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The cerebral cortex is composed of neuronal types with diverse gene expression that
are organized into specialized cortical areas. These areas, each with characteristic
cytoarchitecture'? connectivity** and neuronal activity*$, are wired into modular
networks>*’. However, it remains unclear whether these spatial organizations are

reflected in neuronal transcriptomic signatures and how such signatures are
established in development. Here we used BARseq, a high-throughput in situ
sequencing technique, to interrogate the expression of 104 cell-type marker genes
in10.3 million cells, including 4,194,658 cortical neurons over nine mouse forebrain
hemispheres, at cellular resolution. De novo clustering of gene expressionin single
neurons revealed transcriptomic types consistent with previous single-cell RNA

sequencing studies®’

. The composition of transcriptomic types is highly predictive

of cortical areaidentity. Moreover, areas with similar compositions of transcriptomic
types, which we defined as cortical modules, overlap with areas that are highly
connected, suggesting that the same modular organizationis reflected in both
transcriptomic signatures and connectivity. To explore how the transcriptomic
profiles of cortical neurons depend on development, we assessed cell-type
distributions after neonatal binocular enucleation. Notably, binocular enucleation
caused the shifting of the cell-type compositional profiles of visual areas towards
neighbouring cortical areas within the same module, suggesting that peripheral
inputs sharpen the distinct transcriptomic identities of areas within cortical modules.
Enabled by the high throughput, low cost and reproducibility of BARseq, our study
provides a proof of principle for the use of large-scale in situ sequencing to both reveal
brain-wide molecular architecture and understand its development.

The vertebrate brain is organized into subregions that are special-
ized in function and distinct in cytoarchitecture and connectivity.
This spatial specialization of function and structure is established by
developmental processesinvolvingintrinsic genetic programs and/or
external signalling'. Although gene expression can change during
cell maturation and remains dynamic in response to internal cellular
conditions and external stimuli, a core transcriptional program that
maintains cellularidentity usually remains steady in mature neurons™.
Thus, resolving the expression of core sets of genes that distinguish
different types of neuron provides insightinto the functional and struc-
tural specialization of neurons.

Many large brain structures are spatially organized into divisions,
or modules, within which neurons are more similar in morphology,
connectivity and activity. In the cortex these modules usually involve
aset of adjacent cortical areas that are highly interconnected®**” and
correlated in neuronal activity>®. Many cortical areas also share the
same medium- and fine-grained transcriptomically defined neuronal
types®2. Whether and how the areal and modular organization of

cortical connectivity and activity is reflected in the transcriptomic
signatures of areas is unknown.

To address this question, here we apply BARseq™™ to interrogate
gene expression and the distribution of excitatory neuron types across
nine mouse forebrain hemispheres at high spatial resolution. BARseq is
aformofinsitu sequencing® in whichIllumina sequencing-by-synthesis
chemistryis used to achieve arobust readout of both endogenous mes-
senger RNAs and synthetic RNA barcodes. These RNA barcodes are used
to infer long-range projections of neurons. We have previously used
BARseq to identify the projections of neuronal types defined by gene
expression™'® and/or their locations™", and to identify genes associ-
ated with differences in projections within neuronal populations™.
Importantly, we showed that BARseq can resolve transcriptomically
defined cell types of cortical neurons at cellular resolution by sequenc-
ing dozens of cell-type markers™. Because BARseq has high throughput
and low cost compared with many other spatial techniques® 2, it is
ideally suited for studying the spatial organization of gene expression
at cellular resolution over whole-brain structures such as the cortex.
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Here we use BARseq as a standalone technique for sequencing
gene expression in situ at brain-wide scale in nine animals, with or
without binocular enucleation, to resolve the distribution of neu-
ronal populations and gene expression across the cortex. We gen-
erate high-resolution maps of 10.3 million cells with detailed gene
expression, including 4,194,658 cortical cells. We find that, although
most neuronal populations are found in multiple cortical areas, the
composition of neuronal populations is distinct across areas. The
neuronal compositions of highly connected areas are more similar,
suggesting amodular transcriptomic organization of the cortex that
matches cortical hierarchy and modules defined by connectivity in
previous studies**”. By comparing littermates with and without bin-
ocularenucleation, we then show that peripheralinputs have acritical
role in shaping cortical gene expression and area-specific cell-type
compositional profiles.

BARseq maps brain-wide gene expression

Recent single-cell transcriptomic studies®'** % have used different
nomenclatures to refer to cell types across hierarchical levels. To avoid
confusion we first define our cell-type nomenclature. The highest
hierarchical level, or H1 type, divides neurons into excitatory neu-
rons, inhibitory neurons and other cells; this level is the ‘class’ level
in many studies. Within each H1 type we subdivide neurons into H2
types, which are sometimes referred to as ‘subclasses™®. Cortical
excitatory neurons fallinto nine H2 types that are shared across most
cortical areas. This division refines the traditional projection-based
intratelencephalic (IT)/pyramidal tract (PT)/corticothalamic (CT)
neuron classification®® as follows: PT and CT neurons correspond to
L5 extratelencephalic neurons (ET) and L6 CT neurons, respectively,
whereas IT neurons are subdivided into L2/3 IT, L4/5IT, L5 IT, L6 IT,
NP (near-projecting neurons), Car3 and Léb. This division follows
recent single-cell RNA sequencing studies but differs from the classi-
cal tripartite classification of IT/PT/CT neurons. Each H2 type can be
further divided into H3 types (‘cluster’ or ‘type’ levelinsome studies®®).
Previousreports showed that Hl and H2 types are largely shared across
most cortical areas, but the expression of many genes is localized
to specific parts of the cortex both during development’®?’ and in
the adult®. Clusters at the H3 level appear to be enriched in neurons
from different parts of the cortex®*, but the detailed distribution
of neuronal populations at this higher granularity across cortical
areas remains unclear.

Toassess the distribution of neuronal populations across the cortex
we first generated a pilot dataset by applying BARseq to interrogate
the expression 0of 104 cell-type marker genes (Supplementary Table1)
in40 hemibrain coronal sections covering the whole forebrain in one
animal (Fig. 1a,b). We applied the same approach that we used previ-
ously to resolve excitatory neuron types in the motor cortex™ (Sup-
plementary Note 1, Fig. 1c and Extended Data Fig. 1a-f show marker
gene selection and overall strategy), and found 2,167,762 cells across
the whole hemisphere. Removal of cells with an insufficient number
ofrreads (20 reads per cell and five genes per cell minimum) resulted in
1,259,256 cells after quality control (Supplementary Methods), witha
mean of 60 unique reads per cell and 27 genes per cell (Extended Data
Fig.1g,h). At the gross anatomical level many genes were differentially
expressed across major brain structures and cortical layers (Fig. 1a).
These expression patterns were consistent with in situ hybridization
patterns in the Allen Brain Atlas®*® (Extended Data Fig. 1i and Supple-
mentary Note1). Thus, our pilot dataset recapitulated the known spatial
distribution of gene expression.

BARseq distinguishes neuronal types

We next identified transcriptomic types of neurons by de novo and
hierarchical clustering based on single-cell gene expressionin the
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pilot dataset (Fig. 2a and Supplementary Methods). Clustering all
cells resulted in 24 clusters, which we then combined into three H1
types (642,340 excitatory neurons, 427,939 inhibitory neurons and
188,977 other cells) based on the expression of Slc17a7 and Gadl
(Extended Data Fig. 2a and Supplementary Methods). Of these
1.2 million cells, 517,428 were in the cortex and were the focus of our
analyses. Based on the fraction of excitatory neurons expressing both
Slc17a7 and Gadl, we estimated that the probability of segmentation
errors in which two neighbouring cells were merged (that is, doublet
rate) would be 5-7% (Extended Data Fig. 2b,c and Supplementary
Note 2). The 24 clusters, comprising the three H1 types, largely cor-
responded to coarse anatomical structures in the brain (Fig. 2b). For
example, different clusters were enriched in the lateral and ventral
groups of the thalamus, the intralaminar nuclei, the epithalamus,
the medial, basolateral and lateral nuclei of the amygdala, the stria-
tum and the globus pallidus (Fig. 2b). These results recapitulate
the clear distinction of transcriptomic types across anatomically
defined brain structures as observed in whole-brain, scRNA-seq
studies??34,

Wethenreclustered the excitatory and inhibitory neurons separately
into H2 types (Fig. 2a,c and Extended Data Fig. 2d) toimprove the reso-
lution of clustering. At this level we recovered major inhibitory neuron
subclasses (Pvalb, Sst, Vip/Sncg, Meis2-like and Lamp5), all excitatory
subclasses that are shared across the cortex (L2/3 1T, L4/5IT, L5IT, L6
IT,LSET, L6 CT, NP, Car3 and L6b) and an excitatory subclass specific
to the medial cortex (RSP) observed in previous cortical scRNA-seq
datasets®*'>*, The H2 types expressed known cell-type markers and
other highly differentially expressed genes (Fig. 2d). For example,
Cux2is expressed mostly in superficial-layer IT and Car3 neurons,
Fezf2in NP and LS ET neurons and Foxp2 specificallyin L6 CT neurons
(Supplementary Note 3 provides a detailed description). Although we
generated the full 40-section dataset in two batches (Supplementary
Methods) we did not observe strong batch effects, as evidenced by the
intermingling of excitatory neurons from different slices across the
two batches in the uniform manifold approximation and projection
(UMAP) plot (Extended Data Fig. 2e). Thus the H2 types recapitulated,
at medium granularity, known neuronal types identified in previous
scRNA-seq datasets®*?2,

We thenreclustered each excitatory H2 type into H3 types (Fig. 2a).
To quantify how well H3 types corresponded to reference transcrip-
tomic types identified in previous scRNA-seq studies, we used a
k-nearest-neighbour-based approachto matcheach H3typetoleaf-level
clustersrecordedinref. 9 (Supplementary Methods). We found that cor-
tical H2 types had a one-to-one correspondence with subclass-level cell
typesinthescRNA-seqdata (Fig. 2e). Within each H2 type, the H3 types
differentially mapped onto single or small subsets of leaf-level clusters
inthe scRNA-seq data (Fig. 2e; Extended Data Fig. 2f shows matching of
clusters outside of the cortex). Both H2 and H3 types were organized
inanorderly fashion along the depth of the cortex, recapitulating the
laminar organization of cortical excitatory neurons (Extended Data
Fig.2g,hand Supplementary Note 3). At a coarse spatial resolution the
H3 types were also foundin cortical areas similar to matching clusters
inprevious scRNA-seq datasets (Extended Data Fig. 2i-k and Extended
Data Fig. 3). For example, the H3-type PT AUD and its corresponding
scRNA-seq cluster (242_L5_PT CTX) were both enriched inlateral corti-
calareas (TEa-PERI-ECT) and auditory cortex (AUD), whereas H3-type
PT CTX P and its corresponding scRNA-seq clusters (245_L5_PT CTX
and 259_L5 PT CTX) were enriched in the visual cortex. Therefore,
these results demonstrate that our pilot dataset resolved fine-grained
transcriptomictypes of cortical excitatory neurons that were consistent
with previous scRNA-seq datasets® and recapitulated their areal and
laminar distribution®2*, The high resolution and cortex-wide span of
our dataset now enabled us to resolve the spatial enrichment of gene
expression and the distribution of neuronal subpopulations across
the cortex at micrometre-level resolution.
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Fig.1|BARseqreveals brain-wide gene expression. a, Images showing mRNA
reads of all 40 slices (bottom) and close-up images of three representative slices
(top). For clarity, only 17 out of 104 genes (indicated on the right) are plotted.
Inseton theleft shows anillustration of mRNA detection using BARseq. b, Left,
decoded genes and cell segmentations (middle) from arepresentative imaging
tile (out of 4,385 tiles across 40 slices) corresponding to the dashed boxina.
Right, close-up images of this area showing the last sequencing cycle,

Gene expression patterns across the cortex

Gene expression varies substantially across the cortex*** but most cor-
tical areas largely share the same H2 types, or subclasses, of excitatory
neurons®? Thereforeitis unclear how differences in the organization
of neuronal subpopulations lead to area-specific gene expression.
Three sources of variation could contribute to gene expression dif-
ferences across areas (Fig. 3a). First, the composition of H2 types
may drive differences in gene expression across the cortex (Fig. 3a
(left), the cell-type composition model). For example, the ratio of
H2-type X to -type Y might be high in the visual but low in the motor
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cluster assignment performance using the full transcriptome, top principal
components (PCs) and the 104-gene panel with or without subsampling to
match the sensitivity of BARseq for H2 (top) and H3 (bottom) clusters. Scale
bars,1mm (a), 100 pm for full-tileimages (b), 10 pum for the boxed area (b).
cDNA, complementary DNA.

cortex, so genes that are expressed more highly in X thanin Y will be
more highly expressed in the visual cortex. Second, the expression
of some genes may vary across space regardless of H2 type—that is,
they change consistently across space in multiple H2 types (Fig. 3a
(middle), the spatial gradient model). In this model, gene A may
be more highly expressed in the visual than in the motor cortex in
types X and Y. Finally, the expression of some genes may vary across
space in an H2-specific manner (Fig. 3a (right), the area-specialized
cell-type model). For example, gene A may be more highly expressed
in the visual cortex than in the motor cortex in H2 type X but not in
H2typeY.
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dorsal thalamus; PF, parafascicular nucleus; HY, hypothalamus. ¢, UMAP plot of

To determine the contribution of each source to the variationin
gene expression across areas we discretized the cortex on each coro-
nal slice into 20 spatial bins (Supplementary Methods and Extended
DataFig.4a). Wethen assessed how much of the variationin bulk gene
expression across bins could be explained by either space or composi-
tion of H2 or H3 types using one-way analysis of variance (Extended Data
Fig.4b,cand Supplementary Methods). We found that all three models
contribute to the spatial variation of gene expression, and that the
model that contributes most to variation varies across genes (Extended
DataFig.4b-dand Supplementary Note 4). Because the spatial patterns
of many genes were similar, we sought to extract basic spatial compo-
nents that were shared across genes and H2 types using non-negative
matrix factorization (NMF)*® (Supplementary Note 4 and Extended
DataFig. 4e,f). We found that the majority of NMF components were
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patterned notin broad gradients along major spatial axes, but rather
were concentrated in areas that were functionally related and highly
interconnected (Fig.3b and Extended DataFig. 4g). For example, NMF5
was found mostly in visual areas whereas NMF8 was predominantly in
somatosensory areas. Other NMF modules, including NMF1 (medial
areas) and NMF10 (lateral areas), were present in combinations of
areas that were functionally distinct but also highly interconnected**.
Spatially variant genes were usually strongly associated with only
one or two components (Fig. 3c and Extended Data Figs. 4h and 5),
and the association recapitulated known spatial patterns of these
genes. For example, Tenm3 was expressed mostly in posterior sen-
sory areas including the visual cortex, auditory cortex and part
of the somatosensory cortex*® (Extended Data Fig. 4d, bottom);
Tenm3 was strongly associated with NMF5 (Fig. 3c¢), which was also
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expressed in the same sets of areas (Fig. 3b). Thus, gene expression
varies along sets of interconnected areas, suggesting an intrigu-
ing link between gene expression and intracortical connectivity
across areas.

right. Bracketsindicatebarrels in the barrel cortex. g, Cortical areas defined in
CCF (left) and those predicted by H3 type (middle) and cubelet gene expression
(right). h, Fraction of correctly predicted cubelets using H3-type composition,
cubelet gene expression and shuffled control. Eachbox shows the performance
of n=100resampled trials. Boxes show median, and quartiles and whiskers
indicate range after exclusion of outliers. Dots indicate outliers. i, Matrix
showing the AUROC of pairwise classification between combinations of cortical
areas. Areasare sorted by modules, which are colour coded on the left. The
dendrogramwas calculated using similarity of H3-type composition; clusters
were obtained based on the matrix and are shownin the grey-bordered boxes.
j, Cortical flatmaps coloured by cell-type-based modules (left) and by
connectivity-based modules identified by Harris et al.? (right).

Cell-type-defined cortical modules

The spatially varying NMF modules were obtained after controlling for
variability inthe composition of H2 types, but not of H3 types. Therefore
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we hypothesized that these modules reflected differencesin the compo-
sitionof H3 types across cortical areas. Consistent with this hypothesis,
each H3 type was enriched in a small subset of NMF modules and H3
typesalso overlapped with their corresponding NMF modules in space
(Extended DataFigs. 6 and 7a,b, Supplementary Methods and Supple-
mentary Note 5). To further assess the areal distribution of H3 types we
rediscretized the cortex oneach coronalsliceinto ‘cubelets’ of similar
width along the mediolateral axis across all slices (Supplementary
Methods and Extended Data Fig. 4a). These cubelets were of similar
physical size and were narrower on the mediolateral axis than the spatial
bins used inthe previous analysis; this higher lateral resolution makes
it easier to assign cubelets to individual cortical areas. We found that
H3 types were shared by multiple cortical areas and were not specific
toanysinglearea (each H3 type was found inbetween sixand 12 areas,
median +1s.d., Fig.3d; Fig. 3e shows distributions of example H3 types
and Supplementary Fig.1). Thus the distinctness of neighbouring cor-
tical areas cannot be explained simply by the presence or absence of
anarea-specific H3 type. However, we noticed that the compositional
profiles of H3 types often changed abruptly near areaborders defined
in the Allen Common Coordinate Framework v.3 (CCF)* (Fig. 3f and
Extended Data Fig. 7c,d). Most salient changes occurred at the lateral
and medial areas, which is consistent with scRNA-seq data’. Within the
dorsolateral cortex, although neighbouring cortical areas sometimes
shared sets of H3 types, their proportions typically changed at or near
areaborders. Using either gene expression or the compositions of H3
types in each cubelet, we could accurately predict cubelet locations
and cortical area labels (75% correct using gene expression and 69%
correct using H3-type composition, compared with 8% in shuffled
control; Supplementary Note 5, Fig. 3g,h and Extended Data Fig. 7e-i).
Thusboth cubelet gene expression and H3-type composition are highly
predictive of locations along the tangential plane of the cortex and the
identity of the cortical areas.

We next assessed the similarity and modularity of cortical areas
based on how well these could be distinguished by their H3-type
composition (Fig. 3i and Supplementary Methods). In brief, we built
adistance matrix between cortical areas based on how well they can
bedistinguished pairwise using H3 type composition then performed
Louvain clustering on the distance matrix. We identified six clusters,
each of which consisted of more than one area (Fig. 3i, grey-bordered
boxes); theseincluded two clusters corresponding to the visio-auditory
areas and one cluster each for the association areas, somatosensory
cortex, motor cortex and lateral areas. This modular organization is
robust to small errors in CCF registration (Extended Data Fig. 7j and
Supplementary Methods). We further combined these clusters with
singlet areas (PL, RSPd and RSPv) that did not cluster with any other
areainto cortical modules based on similarity in H3-type composition.
These modules largely included the visio-auditory, somatomotor, asso-
ciation, medial and lateral areas, respectively (Fig. 3i). Notably, these
cell-type-based modules were largely consistent with cortical modules
that are highly connected (connectivity-based modules)? (Fig. 3j).
Thus, highly interconnected cortical areas share similar groups of H3
types and, consequently, characteristic transcriptomic signatures.

Cell types are robust to enucleation

Transcriptomic types, areas and modulesreflect cortical organization
at different scales, suggesting that they may be generated through
different developmental mechanisms. As afirst step inunderstanding
the developmental processes that contribute to cortical organization
at different scales, we applied BARseq to examine how the postnatal
removal of peripheral sensory inputalters the organization of cortical
transcriptomic types. Thalamocortical projections have a central role
in shaping the identities and borders of cortical areas'®***, and loss
of postnatal visual inputs affects gene expression in VISp and other
areas******, How peripheral inputs shape cortical neuronal types and
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the characteristic cell-type compositional profiles of cortical areas,
however, isunclear. For example, altered gene expression could resultin
new cell types that are not seeninanormal brain; alternatively, it could
enrich or deplete existing cell types (Fig. 4a). Because BARseq is cost
effective and has high throughput, itis uniquely suited for interrogat-
ing changesin neuronal gene expression and cell-type compositional
profiles on a brain-wide scale across many animals, with or without
developmental perturbation.

We performedbinocular enucleation on four mice at postnatal day 1
and collected their brains at postnatal day 28, along with those of four
matched littermate controls (n = 8 animals) (Fig. 4b). We performed
BARseq using animproved microscope that achieved better data qual-
ity and much faster data acquisition compared with the pilot dataset
(2.3 days per brain; Supplementary Methods and Supplementary
Note 6).In total, the full dataset contained 9.1 million quality controlled
cells covering most of the forebrain of all eight animals (Fig. 4b), with
amedian of 87 reads per cell and 37 genes per cell (Fig. 4c). Cells from
individual brains were interdigitated with those from other brains in
UMAP space, suggesting that there were minimal batch effects (Fig.4d
and Extended DataFig. 8a). Therefore, we performed de novo clustering
hierarchically on the concatenated data of 3,957,252 excitatory neurons,
1,526,182 inhibitory neurons and 3,635,402 other cells at the H1 level.
Thefraction of other cells was significantly higher than thatin the pilot
dataset, probably because the improved data quality allowed more
cells with lower read counts to pass quality control and be included.
We then reclustered the excitatory neurons into 35 H2 types (Fig. 4e)
and 154 H3 types, including 12 H2 types and 70 H3 types predominantly
foundinthe cortex. These H3 typesin the new dataset closely matched
those in the pilot dataset (Extended Data Fig. 8b,c; Supplementary
Note 6 shows mapping to the pilot dataset). Notably, no H3 type was
strongly enriched or depleted in enucleated brains compared with
control (Extended Data Fig. 8f; Supplementary Note 7 and Extended
Data Fig. 8d-i provide detailed analyses). Although we cannot fully
rule out the possibility that minor changes in gene expression were
missed at our transcriptomic resolution, these results suggest that
enucleation did not lead to the creation of new cell types at the H3
level; rather, the main effect of enucleation was probably reflected in
changes in the compositional profiles of H3 types.

Enucleation alters cell-type make-up

Having established that enucleation did not create new H3 types, we
sought to characterize enucleation-induced changes in area-specific
H3-type composition. We divided the cortex into cubelets using an
approachsimilar to that used for the pilot data (Supplementary Meth-
ods). This discretization resulted in about 270 neurons per cubelet,
with amean distance of 181 um between adjacent cubeletsin asection.
To visualize H3 type composition we plotted UMAP analysis based on
the fraction of H3 types in each cubelet (Fig. 5a—c). Consistent with
the absence of batch effects seen in single-neuron gene expression
(Fig.4d), cubelets fromall eight animals mixed smoothly in most areas
(Fig. 5a). Colour coding of cubelets by condition (Fig. 5b), however,
revealed an ‘island’ (left) within which cubelets from the two popula-
tions (enucleated versus control) were largely segregated. Thisisland
contained mainly cubelets from VISp and other visual areas (Fig. 5b,c,
insets). To quantify differences in the compositional profiles of H3
types between control and enucleated brains we trained a classifier to
assess how distinct cubelets from each cortical area were between the
two conditions (Supplementary Methods). If enucleation consistently
altered the compositional profile of H3 types in a cortical area, then
we would expect the classifier to predict whether a cubelet was from
acontrol or an enucleated animal based on its H3 type composition
above chance level. In most cortical areas the classifier performed at
chance level, but VISp cubelets were highly predictive of condition
(Fig. 5d; area under the receiver operating characteristic (AUROC)
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Fig.4|BARseq consistently detects celltypes across eight enucleated
and control animals. a, Models of possible effects of removing peripheral
sensory inputs postnatally, including generation of new cell types (left)
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brain-wide transcriptomic data from four littermate pairs: within each pair
one mouse was enucleated (Enu.) at P1and the other was asham control (left,
n=8animals). Arepresentative stack of 32 slices from one brain (bottom)

and close-up images of matching coronal slices fromall eight brains (top) are
shown. For clarity, only 17 out of 104 genes (indicated on the right) are plotted.

0.90 + 0.06 compared with shuffled AUROC 0.56 + 0.27, median +s.d.;
P=2x107* using rank sum test and Bonferroni correction). Two
higher visual areas (VISpm and VISI; AUROC median +s.d. 0.70 £ 0.12
and 0.66 + 0.15; and shuffled AUROC median + s.d. 0.50 + 0.25 and
0.44+0.25;P=3x10"°and 7 x 107, respectively, comparing each area
with shuffled control using rank sum test and Bonferroni correction)
and anon-visual area (SSp-1l; AUROC 0.57 + 0.09 and shuffled AUROC
0.42 +0.18, median +s.d.; P=2 x 10" compared with shuffled control
using rank sum test and Bonferroni correction) were also predictive
above chancelevel, although the predictive powers were much lower.
Thus, enucleationlargely affected the relative composition of H3 types
within visual areas.

The effect of enucleation canbe observed directly in the distribution
of H3typesinthe primary visual area (Fig. 5e and Extended Data Fig. 9a).
For example, many L2/3 IT M-L_2 neurons (Fig. Se, yellow dots) were
foundin VISpincontrol animals, but L2/3IT L-Mneurons (Fig. 5e, green
dots) becameenriched in VISp in enucleated animals. Similarly, L6 IT DL
neurons (Fig. Se, purple dots) were foundin higher numbersinthe VISp
of enucleated animals compared with control animals. To systemati-
cally examine how enucleation affected the compositional profiles of
cortical excitatory cell types in each area we looked for H3 types that
were enriched or depleted in enucleated brains using an analysis of
variance model, adjusting for litter and area effects (Supplementary

c,Genes and read counts per cell for the pilot dataset and the enucleation and
control littermates (in order plotted,n=0.6,1.0,1.0,1.1,1.3,1.2,1.1,1.2and
1.1million biologically independent cells). Boxes indicate the median and first
and third quartiles; whiskers extend to the most extreme value up to 1.5 times
interquartile range from eachbound; remaining dots are plotted individually.
d-f, UMAP plots of gene expression of excitatory neurons from all eight
animals. Neurons are colour coded by animal (d), by H2 type (e) and by
condition (enucleated or control, f). Labels show only H2 typesin cortex.

Methods). We found that 46 H3 typesin 18 areas across the whole cortex
were either over-orunder-represented in enucleated animals compared
with control. VISp had the most H3 types (16) whose compositions
were altered by enucleation (Fig. 5f). The affected H3 types were found
across most H2 types, with the strongest enrichment or depletion of H3
typesof L2/31T,L4/51T and L6 IT (Fig. 5g). Intriguingly, L6b/CT A-L_2,
atransitional type between L6 CT and L6b H2 types usually found only
inlateral areas, was also highly enriched in VISp after enucleation. The
affected H3 types remained in their characteristic sublaminar positions
(Extended DataFig. 9b) and overall changes were consistent with, but
broader than, those observed during dark rearing during the critical
period* (Extended Data Fig. 9c and Supplementary Note 8). The top
enriched H3 types, including L2/3ITM-L,L2/3ITL-M, L4/5ITM-L,L6
ITDL and L6b/CT A-L_2, were all enriched in medial and lateral areas
inthe control brains, including areas immediately medial and lateral
tothevisual areas (Extended Data Fig. 9d). Thus, enucleation broadly
shifted neurons in VISp towards H3 types that were usually enriched
in the medial and lateral areas in control brains.

Peripheral inputs sculpt areaidentities

Because enriched H3 types were consistently found in medial and/or
lateral areas in control animals, we wondered whether enucleation
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area(c). Insets show amplified views of boxed areas. d, Flatmap showing how
distinctan areawas between control and enucleated brains (AUROC). Colours
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Red asterisks indicate false discovery rate below 0.05. e, Representative slices
fromapair of littermates showing selected L2/31T and L6 ITH3 types enriched
ordepletedin VISp after enucleation.f, Fractions of enriched or depleted H3
typesineacharea.g, Fractions of H3 typesin VISp and their fold change after
enucleation. Coloursindicate log(fold change) and circle sizeindicates the
fraction of VISp neurons belonging to each H3 type. h, Shiftsinareal identity
for VISp (left), VISI (top right) and VISpm (bottom right). Coloursindicate

had also shifted overall area identity—as defined by the H3-type
compositional profiles—of the visual cortex towards other areas. To
examine how area identities had changed after enucleation we used
anearest-neighbour-based approach inspired by MetaNeighbor** to
assess the similarity of cubeletsin both control and enucleated brains to
other cubeletsin control brains (Supplementary Methods). If enuclea-
tion had shifted the compositional profile of an area towards a target
area, cubelets from the affected area in the enucleated brain would
then have had more neighbours in the target area than cubelets from
thesameareainthe control brain. For each cubeletinalittermate pair
we found the 20 cubelets with closest match in H3-type composition
in control brains from the other three pairs of littermates. We then
calculated the similarity, quantified by AUROC for assigning cubelets
from each areato areas in the control brains based on nearest neigh-
bours (Extended Data Fig. 9e). All three visual areas (VISp, VISl and
VISpm, circled in Extended Data Fig. 9e) remained highly similar to
the sameareasin control brains (AUROC 0.97 and 0.98 for control and
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fraction of enriched or depleted neighboursin enucleated brains compared
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i, Models of cortical cell-type organization. Cortical modules are established
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respectively; coloured arrows indicate thalamic inputs; black arrows within the
cortexindicate connectivity.

enucleated VISp, 0.90 and 0.92 for control and enucleated VISl and
0.88 and 0.94 for control and enucleated VISpm, respectively), indi-
cating that their H3-type compositions remained highly distinct from
other areas despite the changes induced by enucleation. However, all
three visual areas also shifted towards the identities of neighbouring
regions asjudged by the fraction of neighbours from an area (Fig. 5h).
For example, VISp cubelets from the enucleated brains had higher
AUROC scores withboth VISl and VISpm than those from control brains
(0.85 and 0.89 for enucleated cubelets and 0.76 and 0.83 for control
cubelets; Extended Data Fig. 9e). Consistent with the high AUROC
scores observed, VISp cubelets from enucleated brains also had more
neighbours in VISl and VISpm (Fig. 5h). Similarly, VISI cubelets from
enucleated brains had more neighbours in auditory areas and VISpm
cubelets from enucleated brains had more neighbours in VISam and
RSPagl (Fig.5h, insets). Notably, all three areas shifted towards neigh-
bouring areas that were physically further away from VISp and were
within the visio-auditory module (black outlines in Fig. 5h). To examine



whether these changes reflected a shift in area borders or achange in
compositionacross an area, we plotted each cubelet from enucleated
brains and coloured them by differences in the number of neighbour
cubeletsin VISI (Extended Data Fig. 9f, top) and VISpm (Extended Data
Fig. 9f, bottom). In VISp the enrichment of neighbours in VISIand VISpm
was foundin cubelets across the whole area. In particular, cubelets that
had more neighbours in VISpm after enucleation (red dots in VISp in
Extended Data Fig. 9f, bottom) appeared to be concentrated at the
centre of VISp rather than at the borders, suggesting that changes in
similarity among these areas reflected an overall change in cell-type
composition rather than a shift in area borders. Thus, enucleation
shifted the H3-type composition-defined area identities of the visual
areas towards neighbouring areas within the visio-auditory module.

Discussion

Using BARseq, we generated cortex-wide maps of transcriptomic types
of excitatory neurons at high transcriptomic and spatial resolution
across nine animals. These maps not only elaborate the distribution
of cortical excitatory neuron types previously revealed by single-cell
studies®?, but also provide an‘anchor’ to associate other neuronal prop-
ertiesand activity with neuronal types. Thus, our spatial cell-type map
provides afoundational resource for understanding the structural and
functional specialization of cortical areas. We focused on the cortex,
but the same approach can be applied to any other brain region with
adequately designed gene panels. When examining large numbers of
genes, overcoming optical crowding by computational demixing of
overlapping signals* and/or optimization of cell segmentation using
more recent approaches?**” may furtherimprove the ability to resolve
single-cell gene expression accurately.

Our results suggest that the cell-type compositional profiles of
cortical areas reflect their modular organization seen in connectiv-
ity studies: cortical areas that are highly interconnected also have
similar H3 types (Fig. 5i, top). This ‘wire-by-similarity’ relationship is
notatrivial consequence of cell-type-specific connectivity observed
atacortex-wide scale, because cortical neurons of the same type are
not necessarily highly connected (for example, Sst neurons*®). Thus,
wire-by-similarity does not describe the connectivity of individual
neuronal types but rather reflects how divisions within alarge brain
region (thatis, areas within the cortex) relate to each other in terms of
cell types and connectivity. Future studies using BARseq to map the
projections of neuronal types at cellular resolution, from multiple
cortical areas and at multiple developmental time points, can help
resolve the single-cell basis of the wire-by-similarity organization.

The combination of single-cell resolution, high transcriptomic reso-
lution and broad interrogation across many cortical areas allowed us
to describeindetail how gene expression and cell-type compositional
profiles change after removal of peripheral sensory inputs. Overall,
the effects of enucleation suggest that peripheral activity refines the
cell-type compositional profiles of cortical areas. Enucleation affected
ITneuronsinalllayers and also L6b/CT neurons, abroader population
thanthe L2/31T neurons affected by dark rearing (Fig. 5g)*2. However,
enucleation did not completely abolish the distinction between pri-
mary and secondary visual areas, as observed by Chou et al.*° after
genetic ablation of thalamocortical axons (Supplementary Note 8).
Thus, together with previous studies, our results suggest a consist-
ent model: the physical connections established by thalamocortical
axons are needed to define the primary visual cortex, and peripheral
activity sharpens cell-type composition across both the primary visual
cortex and neighbouring higher visual areas within a cortical module
(Fig. 5i, bottom).

BARseq stands out among spatial transcriptomic methods with its
high throughput (about 2.3 days per brain on one microscope), low
cost (approximately US $2,000 per brain) and high reproducibility.
These features make it possible to compare brain-wide spatial gene

expression across many animals, thus providing a path to go beyond
asingle-reference brain atlas®>*** towards a‘pan-transcriptomic’ atlas
that captures population diversity. Furthermore, combining inter-
rogation across multiple individuals with perturbations enables the
discovery of causal relationships. Whereas we studied the effect of
developmental perturbations, the same approach can also be used in
neuropsychiatric disease models, ageing studies, cross-species com-
parison and other experimental perturbations. Our approach based
on BARseq can be broadly applied to link brain-wide, network-level
dynamics with detailed changesin gene expressioninsingle neurons,
andto establish causal relationships between developmental processes
and brain-wide cell-type organization.
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https://api.brainimagelibrary.org/web/view?bildid=ace-dim-own,
https://api.brainimagelibrary.org/web/view?bildid=ace-dim-owl,
https://api.brainimagelibrary.org/web/view?bildid=ace-dim-out,
https://api.brainimagelibrary.org/web/view?bildid=ace-dim-orb,
https://api.brainimagelibrary.org/web/view?bildid=ace-dim-old,
https://api.brainimagelibrary.org/web/view?bildid=ace-dim-off,
https://api.brainimagelibrary.org/web/view?bildid=ace-dim-odd and
https://api.brainimagelibrary.org/web/view?bildid=ace-cry-zip). Both
cell-and rolony-level dataare provided at Mendeley Data (https://data.
mendeley.com/datasets/8bhhk7c5n9/1 (ref. 49) and https://data.
mendeley.com/datasets/5xfzcb4kn8/1 (ref. 50)). Gene panel selec-
tion and cell-type assessment were based on data publicly available
at https://data.nemoarchive.org/biccn/lab/zeng/transcriptome/5’
and https://github.com/shekharlab/mouseVC (ref. 51). Allen CCF v.3
with the 2017 annotation was downloaded from https://community.
brain-map.org/t/api-allen-brain-connectivity/2988.

Code availability

Scriptsused for both data processing and data analysis are provided at
Mendeley Data (https://data.mendeley.com/datasets/8bhhk7c5n9/1
(ref. 49) and https://data.mendeley.com/datasets/5xfzcb4kn8/1
(ref.50)) and on GitHub (https://github.com/gillislab/barseq_analysis
(ref.52)).
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Extended DataFig.1|See next page for caption.




Extended DataFig.1|Insilico designand evaluation of the gene panel.

(A) Insilico assessment of H2 type separability (supervised analysis, ability to
distinguish celltypes givenreferencelabels) in asurrogate snRNAseq dataset
across marker setsranging from40to 102 genes. The number of genesineach
panelisshowninparentheses. The final gene panelincludes the102-gene
panel, plus two manually added genes (Fezf2 and Hgf). The line shows median
performance, the ribbon minimum to maximal performance over 10
independentdownsamplings (N=5000 cells) of the surrogate dataset. (B) In
silico assessment of H2 type clusterability (unsupervised analysis, ability to
recover reference labels through standard clustering) across the marker sets.
Theline shows median performance, the ribbon first to third quartile over 10
independent downsamplings (N=5000 cells) of the surrogate dataset. (C) In

silico assessment of H3 type separability for IT,LSET (PT),and L6 CT cells
across the marker sets. Line and ribbons defined asin A. (D)(E) UMAP plots
of gene expression of cortical excitatory neurons (D) and LSET neurons (E)
calculated from the 104-gene panel with or without an additional 33 genes.
Colorsindicate H2 typesin (D) and H3 typesin (E). (F) Images of a coronal
sectionshowingthe distribution of LSET types clustered using the gene
panels. (G) Gene counts per cell and (H) read counts per cellin the dataset.
Quality control thresholds are indicated by dashed linesinboth plots. The
lower peaksingene and read countslikely include non-neuronal cells that do
notexpress the cortical neuronal markers in our gene panel and non-cellular
particles that are fluorescent. (I) The expression patterns of representative
genesinAllen Brain Atlas (left half) compared to the current dataset (right half).



Article

(9}

Relative abundance of cells

Relative abundance of cells

8
°

o 10 20
Sle17a7 Counts/cell Gad1 Counts/cell

NG T UMAP_1

UMAP_2

P
e (Oyeriap e
L (Jaccard Index) ke

PIR Leb-ike Y
=

2] 0001020304

i e —emnsn e e
L e

—
13,

Pl
£ TUL-P
g “BLPE nTnn
s L hLE 22 F 388 [}
= L2317 Uieleay . t 34 .
(] i ' $3:¢
S et |TM&—P ®
= ey L 1]
it 3 3 3232
:
LSITM—UENTLE v, $ < - @ | overlap
iy it eccce
Rl 2 Is 04
) SHEEI 3 03
= Lshf%ﬁ oo L1232 23 02
g L) IR t3sasasszszrecesill B
s PTp RepT-A . @ 0.0
£ i O i é
L4/51T % PTEDXMOREONTS o $33832 overlap
i Serome Soss® - 00
e o - $ o oot

we crx S

4
03
CN§§§§ 3 !" $ e

B .
et IR
e !
Eas kot *
eSS e Ry g
CCF regi¢
Car3 .. LecCT L6b feaen
e
RS CTRPL s CIXP era [0
[sc35 EPdICLA E BiE oL N
J o K
e PTAUD{ « P
B 242 L5PTCTX ] o °
] PT P RSP/IT-like? o %L5ET cells
o 239 L5PTCTX o o
cotolzs overiap X Unclear s+ o 525
el o8 240_L5 PT CTX o-o 35
Eojtersiond et CT. . oe 000 . 75
& _edn 248 15 PT CTX c oo o0 o
g amze 04 PT CTX MO[FIs DL - o oo Q10
O] we " o2 249 L5 PT CTX o .
| bt 252715 PT CTX °© 000 0o FDR < 0.05
g 3 fan LS PR RS B
g - o 00@c - o
[ S, . 255 L5PTCTX{® - - © O o e TRUE
s i ] PT CTX P-UURSPd-agllTEa{© © © o o + 0o
= oy gy o 02 L5PTCTX{® - © - © - log(OR)
PRB ®o: 52 RIS " o .
] ® o5 244 15 PT CTX <o -
e =] ® ® o 246715 PT CTX c e 00 0.0
o : 24715 PT CTX o e 0 .o 25
e TCTXP{ "« © °
g 245_L5 PT CTX o0
~So% 259715 PT CTX -
PTRSPvPPP] ~ © © ° . s
260_L5PTCTX 1@ 2
LETSE TE RFL I8
q@@\ F R &
& R
&
Brain area

Extended DataFig.2|See next page for caption.



Extended DataFig. 2| Hierarchical clustering of BARseq data. (A) UMAP
plotofthe gene expression of all cells. Colors and labels indicate H1 clusters.
(B)(C) Histograms of Slc17a7 and GadI counts per cellin excitatory and inhibitory
neurons. (D) UMAP plot of the gene expression of inhibitory neurons. Colors
andlabelsindicate H2 types of inhibitory neurons. (E) UMAP plot of the gene
expression of excitatory neurons. Colorsindicate slice numbers. The
coordinates of dotsin the UMAP plot are the same as those in Fig. 2c. (F) Cluster
correspondence between non-isocortical H3 types in BARseq (rows) and
single-cellRNAseq (columns)®. (G) The laminar distribution of H2 types (shown

ontheleft) and eachH3 type. H3 types are sorted by their median laminar
position. (H) The distribution of H3 typesin the dorsomedial portion of the
cortexonarepresentativeslice. The parent H2 types areindicatedineach plot.
(I)(J) Overlap betweenisocortical (I) and non-isocortical (J) H3 types and CCF-
defined areas. (K) Distributionacross CCF regions of matching LSET BARseq
H3typesand LSET scRNAseqcell types (Jaccardindex>0.1). Matched types are
shown next toeach other and share the same background color. The colors
indicate logoddsratios and circle sizeindicates the fraction of cellsamongall
LSET neurons.
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Extended DataFig.3|Mapping and comparative regional enrichment of blackcircles. Inthe mapping panel, all BARseq H3 types are shown but, for
BARseq and scRNAseqtypes. ForeachBARseqH2type, weshowthe mapping  readability, only scRNAseq types with significant associations are plotted.

of BARseqH3 types with reference scRNAseq type (left), the CCFenrichmentof  Incontrast, the CCF enrichmentis shown for allscRNAseq types belonging to
H3 types (top right), and the CCF enrichment of scRNAseq types (bottom left). subclassesthatare equivalenttothe BARseqH2type (e.g., the BARseq L4/51T
The mapping between BARseqand scRNAseq typesis quantifiedastheJaccard  typecorrespondstothe L4 1T and L4/51T subclassesinthe scRNAseq dataset).
index, significant associations (permutation test) are shown by outlining Colorsindicatelogoddsratios and circle sizeindicates the fraction of cells
dotswithblackcircles. Theregional enrichment is quantified as oddsratios, amongall cells of that H2 type.

significant deviations (hypergeometric test) are shown by outlining dots with
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Extended DataFig. 4 |1dentifyingshared spatial patterns of gene expression
using non-negative matrix factorization. (A) lllustrations of the definition of
‘spatial bins’ used in gene expression analyses (purple outlines) and ‘cubelets’
usedintheanalyses of H3 type distributions (blue outlines) in the pilot brain.
The definition of spatial bins aimed for equal cell numbers across bins within
aslice, whereas the definition of cubelets aimed for equal width on the surface
ofthe cortex. Dotsindicate cells. (B)(C) Variance in gene expression explained
by space compared to that explained by H2 types (B) or additional variance
explained by H3 types (C).In (B) dashed lines indicate threshold for p=0.05
(one-sided F-test withK-1and 21,197-K degrees of freedom, where K = 8 H2

types or K =540 spatial bins, Bonferroni corrected for multiple comparisons).
(D) The expression patterns of the indicated genes (Ctgf, Nnat, and Tenm3)
plotted on flatmaps of the cortexinall cells (left column) orineach H2 type
(center). The variations of gene expressionin each H2 type along the AP axis
and the ML axis are shown on theright. Line colorsindicate H2 types as shown
inthe center plots. Inthe upper left plot, the same map is color-coded and
labeled by cortical areas. (E) Spatial patterns of all 10 NMF factors. (F) Cumulative
variance explained by the indicated number of NMF factors. (G) Spearman
correlation between NMF factors and cortical areas. (H) Histogram of the
number of NMF factors thateach geneis associated with.
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Extended DataFig. 5| Expression patterns of top genes associated with
eachNMF spatial pattern. The left column shows the pattern associated with
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above-null association with the NMF pattern. Numbers in parentheses next
toH3 type names show the scaled Spearman correlation between the NMF
patternand the distribution pattern.
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Extended DataFig.7|Cortical areas aredistinctin H3 type composition.
(A) AUROC ofthe enrichment for top NMF genesineach H3 type (see
Supplementary Methods). (B) Overlap between the spatial patterns of NMF
module expression and the spatial distribution of H3 types. (C) The distribution
of LSETH3 typesin anexample coronalsection. Dashed linesindicate area
bordersin CCF. Magnified views of the dashed boxes are shown on the right.

(D) The positions of abrupt changes in the composition of H3 types were shuffled
randomly within eachslice, and the difference in the fractions of positions that
wereclosetoa CCF areaborder between the real dataand shuffled data was
calculated (see Supplementary Methods). Positive values indicate that abrupt
changes in the composition of H3 types were more likely to be associated with
areabordersinreal datathaninshuffled control. This shuffling was repeated
5,000 times, and the distribution of this differenceis plotted ina histogram.
(E)(F) Heatmaps showing the errorsin predicting cubelet locations using gene
expression (E) or H3 type composition (F). Arrows indicate the directions of
theerrorsand colorsindicate the magnitudes of the predictionerrors (in pm).

Thelengths of the arrows are proportional to the prediction error. (G) Box plots
summarizing the prediction performance shownin (E) and (F). N=1,651 cubelets
ineach column. Boxes show median and quartiles and whiskersindicate range
after excluding outliers. Dots indicate outliers. (H)(I) The composition of H3
typeswithineachindicated H2 types (x-axes) were used to predict the AP (H)
and ML (I) locations of acubelet. Foreach H2 type, we performed n =100 trials.
Ineachtrial, werandomly held 10% of data as test set to determine the fractions
ofvariance explained. Boxes show median and quartiles and whiskers indicate
range after excluding outliers. Dots indicate outliers. (J) The distribution of
modularity of shuffled data, or datawith1-2 cubelets of jitter in CCF registration
forn=200random tests. For shuffled data, we calculated modularity based
oneither the same clusters obtained fromreal data, or by the best clusters
obtained by Louvaincommunity detection on the shuffled data. Boxes show
medianand quartiles and whiskers indicate range after excluding outliers. Dots
indicate outliers.
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Extended DataFig.8|H3 types were consistentbetween the control brains
and the enucleated brains. (A) UMAP plots of the gene expression of neurons
fromalleight littermate brains. In each plot, neurons from theindicated brain
are colored and neurons fromall other brains are shown in gray. (B) UMAP plot
ofallexcitatory neurons from the pilot brain with excitatory neurons from
theeightlittermate brains projected onto the same UMAP coordinate space.
Merged dataontop left shows neurons from the pilot brainingray and all eight
littermate brainsinred. Top right shows only neurons from the pilot brainin
gray. Bottom row shows excitatory neurons from one pair of littermates.

(C) Correspondence between H3 types from the eight animals to H3 types
inthe pilot brain. Dot sizes and colors indicate Jaccard index. Dashed boxes
indicate the parent H2 types. (D)(E) Fractions of cells belonging to each cortical
Hltype (D) and H2 type (E) inall paired littermate brains. (F) Fractions of cells
belonging toeach cortical H3 typein all paired littermate brains. Inall fraction

plots, enucleated animals are represented by the darker color. (G) The AUROC
scores of anearest neighbor classifier that predicts the condition (control
orenucleated) ofaneuronintheindicated cortical areas (N = 4 biologically
independentlittermate pairs). Only areas with performance over 0.5 for at least
3outof4littermate pairs were shown. Boxes indicate quartiles and medians,
and whiskersindicate range. Dots indicate performance for each held-out
litter. (H) The AUROC scores of anearest neighbor classifier that predicts the
condition (control or enucleated) ofaneuronoftheindicated H3 typesinthe
indicated cortical areas (N = 4 biologically independent littermate pairs). Only
combinations with moderate performance (> 0.6) were shown. Boxes indicate
quartilesand medians, and whiskersindicate range. Dots indicate performance
foreach held-outlitter. (I) Same representative slices as shownin Fig. Se color
codedbyH2types. The dashed boxesindicate theareashowninFig.5e.Enu,
enucleated.
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Extended DataFig. 9| Enucleationbroadly shifted visual areaneurons to
H3typesinmedial and lateral areas. (A) Examplesliceimages for L6b/CT
A-L_2and L4/51TM-Linarepresentative littermate pair. (B) The laminar
distribution of H3 typesin VISp. H3 types that were enriched or depleted are
shownindarkcolors. (C) Cell type mapping (Jaccard index) of cortical H3 types
inthe enucleated and control littermates to cell typesin Cheng, etal.** with or
withoutdarkrearing. (D) The number of cells per cubelet for the top enriched
H3 typesinVISp. Colorsindicate cell countsineach cubelet. (E) AUROC of a

A
L-pM
P

nearest neighbor classifier assigning cubelets from control (left) or enucleated
(middle) brains to cubelets inreference control brains. The differencein
AUROCbetween the enucleated and the control brains are shown on the
right. Orange box highlights the relevant VIS areas (VISp, VISpm, and VISI).
(F) Magnified views of flatmaps showing the enriched or depleted fraction of
VISI (top) or VISpm (bottom) neighbors for each cubelet. The circled areas
indicate VISI, VISp, and VISpm. Enu, enucleated.
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Data collection  Data collection used micro-manager v1.4 and NIS-Elements AR (5.30.04) to drive microscope

Data analysis Custom R (v4.3.0), python(3.8 for cellpose and n2v, 3.9 for bardensr), and MATLAB (2023a) codes were used to process and analyze data.
These codes relied on open-source packages, including Bioconductor(v3.18), Cellpose(2.2), Bardensr, n2v(0.3.1), QuickNii(2.2), Visualign(0.9),
and FIJI (1.53t). Custom codes are provided on Mendeley Data (https://data.mendeley.com/datasets/8bhhk7c5n9/1 and https://
data.mendeley.com/datasets/5xfzch4kn8/1) and on Github (https://github.com/gillislab/barseq_analysis).
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Raw sequencing images are available from the Brain Image Library (https://api.brainimagelibrary.org/web/view?bildid=ace-dim-pad, https://
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api.brainimagelibrary.org/web/view?bildid=ace-dim-off, https://api.brainimagelibrary.org/web/view?bildid=ace-dim-odd, https://api.brainimagelibrary.org/web/
view?bildid=ace-cry-zip). Cell-level and rolony-level data are provided at Mendeley data (https://data.mendeley.com/datasets/8bhhk7c5n9/1 and https://
data.mendeley.com/datasets/5xfzcb4kn8/1). Gene panel selection and cell type assessment were based on public data available at https://data.nemoarchive.org/
biccn/lab/zeng/transcriptome/ and https://github.com/shekharlab/mouseVC. Allen CCF v3 with the 2017 annotation was downloaded from http://
ihelp.corp.alleninstitute.org/display/mouseconnectivity/API#API-InformaticsDataProcessing.
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Life sciences study design
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Sample size Sample sizes were chosen to include duplicates per sex per condition (8 animals), plus an additional brain for pilot study. We saw that the
changes associated with enucleation were much stronger than inter-individual variations across replicates/sexes, indicating that our sample
size was sufficient.

Data exclusions  Cells with low read counts and gene counts were excluded, because they would not be robustly clustered. For part of the analyses, coronal
sections from the most anterior and posterior end of the cortex were excluded. These sections were excluded because coronal cuts were not
perpendicular to the cortex due to the curvature of the cortex, and so we cannot reliably estimate cell type composition in cubelets drawn on
slices. This criteria was pre-established based on the anatomy of the cortex.

Replication The experiments were replicated on four littermate pairs, and the observed effects were consistent across all four replicates. The cell typing
results were consistent across all eight littermates and also between the littermates and the pilot brain.All attempted replicates were included
in the paper.

Randomization  Littermates were randomly assigned to either enucleated or sham condition.

Blinding Because the enucleated animals were easily distinguishable from control animals during both the experiment and data analysis, we did not
attempt to blind the experiment during both data collection and analysis. The systematic and comprehensive analysis we performed were not
prone to observer biases and thus did not require blinding. This approach conforms with standard practice for -omics studies.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
—
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

X XX []X XX
Oooxdod

Plants

Animals and other research organisms

>
Q
Y
(e
D
1®)
O
=
o
S
_
(D
1®)
o
=
5
(@]
wn
[
=
3
Q
<

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals C57BL/6J male and female 4-8 weeks old mice were used

Wild animals The study did not involve wild animals

Reporting on sex The pilot study involved a male mouse. For experiments in which one littermate each out of four pairs was enucleated, we matched
the sex of each littermate pair and analyzed data from four female and four male mice, two enucleated and two control mice of each
sex.

Field-collected samples  The study did not involve field-collected samples

Ethics oversight All animal procedures were carried out in accordance with the Institutional Animal Care and Use Committee at Cold Spring Harbor
Laboratory and John Hopkin's University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Seed stocks NA

Novel plant genotypes  NA

Authentication NA
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