, L. M. & Hooton, T. M. Antimicrobial stewardship and urinary tract infections. Antibiotics 3, 174–192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. US Preventive Services Task Force Screening for asymptomatic bacteriuria in adults: US Preventive Services Task Force recommendation statement. JAMA 322, 1188–1194 (2019).

    Article  Google Scholar 

  54. Wiley, Z., Jacob, J. T. & Burd, E. M. Targeting asymptomatic bacteriuria in antimicrobial stewardship: the role of the microbiology laboratory. J. Clin. Microbiol. 58, e00518-18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nicolle, L. E. et al. Clinical practice guideline for the management of asymptomatic bacteriuria: 2019 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 68, e83–e110 (2019).

    Article  PubMed  Google Scholar 

  56. Koves, B. et al. Benefits and harms of treatment of asymptomatic bacteriuria: a systematic review and meta-analysis by the European Association of Urology Urological Infection Guidelines Panel. Eur. Urol. 72, 865–868 (2017).

    Article  PubMed  Google Scholar 

  57. Chambers, A. et al. Virtual learning collaboratives to improve urine culturing and antibiotic prescribing in long-term care: controlled before-and-after study. BMJ Qual. Saf. 31, 94–104 (2022).

    Article  PubMed  Google Scholar 

  58. Claeys, K. C. & Johnson, M. D. Leveraging diagnostic stewardship within antimicrobial stewardship programmes. Drugs Context 12, 2022-9-5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Claeys, K. C. et al. Optimal urine culture diagnostic stewardship practice – results from an expert modified-Delphi procedure. Clin. Infect. Dis. 75, 382–389 (2022).

    Article  PubMed  Google Scholar 

  60. Patel, R. et al. Envisioning future urinary tract infection diagnostics. Clin. Infect. Dis. 74, 1284–1292 (2022).

    Article  PubMed  Google Scholar 

  61. Werneburg, G. T. & Rhoads, D. D. Diagnostic stewardship for urinary tract infection: a snapshot of the expert guidance. Cleve Clin. J. Med. 89, 581–587 (2022).

    Article  PubMed  Google Scholar 

  62. Davenport, M. et al. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 14, 296–310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kazi, B. A. et al. Performance characteristics of urinalyses for the diagnosis of pediatric urinary tract infection. Am. J. Emerg. Med. 31, 1405–1407 (2013).

    Article  PubMed  Google Scholar 

  64. Alidjanov, J. F. et al. New self-reporting questionnaire to assess urinary tract infections and differential diagnosis: Acute Cystitis Symptom Score. Urol. Int. 92, 230–236 (2014).

    Article  PubMed  Google Scholar 

  65. Alidjanov, J. F. et al. Acute Cystitis Symptom Score questionnaire for measuring patient-reported outcomes in women with acute uncomplicated cystitis: clinical validation as part of a phase III trial comparing antibiotic and nonantibiotic therapy. Investig. Clin. Urol. 61, 498–507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Piontek, K. et al. Patient-reported outcome measures for uncomplicated urinary tract infections in women: a systematic review. Qual. Life Res. 32, 2137–2153 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wagenlehner, F. M., Abramov-Sommariva, D., Holler, M., Steindl, H. & Naber, K. G. Non-antibiotic herbal therapy (BNO 1045) versus antibiotic therapy (fosfomycin trometamol) for the treatment of acute lower uncomplicated urinary tract infections in women: a double-blind, parallel-group, randomized, multicentre, non-inferiority phase III trial. Urol. Int. 101, 327–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Abbasi, A. et al. Discriminatory precision of neutrophil gelatinase-associated lipocalin in detection of urinary tract infection in children: a systematic review and meta-analysis. Arch. Acad. Emerg. Med. 8, e56 (2020).

    PubMed  PubMed Central  Google Scholar 

  69. Forster, C. S., Lubell, T. R., Dayan, P. S. & Shaikh, N. Accuracy of NGAL as a biomarker for urinary tract infection in young febrile children: an individual patient data meta-analysis. J. Pediatr. 258, 113394 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Hosseini, M. et al. The value of interleukin levels in the diagnosis of febrile urinary tract infections in children and adolescents; a systematic review and meta-analysis. J. Pediatr. Urol. 18, 211–223 (2022).

    Article  PubMed  Google Scholar 

  71. Nanda, N. & Juthani-Mehta, M. Novel biomarkers for the diagnosis of urinary tract infection – a systematic review. Biomark. Insights 4, 111–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shaikh, K., Rajakumar, V., Osio, V. A. & Shaikh, N. Neutrophil gelatinase-associated lipocalin for urinary tract infection and pyelonephritis: a systematic review. Pediatr. Nephrol. 36, 1481–1487 (2021).

    Article  PubMed  Google Scholar 

  73. Morris, S. R. et al. Performance of a single-use, rapid, point-of-care PCR device for the detection of Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis: a cross-sectional study. Lancet Infect. Dis. 21, 668–676 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Almas, S. et al. Advantage of precision metagenomics for urinary tract infection diagnostics. Front. Cell Infect. Microbiol. 13, 1221289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Price, T. K. et al. The clinical urine culture: enhanced techniques improve detection of clinically relevant microorganisms. J. Clin. Microbiol. 54, 1216–1222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pearce, M. M. et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5, e01283-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sihra, N., Goodman, A., Zakri, R., Sahai, A. & Malde, S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 15, 750–776 (2018).

    Article  PubMed  Google Scholar 

  78. Ching, C. B. Non-antibiotic approaches to preventing pediatric UTIs: a role for D-mannose, cranberry, and probiotics? Curr. Urol. Rep. 23, 113–127 (2022).

    Article  PubMed  Google Scholar 

  79. Harding, C. et al. Alternative to prophylactic antibiotics for the treatment of recurrent urinary tract infections in women: multicentre, open label, randomised, non-inferiority trial. BMJ 376, e068229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lehár, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Greve, J. M. & Cowan, J. A. Tackling antimicrobial stewardship through synergy and antimicrobial peptides. RSC Med. Chem. 13, 511–521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meyer, C. T. et al. Quantifying drug combination synergy along potency and efficacy axes. Cell Syst. 8, 97–108.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guo, J. et al. Effect of three different amino acids plus gentamicin against methicillin-resistant Staphylococcus aureus. Infect. Drug. Resist. 16, 4741–4754 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coates, A. R. M., Hu, Y., Holt, J. & Yeh, P. Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert. Rev. Anti Infect. Ther. 18, 5–15 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Gómara, M. & Ramón-García, S. The FICI paradigm: correcting flaws in antimicrobial in vitro synergy screens at their inception. Biochem. Pharmacol. 163, 299–307 (2019).

    Article  PubMed  Google Scholar 

  86. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hooton, T. M. & Samadpour, M. Is acute uncomplicated urinary tract infection a foodborne illness, and are animals the source? Clin. Infect. Dis. 40, 258–259 (2005).

    Article  PubMed  Google Scholar 

  88. Masters, P. A., O’Bryan, T. A., Zurlo, J., Miller, D. Q. & Joshi, N. Trimethoprim-sulfamethoxazole revisited. Arch. Intern. Med. 163, 402–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Reyes, S., Abdelraouf, K. & Nicolau, D. P. In vivo activity of human-simulated regimens of imipenem alone and in combination with relebactam against Pseudomonas aeruginosa in the murine thigh infection model. J. Antimicrob. Chemother. 75, 2197–2205 (2020).

    CAS  PubMed  Google Scholar 

  90. Mavridou, E. et al. Pharmacodynamics of imipenem in combination with β-lactamase inhibitor MK7655 in a murine thigh model. Antimicrob. Agents Chemother. 59, 790–795 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Heo, Y. A. Imipenem/cilastatin/relebactam: a review in gram-negative bacterial infections. Drugs 81, 377–388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doshi, P. Did the FDA break its own rules in approving the antibiotic Recarbrio? BMJ 381, 1048 (2023).

    Article  PubMed  Google Scholar 

  93. Moya, B., Zamorano, L., Juan, C., Ge, Y. & Oliver, A. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 54, 3933–3937 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cluck, D., Lewis, P., Stayer, B., Spivey, J. & Moorman, J. Ceftolozane-tazobactam: a new-generation cephalosporin. Am. J. Health Syst. Pharm. 72, 2135–2146 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Lopez Montesinos, I., Montero, M., Sorli, L. & Horcajada, J. P. Ceftolozane-tazobactam: when, how and why using it? Rev. Esp. Quimioter. 34, 35–37 (2021).

    Article  PubMed  Google Scholar 

  96. Wagenlehner, F. M., Umeh, O., Steenbergen, J., Yuan, G. & Darouiche, R. O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 385, 1949–1956 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Stalenhoef, J. E. et al. Intravesical gentamicin treatment for recurrent urinary tract infections caused by multidrug resistant bacteria. J. Urol. 201, 549–555 (2019).

    Article  PubMed  Google Scholar 

  98. Morris, C. J., Rohn, J. L., Glickman, S. & Mansfield, K. J. Effective treatments of UTI – is intravesical therapy the future? Pathogens 12, 417 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pietropaolo, A., Jones, P., Moors, M., Birch, B. & Somani, B. K. Use and effectiveness of antimicrobial intravesical treatment for prophylaxis and treatment of recurrent urinary tract infections (UTIs): a systematic review. Curr. Urol. Rep. 19, 78 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Reddy, M. & Zimmern, P. E. Efficacy of antimicrobial intravesical treatment for uncomplicated recurrent urinary tract infections: a systematic review. Int. Urogynecol J. 33, 1125–1143 (2022).

    Article  PubMed  Google Scholar 

  101. Ong, A., Pietropaolo, A., Brown, G. & Somani, B. K. Are intravesical aminoglycosides the new gold standard in the management of refractory urinary tract infection: a systematic review of literature. J. Clin. Med. 11, 5703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marei, M. M., Jackson, R. & Keene, D. J. B. Intravesical gentamicin instillation for the treatment and prevention of urinary tract infections in complex paediatric urology patients: evidence for safety and efficacy. J. Pediatr. Urol. 17, 65.e1–65.e11 (2021).

    Article  PubMed  Google Scholar 

  103. Horsley, H. et al. Ultrasound-activated microbubbles as a novel intracellular drug delivery system for urinary tract infection. J. Control. Rel. 301, 166–175 (2019).

    Article  CAS  Google Scholar 

  104. Hsu, C. C., Chuang, Y. C. & Chancellor, M. B. Intravesical drug delivery for dysfunctional bladder. Int. J. Urol. 20, 552–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Barthelmes, J., Perera, G., Hombach, J., Dunnhaupt, S. & Bernkop-Schnurch, A. Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder. Int. J. Pharm. 416, 339–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Wierzbicka, A., Krakos, M., Wilczek, P. & Bociaga, D. A comprehensive review on hydrogel materials in urology: problems, methods, and new opportunities. J. Biomed. Mater. Res. B Appl. Biomater. 111, 730–756 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. GuhaSarkar, S. & Banerjee, R. Intravesical drug delivery: challenges, current status, opportunities and novel strategies. J. Control. Rel. 148, 147–159 (2010).

    Article  CAS  Google Scholar 

  108. Carpa, R., Remizovschi, A., Culda, C. A. & Butiuc-Keul, A. L. Inherent and composite hydrogels as promising materials to limit antimicrobial resistance. Gels 8, 70 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Palugan, L. et al. Intravesical drug delivery approaches for improved therapy of urinary bladder diseases. Int. J. Pharm. X 3, 100100 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug. Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Qindeel, M., Barani, M., Rahdar, A., Arshad, R. & Cucchiarini, M. Nanomaterials for the diagnosis and treatment of urinary tract infections. Nanomaterials 11, 546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sanchez, S. V., Navarro, N., Catalan-Figueroa, J. & Morales, J. O. Nanoparticles as potential novel therapies for urinary tract infections. Front. Cell Infect. Microbiol. 11, 656496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lethongkam, S. et al. Eucalyptus-mediated synthesized silver nanoparticles-coated urinary catheter inhibits microbial migration and biofilm formation. Nanomaterials 12, 4059 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rugaie, O. A. et al. Retardation of bacterial biofilm formation by coating urinary catheters with metal nanoparticle-stabilized polymers. Microorganisms 10, 1297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mittal, R. et al. Local drug delivery in the urinary tract: current challenges and opportunities. J. Drug. Target. 26, 658–669 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Erman, A. & Veranic, P. The use of polymer chitosan in intravesical treatment of urinary bladder cancer and infections. Polymers 10, 265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Iyer, J. K. et al. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS ONE 13, e0191020 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Khanal, M. et al. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. Nanoscale 7, 2325–2335 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Beranova, J. et al. Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells. FEMS Microbiol. Lett. 351, 179–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Shreffler, J. W., Pullan, J. E., Dailey, K. M., Mallik, S. & Brooks, A. E. Overcoming hurdles in nanoparticle clinical translation: the influence of experimental design and surface modification. Int. J. Mol. Sci. 20, 6056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Becknell, B., Schwaderer, A., Hains, D. S. & Spencer, J. D. Amplifying renal immunity: the role of antimicrobial peptides in pyelonephritis. Nat. Rev. Nephrol. 11, 642–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Jiang, Y., Chen, Y., Song, Z., Tan, Z. & Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug. Deliv. Rev. 170, 261–280 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Lacerda Mariano, L. & Ingersoll, M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 17, 439–458 (2020).

    Article  PubMed  Google Scholar 

  124. Kuhn, H. W., Hreha, T. N. & Hunstad, D. A. Immune defenses in the urinary tract. Trends Immunol. 44, 701–711 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Ali, A. S., Townes, C. L., Hall, J. & Pickard, R. S. Maintaining a sterile urinary tract: the role of antimicrobial peptides. J. Urol. 182, 21–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Dijksteel, G. S., Ulrich, M. M. W., Middelkoop, E. & Boekema, B. Review: lessons learned from clinical trials using antimicrobial peptides (AMPs). Front. Microbiol. 12, 616979 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Håversen, L. A. et al. Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect. Immun. 68, 5816–5823 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Canas, J. J. et al. Human neutrophil peptides 1-3 protect the murine urinary tract from uropathogenic Escherichia coli challenge. Proc. Natl Acad. Sci. USA 119, e2206515119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kai-Larsen, Y. et al. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 6, e1001010 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ridyard, K. E. et al. Synergy between human peptide LL-37 and polymyxin B against planktonic and biofilm cells of Escherichia coli and Pseudomonas aeruginosa. Antibiotics 12, 389 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tantisuwanno, C. et al. Synergism between rifampicin and cationic polyurethanes overcomes intrinsic resistance of Escherichia coli. Biomacromolecules 22, 2910–2920 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Souza, P. F. N. et al. Synthetic antimicrobial peptides: from choice of the best sequences to action mechanisms. Biochimie 175, 132–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Sechet, E., Telford, E., Bonamy, C., Sansonetti, P. J. & Sperandio, B. Natural molecules induce and synergize to boost expression of the human antimicrobial peptide β-defensin-3. Proc. Natl Acad. Sci. USA 115, E9869–E9878 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schwartz, L. et al. Repurposing HDAC inhibitors to enhance ribonuclease 4 and 7 expression and reduce urinary tract infection. Proc. Natl Acad. Sci. USA 120, e2213363120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hertting, O. et al. Vitamin D induction of the human antimicrobial peptide cathelicidin in the urinary bladder. PLoS ONE 5, e15580 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Majhi, R. K. et al. Metformin strengthens uroepithelial immunity against E. coli infection. Sci. Rep. 11, 19263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Luthje, P. et al. Estrogen supports urothelial defense mechanisms. Sci. Transl. Med. 5, 190ra180 (2013).

    Article  Google Scholar 

  138. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cegelski, L. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 5, 913–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pinkner, J. S. et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc. Natl Acad. Sci. USA 103, 17897–17902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Montes-Robledo, A., Baldiris-Avila, R. & Galindo, J. F. D-Mannoside FimH inhibitors as non-antibiotic alternatives for uropathogenic Escherichia coli. Antibiotics 10, 1072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mydock-McGrane, L. et al. Antivirulence C-mannosides as antibiotic-sparing, oral therapeutics for urinary tract infections. J. Med. Chem. 59, 9390–9408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Totsika, M. et al. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J. Infect. Dis. 208, 921–928 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Klein, T. et al. FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J. Med. Chem. 53, 8627–8641 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. McLellan, L. K. et al. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog. 17, e1009314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cusumano, C. K. et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci. Transl. Med. 3, 109ra115 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Leitner, L. et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 17, 90 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ujmajuridze, A. et al. Adapted bacteriophages for treating urinary tract infections. Front. Microbiol. 9, 1832 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gu, Y. et al. Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl. Microbiol. Biotechnol. 103, 315–326 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Pires, D. P., Melo, L., Vilas Boas, D., Sillankorva, S. & Azeredo, J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 39, 48–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Aziminia, N. et al. Vaccines for the prevention of recurrent urinary tract infections: a systematic review. BJU Int. 123, 753–768 (2019).

    Article  PubMed  Google Scholar 

  153. Loubet, P. et al. Alternative therapeutic options to antibiotics for the treatment of urinary tract infections. Front. Microbiol. 11, 1509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Butler, D. et al. Immunomodulation therapy offers new molecular strategies to treat UTI. Nat. Rev. Urol. 19, 419–437 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ambite, I. et al. Molecular basis of acute cystitis reveals susceptibility genes and immunotherapeutic targets. PLoS Pathog. 12, e1005848 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Butler, D. S. C. et al. Neuroepithelial control of mucosal inflammation in acute cystitis. Sci. Rep. 8, 11015 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Hannan, T. J. et al. Inhibition of cyclooxygenase-2 prevents chronic and recurrent cystitis. EBioMedicine 1, 46–57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Puthia, M. et al. IRF7 inhibition prevents destructive innate immunity – target for nonantibiotic therapy of bacterial infections. Sci. Transl. Med. 8, 336ra359 (2016).

    Article  Google Scholar 

  160. Eichler, T. E. et al. Insulin and the phosphatidylinositol 3-kinase signaling pathway regulate ribonuclease 7 expression in the human urinary tract. Kidney Int. 90, 568–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stapleton, A. E. The vaginal microbiota and urinary tract infection. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.UTI-0025-2016 (2016).

  162. Perrotta, C., Aznar, M., Mejia, R., Albert, X. & Ng, C. W. Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. Cochrane Database Syst. Rev. 2, CD005131 (2008).

    Google Scholar 

  163. Blakeman, P. J., Hilton, P. & Bulmer, J. N. Cellular proliferation in the female lower urinary tract with reference to oestrogen status. BJOG 108, 813–816 (2001).

    CAS  PubMed  Google Scholar 

  164. Lüthje, P., Hirschberg, A. L. & Brauner, A. Estrogenic action on innate defense mechanisms in the urinary tract. Maturitas 77, 32–36 (2014).

    Article  PubMed  Google Scholar 

  165. Jobin, K. et al. A high-salt diet compromises antibacterial neutrophil responses through hormonal perturbation. Sci. Transl. Med. 12, eaay3850 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Murtha, M. J. et al. Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses. J. Clin. Invest. 128, 5634–5646 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Brauner, H. et al. Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin. Exp. Immunol. 177, 478–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mohanty, S. et al. Diabetes downregulates the antimicrobial peptide psoriasin and increases E. coli burden in the urinary bladder. Nat. Commun. 13, 4983 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chassin, C. et al. Hormonal control of the renal immune response and antibacterial host defense by arginine vasopressin. J. Exp. Med. 204, 2837–2852 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Olson, P. D., Hruska, K. A. & Hunstad, D. A. Androgens enhance male urinary tract infection severity in a new model. J. Am. Soc. Nephrol. 27, 1625–1634 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Olson, P. D. et al. Androgen exposure potentiates formation of intratubular communities and renal abscesses by Escherichia coli. Kidney Int. 94, 502–513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hreha, T. N. et al. Androgen-influenced polarization of activin A-producing macrophages accompanies post-pyelonephritic renal scarring. Front. Immunol. 11, 1641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hreha, T. N. et al. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol. Rep. 8, e14401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jones-Freeman, B. et al. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol. 14, 779–792 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Neugent, M. L., Hulyalkar, N. V., Nguyen, V. H., Zimmern, P. E. & De Nisco, N. J. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio 11, e00218-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lewis, A. L. & Gilbert, N. M. Roles of the vagina and the vaginal microbiota in urinary tract infection: evidence from clinical correlations and experimental models. GMS Infect. Dis. 8, Doc02 (2020).

    PubMed  PubMed Central  Google Scholar 

  177. Magruder, M. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 5521 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Thomas-White, K. et al. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat. Commun. 9, 1557 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wolfe, A. J. et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 50, 1376–1383 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Thanert, R. et al. Comparative genomics of antibiotic-resistant uropathogens implicates three routes for recurrence of urinary tract infections. mBio 10, e01977-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Spaulding, C. N. et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546, 528–532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Engelsöy, U., Svensson, M. A. & Demirel, I. Estradiol alters the virulence traits of uropathogenic Escherichia coli. Front. Microbiol. 12, 682626 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Worby, C. J. et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat. Microbiol. 7, 630–639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Worby, C. J., Olson, B. S., Dodson, K. W., Earl, A. M. & Hultgren, S. J. Establishing the role of the gut microbiota in susceptibility to recurrent urinary tract infections. J. Clin. Invest. 132, e158497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Paalanne, N. et al. Intestinal microbiome as a risk factor for urinary tract infections in children. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1881–1891 (2018).

    Article  PubMed  Google Scholar 

  186. Antonio, M. A., Hawes, S. E. & Hillier, S. L. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J. Infect. Dis. 180, 1950–1956 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Chen, C. et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 8, 875 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Liu, Y. & Li, Z. Vaginal pH value can affect the susceptibility to human papillomavirus infection. BMC Infect. Dis. 24, 176 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hooton, T. M., Fihn, S. D., Johnson, C., Roberts, P. L. & Stamm, W. E. Association between bacterial vaginosis and acute cystitis in women using diaphragms. Arch. Intern. Med. 149, 1932–1936 (1989).

    Article  CAS  PubMed  Google Scholar 

  190. Sumati, A. H. & Saritha, N. K. Association of urinary tract infection in women with bacterial vaginosis. J. Glob. Infect. Dis. 1, 151–152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Joyce, C., Halverson, T., Gonzalez, C., Brubaker, L. & Wolfe, A. J. The urobiomes of adult women with various lower urinary tract symptoms status differ: a re-analysis. Front. Cell Infect. Microbiol. 12, 860408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kawalec, A. & Zwolinska, D. Emerging role of microbiome in the prevention of urinary tract infections in children. Int. J. Mol. Sci. 23, 870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Song, C. H. et al. Lactobacillus crispatus limits bladder uropathogenic E. coli infection by triggering a host type I interferon response. Proc. Natl Acad. Sci. USA 119, e2117904119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Nelson, D. E. et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE 7, e36298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dong, Q. et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE 6, e19709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Price, L. B. et al. The effects of circumcision on the penis microbiome. PLoS ONE 5, e8422 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cole, E., Shaikh, N. & Forster, C. S. The pediatric urobiome in genitourinary conditions: a narrative review. Pediatr. Nephrol. 37, 1443–1452 (2022).

    Article  PubMed  Google Scholar 

  198. Gerber, D., Forster, C. S. & Hsieh, M. The role of the genitourinary microbiome in pediatric urology: a review. Curr. Urol. Rep. 19, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Tuddenham, S. et al. Lactobacillus-dominance and rapid stabilization of vaginal microbiota in combined oral contraceptive pill users examined through a longitudinal cohort study with frequent vaginal sampling over two years. EBioMedicine 87, 104407 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Neugent, M. L. et al. Recurrent urinary tract infection and estrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome. Cell Rep. Med. 3, 100753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cauci, S. et al. Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women. J. Clin. Microbiol. 40, 2147–2152 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Raz, R. & Stamm, W. E. A controlled trial of intravaginal estriol in postmenopausal women with recurrent urinary tract infections. N. Engl. J. Med. 329, 753–756 (1993).

    Article  CAS  PubMed  Google Scholar 

  203. Wu, F. et al. Improvement of vaginal probiotics Lactobacillus crispatus on intrauterine adhesion in mice model and in clinical practice. BMC Microbiol. 23, 78 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Stapleton, A. E. et al. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 52, 1212–1217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Macklaim, J. M., Clemente, J. C., Knight, R., Gloor, G. B. & Reid, G. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microb. Ecol. Health Dis. 26, 27799 (2015).

    PubMed  Google Scholar 

  206. Shoureshi, P. S., Niino, C. & Eilber, K. S. Can vaginal lactobacillus suppositories help reduce urinary tract infections? Int. Urogynecol. J. 34, 2713–2718 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Elvers, K. T. et al. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open. 10, e035677 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Zimmermann, P. & Curtis, N. The effect of antibiotics on the composition of the intestinal microbiota – a systematic review. J. Infect. 79, 471–489 (2019).

    Article  PubMed  Google Scholar 

  209. Gottschick, C. et al. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 5, 99 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Edlund, C. et al. The clinical and microbiological efficacy of temocillin versus cefotaxime in adults with febrile urinary tract infection, and its effects on the intestinal microbiota: a randomised multicentre clinical trial in Sweden. Lancet Infect. Dis. 22, 390–400 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Mayer, B. T. et al. Rapid and profound shifts in the vaginal microbiota following antibiotic treatment for bacterial vaginosis. J. Infect. Dis. 212, 793–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rani, A. et al. Urinary microbiome of kidney transplant patients reveals dysbiosis with potential for antibiotic resistance. Transl. Res. 181, 59–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Tariq, R., Tosh, P. K., Pardi, D. S. & Khanna, S. Reduction in urinary tract infections in patients treated with fecal microbiota transplantation for recurrent Clostridioides difficile infection. Eur. J. Clin. Microbiol. Infect. Dis. 42, 1037–1041 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Wood, N., Propst, K., Yao, M. & Ferrando, C. A. Fecal microbiota transfer for Clostridium difficile infection and its effects on recurrent urinary tract infection. Urogynecology 29, 814–826 (2023).

    Article  PubMed  Google Scholar 

  215. Tuniyazi, M. & Zhang, N. Possible therapeutic mechanisms and future perspectives of vaginal microbiota transplantation. Microorganisms 11, 1427 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov ClinicalTrials.gov/show/NCT06045832 (2023).

  217. US National Library of Medicine. ClinicalTrials.gov ClinicalTrials.gov/show/NCT05603598 (2022).

  218. US National Library of Medicine. ClinicalTrials.gov ClinicalTrials.gov/show/NCT05530252 (2022).

  219. US National Library of Medicine. ClinicalTrials.gov ClinicalTrials.gov/show/NCT05340790 (2023).

  220. US National Library of Medicine. ClinicalTrials.gov ClinicalTrials.gov/show/NCT05137314 (2022).

  221. Chinese Clinical Trial Registry. ChiCTR www.chictr.org.cn/showprojEN.html?proj=207110 (2024).

  222. Chinese Clinical Trial Registry. ChiCTR www.chictr.org.cn/showprojEN.html?proj=195731 (2023).

  223. ISRCTN Registry. ISRCTN www.isrctn.com/ISRCTN38383374 (2016).

  224. ISRCTN Registry. ISRCTN www.isrctn.com/ISRCTN12149720 (2023).

  225. US National Library of Medicine. ClinicalTrials.gov ClinicalTrials.gov/show/NCT02225366 (2021).

  226. University hospital Medical Information Network. UMIN center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000014826 (2019).

  227. Cochrane Library. A phase-III clinical trials of xylentra versus silver sulfadiazine for efficacy and safety in burn wound patients. Cochrane Library www.cochranelibrary.com/central/doi/10.1002/central/CN-01870388/full (2019).

Download references

Acknowledgements

C.B.C. and J.D.S. disclose support for publication of this work from the National Institutes of Health (NIDDK): K08 DK122119, R01 DK115737, DK114035 and DK128088.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to John David Spencer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Florian Wagenlehner, Zafer Tandogduand the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Acute Cystitis Symptom Score: https://www.acss.world/

ResistanceMap: https://resistancemap.onehealthtrust.org/AntibioticResistance.php

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simoni, A., Schwartz, L., Junquera, G.Y. et al. Current and emerging strategies to curb antibiotic-resistant urinary tract infections. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00877-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00877-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing