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Existing methods for gene regulatory network (GRN) inference rely on
gene expression data alone or on lower resolution bulk data. Despite the
recentintegration of chromatin accessibility and RNA sequencing data,

learning complex mechanisms from limited independent data points still
presents a daunting challenge. Here we present LINGER (Lifelong neural
network for gene regulation), amachine-learning method to infer GRNs
from single-cell paired gene expression and chromatin accessibility data.
LINGER incorporates atlas-scale external bulk data across diverse cellular
contexts and prior knowledge of transcription factor motifs as amanifold
regularization. LINGER achieves a fourfold to sevenfold relative increase in
accuracy over existing methods and reveals acomplex regulatory landscape
of genome-wide association studies, enabling enhanced interpretation of
disease-associated variants and genes. Following the GRN inference from
reference single-cell multiome data, LINGER enables the estimation of
transcription factor activity solely from bulk or single-cell gene expression
data, leveraging the abundance of available gene expression data to identify
driver regulators from case-control studies.

GRNs"?are collections of molecular regulators that interact with each
other and determine gene activation and silencing in specific cellular
contexts. A comprehensive understanding of gene regulation is fun-
damental to explain how cells perform diverse functions, how cells
alter gene expression in response to different environments and how
noncoding genetic variants cause disease. GRNs are composed of tran-
scription factors (TFs) that bind DNA regulatory elements to activate
or repress the expression of target genes.

Inference of GRNs is a central problem?™, and there have been
many attempts to approach this issue** . Co-expression-based meth-
ods such as WGCNA™, ARACNe’ and GENIE3 (ref. 15) infer the TF-TG
trans-regulation from gene expression by capturing the TF-TG covari-
ation. Such networks have undirected edges, preventing distinction
of direction froma TF,-TF; edge. Moreover, co-expressions are inter-
preted as correlations rather than causal regulations'®. Genome-wide
measurements of chromatin accessibility, such as DNase-seq" and
assay for transposase-accessible chromatin sequencing (ATAC-seq)®,

locate REs, enabling TF-RE connections by motif matching and con-
necting REs to their nearby TGs". However, TF footprint approaches
cannot distinguish within-family TFs sharing motifs. To overcome this
limitation, we developed a statistical model, PECA?, to fit TG expres-
sionby TF expressionand RE accessibility across a diverse panel of cell
types. However, the problem still has not been fully resolved because
heterogeneity of cell typesin bulk datalimits the accuracy of inference.

The advent of single-cell sequencing technology has enabled
highly accurate regulatory analysis at the level of individual cell
types. Single-cell RNA sequencing (scRNA-seq) data enables cell
type-specific trans-regulation inference through co-expression anal-
ysis such as PIDC and SCENIC**°, Single-cell sequencing assay for
transposase-accessible chromatin (scATAC-seq) can be used to infer
trans-regulation, as in DeepTFni*'. Many methods integrate unpaired
scRNA-seq and scATAC-seq datato infer trans-regulation. Those meth-
ods, including IReNA*, SOMatic*, UnpairReg**, CoupledNMF***¢, DC3
(ref. 36) and others® link TFs to REs by motif matching and link REs
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Fig.1|Schematic overview of LINGER. a, Schematicillustration of LINGER: a
model predicting gene expression by TF expression and chromatin accessibility
using aneural network model. LINGER pre-trains on the atlas-scale external
bulk data and retains parameters by lifelong learning. The population-level
GRNis generated from the neural network using the Shapley value. b, Strategy
for constructing cell type-specific and cell-level GRNs. Cell type-specific and
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cell-level GRNs are inferred by an identical strategy, which combines consistent
information across all cells, including regulatory strength, motif binding affinity
and RE-TG distance, with context-specific information on gene expression and
chromatin accessibility. ¢, Downstream analyses enabled by LINGER-inferred
GRNs, including identifying complex regulatory landscape of GWAS traits and
driver regulator identification.

to TGs using the covariation of RE-TG or physical base pair distance.
Recently, scJoint®® was developed to transfer labels from scRNA-seq
to scATAC-seq data, which may enable improved cell GRN inference.
Despite extensive efforts, GRN inference accuracy has remained disap-
pointingly low, marginally exceeding random predictions™.

Recent advances in single-cell sequencing*® provide opportuni-
ties toaddress these challenges*, exemplified by SCENIC+*%. However,
three major challenges persist in GRN inference. First, learning such
a complex mechanism from limited data points remains a challenge.
Although single-cell data offers a large number of cells, most of them
arenotindependent. Second, incorporating prior knowledge such as
motif matchinginto non-linear models is challenging. Third, inferred
GRN accuracy assessed by experimental datais only marginally better
than random prediction®.

To overcome these challenges, we propose a method called LIN-
GER (Lifelong neural network for gene regulation). This research paper
contributesto the field of GRN inference in multiple ways. First, LINGER
uses lifelong learning, a previously defined concept* thatincorporates
large-scale external bulk data, mitigating the challenge of limited data

but extensive parameters. Second, LINGER integrates TF-RE motif
matching knowledge through manifold regularization, enabling prior
knowledge incorporationinto the model. Third, the accuracy of LINGER
represents a fourfold to sevenfold relative increase. Fourth, LINGER
enablesthe estimation of TF activity solely from gene expression data,
identifying driver regulators.

Results

LINGER: using bulk data to infer GRNs from single-cell
multiome data

LINGER is a computational framework designed to infer GRNs from
single-cell multiome data (Fig. 1and Methods). Using count matrices
of gene expression and chromatin accessibility along with cell type
annotationasinput, it provides a cell population GRN, cell type-specific
GRNs and cell-level GRNs. Each GRN contains three types of interac-
tions, namely, trans-regulation (TF-TG), cis-regulation (RE-TG) and
TF-binding (TF-RE). Note that TF-TF interactions areincluded in TF-TG
pairs but TF self-regulation, which is challenging to model without
additional data, isnot considered. LINGER is distinguished by its ability
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tointegrate the comprehensive gene regulatory profile from external
bulk data. This is achieved through lifelong machine learning, also
called continuous learning. The concept of lifelong learningis that the
knowledge learned in the past helps us learn new things with little data
oreffort*. Lifelong learning has been proven to leverage the knowledge
learned in previous tasks to learn the new task better*.

LINGER leverages external data to enhance the inference from
single-cell multiome data, incorporating three key steps: training on
external bulk data, refining on single-cell data and extracting regula-
toryinformation using interpretable artificial intelligence techniques.
In our approach, we use a neural network model to fit the expression
of TGs, taking as input TF expression and the accessibility of REs. The
second layer of the neural network model consists of weighted sums
of TFs and REs, forming regulatory modules guided by TF-RE motif
matching by incorporating manifold regularization. This leads to the
enrichment of TF motifs binding to REs that belong to the same regula-
torymodule. First, we pre-train using external bulk data obtained from
the ENCODE project*®, which contains hundreds of samples covering
diverse cellular contexts, referred to as BulkNN.

For refinement onsingle-cell data, we apply elastic weight consoli-
dation (EWC) loss, using bulk data parameters as a prior. The magnitude
of parameter deviationis determined by the Fisher information, which
reflects the sensitivity of the loss function to parameter changes. Inthe
Bayesian context, knowledge gained from the bulk data is the prior
distribution, forming our initial beliefs about the model parameters.
Asthe model trains on new single-cell data, the posterior distribution
isupdated, combining the prior knowledge with the likelihood of the
new data. EWCregularization encourages the posterior to remain close
to the prior, retaining knowledge while adapting, preventing excessive
changes and ensuring a more stable learning process®. After training
the neural network model on single-cell data, we infer the regulatory
strength of TF-TG and RE-TG interactions using the Shapley value,
which estimates the contribution of each feature for each gene. The
TF-RE binding strength is generated by the correlation of TF and RE
parameters learned in the second layer (Fig. 1a). LINGER then con-
structs the cell type-specific and cell-level GRNs based on the general
GRN and the cell type-specific profiles (Fig. 1b and Methods).

We will use independent datasets to validate the inference of
GRN and then perform several downstream analyses: first, identifica-
tion of the disease or trait-related cell type, TFs and GRN combining
genome-wide association studies (GWAS) data; second, constructing
regulon activity on external expression data and identifying driver
regulators as differentially active TFs (Fig. 1c).

LINGER improves the cellular population GRN inference
To assess the performance of LINGER, we used a public multiome data-
set of peripheral blood mononuclear cells (PBMCs) from 10x Genom-
ics (see Methods for details). To investigate whether a linear model is
adequate for modeling gene expression or whether a non-linear model
isnecessary, we conducted acomparative analysis betweentwo models.
The first model employs an elastic net to predict the expression of TG
by TFsand REs. The second model, single-cell neural network (scNN), is
athree-layer neural network model sharing LINGER’s architecture. We
assessed the gene expression prediction ability of the two models using
fivefold cross-validation. We found that scNN modeled gene expres-
sion better than elastic net, with —log;,P=572.09, especially for those
substantial proportions of genes that show negative Pearson’s corre-
lation coefficient (PCC) in elastic net predictions (-log,,? =1,060.17;
Fig.2a). Thisdemonstrates that the three-layer neural network model
scNN outperformsthe elastic net modelin predicting gene expression.
To show the utility and effectiveness of integrating external bulk
data, we compared LINGER to scNN, BulkNN and PCC. To evaluate
the performance of trans-regulatory strength, we collected puta-
tive targets of TFs from chromatin immunoprecipitation followed by
sequencing (ChIP-seq) data using asystematical standard (Methods)

and, in total, obtained 20 data sets in blood cells as ground truth*®
(Supplementary Table1). For eachground truth, we calculated the area
under the receiver operating characteristic curve (AUC) and the area
under the precision-recall curve (AUPR) ratio (see Methods) by sliding
the trans-regulatory predictions. Results show that scNN performs
better than PCC and BulkNN. Compared to other methods, LINGER
performs better, with a significantly higher AUC (Fig. 2b) and AUPR
ratio (Fig. 2c) across all ground truth data.

To validate the cis-regulatory inference of LINGER, we calculated
the consistency of the cis-regulatory coefficients with expression
quantitative traitloci (eQTL) studies that link genotype variants to their
TGs. We downloaded variant-gene links defined by eQTL in whole blood
from GTEx*’ and eQTLGen’® (Supplementary Table 2) as ground truth.
Asthedistance between RE and TGisimportant for the prediction, we
divided RE-TG pairs into different distance groups. LINGER achieved
ahigher AUCand AUPRratio than scNNin all different distance groups
in eQTLGen (Fig. 2d,e) as well as GTEx (Extended Data Fig. 1a,b). The
above results show that LINGER improves the cis-regulatory and
trans-regulatory strength inference by leveraging external data.

We next sought to investigate the dominant regulation for
genes; that is, whether a gene is mainly regulated by cis-regulation or
trans-regulation. To shed light on this question, we compared the aver-
age of cis-regulatory and trans-regulatory strength Shapley values by a
two-sided unpaired ¢-test and performed Bonferroni P value correction.
Our findings reveal that most genes exhibit no significant difference
in cis-regulation and trans-regulation dominance. Specifically, 4.37%
of genes are cis-regulation dominant, while 2.00% are trans-regulation
dominant (Fig. 2f). To discern evolutionary distinctions between
trans-dominantand cis-dominant genes, we compared their strength of
selection using pLI, whichis an estimate of the ‘probability of being loss
of functionintolerant™. We observed that the percentage of selectively
constrained genes with high pLI (>0.9) in the trans-dominant group was
approximately three times higher than thatin the cis-dominant group
(Fig. 2g). A previous study found that disease-associated genes from
GWAS wereenriched inselectively constrained genes, whileeQTL genes
were depleted in selectively constrained genes*’. These observations
highlight the importance of the trans-regulatory network in under-
standing complex diseases. Functional enrichment analysis™ shows
that the cis-regulatory dominant genes were significantly enriched
in 38 GTEx aging signatures (Supplementary Table 3), which aligns
with the conclusion that chromatin accessibility alterations occur in
age-related macular degeneration®.

To gainan understanding of parameter sensitivity, we systemati-
cally evaluated the effects of TF-RE motif matching, cis-REs transcrip-
tion start site (TSS) distance, activation function, number of nodes in
hiddenlayers and metacell-generating method on the scNN. Note that
the sigmoid activation function would not improve the gene expres-
sion prediction but would improve the GRN inference (Extended Data
Fig.2a). Using motif matching information by manifold regularization
loss properly by setting the weight willimprove the performance. Com-
paredto 0, weight 0.01improved the performance on100% (Extended
Data Fig. 2c) and 80% (Extended Data Fig. 2d) of ground truth data
based on the AUC and AUPR ratio, respectively. The performance of
weight 10 decreases compared to 0.01 (Extended Data Fig. 2c,d). To
verify the robustness of our method to alternative metacell-generation
approaches (see PBMC10x data’in Methods), we used metacells gener-
ated by the SEACells as a substitute for our original metacells. There
were no significant differences in the performance between SEACells
metacells and our original metacells (two-sided paired t-test, P= 0.89;
Extended DataFig. 2e). Using REs within1 Mbisthe best across 200 kb,
500 kb, 1Mb and 2 Mb (Extended Data Fig. 2f,g).

We evaluated LINGER's capability for lifelong learning by leverag-
ing additional datasources. We split the ENCODE datainto two batches
(ENCODEL, ENCODE2) and applied two rounds of pre-training, then
trained on PBMCs single-cell multiome data (ENCODEI+ENCODE2+sc).
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Fig. 2| LINGER improves the cellular population GRN inference. a, Correlation
between predicted and real gene expression, showing higher accuracy for scNN
than elastic net. The x axis represents the PCC of genes predicted by elastic net
and real gene expression across cells, while the y axis gives the PCC for scNN.
The points represent genes and the color of the points represents the density.
The color of distribution in b-e indicates the different methods: orange,
LINGER; gray, elastic net; dark green, scNN; blue, BulkNN; light blue, PCC. Null
hypothesis testing results in a t-statistic with an effect size of 53.46, df = 15,659,
-log,,P=572.09 and 95% confidence interval of [0.058, 0.063] from a two-sided
paired t-test. b, Boxplot of the performance metric AUC for the predicted trans-
regulatory strength across all ground truth data. The ground truth data for
band care putative targets of TFs from 20 ChIP-seq data points from blood cells
(n=20independent samples). PCC denotes Pearson’s correlation coefficient
between the chromatin accessibility of RE and the expression of TG. Note that
allboxplotsin this study present minima and maxima, the smallest and largest
value that is not considered an outlier; center, median; bounds of box, 25th

(Q1) to 75th (Q3) percentile; whiskers, 1.5 times the (Q3-Ql). In this study, we
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symbol when displaying significance levels. In detail, P=8.32 x 10~® for LINGER
and scNN, P=8.57 x10~ for LINGER and BulkNN and P=1.24 x 10~ for LINGER
and PCC. ¢, Boxplot of the performance metric AUPR ratio for the predicted
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In detail, P=3.49 x 10~ for LINGER and scNN, P=2.13 x 10~* for LINGER and
BulkNN and P=4.53 x10™*for LINGER and PCC. d, AUC for cis-regulatory strength
inferred by LINGER. The ground truth data for d and e are the variant-gene

links from eQTLGen. We divide RE-TG pairs into different groups based on the
distance of the RE from the TSS of TG. e, AUPR ratio for cis-regulatory strength.

f, Classification of the trans-dominant or cis-dominant gene. TFs contribute
more to predicting the expression of trans-dominant genes, while REs contribute
more to cis-dominant genes. g, Probability of trans-dominant and cis-dominant
beingloss-of-function (LoF)-intolerant genes. Points show estimated success
probability from binomial distribution, at 0.26 and 0.09 for trans-dominant

and cis-dominant, respectively.n =317 and n = 693 independent sample size

for trans-dominant and cis-dominant, respectively. Data are presented as

means +1.96 xs.d.

We compared the results with those obtained by using one batch of
ENCODE data as pre-training (ENCODEI1+sc). Extended Data Fig. 2h
shows that compared to single pre-training, the addition of the second
round of pre-training improved the performance of TF-TG inference
for 85.5% (17 out of 20) and 75% (15 out of 20) of ChIP-seq data based
onthe AUC and AUPR ratio, respectively. This validates LINGER’s capa-
bility for continuous refinement through incremental learning from
diverse datasets.

LINGER improves the cell type-specific GRN inference

We evaluated the cell type-specific GRN inference (Methods) of LINGER
in PBMCs sc-multiome data as well as an in-silico mixture of H1, B,
GM12878 and K562 cell lines from single-nucleus chromatin acces-
sibility and mRNA expression sequencing (SNARE-seq) data®. To
assess TF-RE binding prediction, we used ChIP-seq data as ground
truth, including 20 TFs from four cell types within the blood and 33
TFs from the H1 cell line*® (Supplementary Table 4). The putative
target of TF from the ChIP-seq data serves as ground truth for the
trans-regulatory potential. For the cis-regulatory potential, we incor-
porated promoter-capture Hi-C data of three primaryblood cell types

(Supplementary Table 5)*° and single-cell eQTL, including siximmune
celltypes as ground truth for PBMCs.

To assess the TF-RE binding potential, we compared our method
with TF-RE correlation (PCC) and motif binding affinity. For example, in
naive CD4 T cells, LINGER achieves an AUC of 0.92 and an AUPR ratio of
5.17 for ETS1, whichisanimprovement over PCC (AUC, 0.78; AUPR ratio,
2.71) and motif binding affinity (AUC, 0.70; AUPR ratio, 1.92) (Fig. 3a,e).
Forbindingsites of MYCin the H1cell line, LINGER outperforms PCCand
motifbindingaffinity-based predictions (Extended Data Fig.3a,b). Forall
20TFsin PBMCs, LINGER consistently exhibits the highest AUC and AUPR
ratios, and the overall distributions are significantly higher than others
in PBMCs (P < 8.72 x107%; Fig. 3b,c and Supplementary Table 6). LINGER
also outperforms other methods for H1 data (P< 6.68 x107%; Extended
DataFig.3c,d). Furthermore, we compared LINGER withastate-of-the-art
method, SCENIC+*, which predicts TF-RE pairs from multiomesingle-cell
data. Giventhat SCENIC+does not provide acontinuous score for all REs,
we used the F1score asameasure of accuracy. Fig. 3d shows that LINGER
performsbetter for all 20 TFs binding site predictions.

To assess the cis-regulatory potential, we compared LINGER with
four baseline methods, including distance-based methods, RE-TG
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Fig.3|Systematic benchmarking of cell type-specific TF-RE binding
potential and cis-regulatory potential performance. a,e, Receiver operating
characteristic curve and precision-recall curve of binding potential for ETS1
innaive CD4 T cells. The ground truth for aand e is the ChIP-seq data of ETSI
innaive CD4* T cells. The color in a-e represents the different methods used to
predict TF-RE regulation. Orange, LINGER; green, PCC between the expression
of TF and the chromatin accessibility of RE; blue, motif binding affinity of TF
toRE. b,c, Violin plot of the AUC and AUPR ratio values of binding potential
across diverse TFs and cell types. The ground truth is the ChIP-seq data for 20
TFsfrom different cell types in blood. The original datais in Supplementary
Table 6. The null hypothesis testing in b, comparing the AUC of LINGER with
PCCand binding, results in ¢-statistics (one-sided paired ¢-test) with effect size,
8.99; df,19; P=1.42 x107%,95% confidence intervals, [0.17, Inf]and effect size,
18.25; df,19; P=8.34 x10™; 95% confidence intervals, [0.17, Inf], respectively.
The null hypothesis testing in ¢, comparing the AUPR ratio of LINGER with PCC
andbinding, results in t-statistics (one-sided paired t-test) with effect size, 4.65;

df,19; P=8.72 x107;95% confidence intervals, [1.31, Inf1and effect size, 5.44,
df,19; P=1.49 x1075;95% confidence intervals, [1.51, Inf], respectively.d, The
performance metrics F1score of binding potential. Each point represents ground
truth data (n =20 independent samples). The P values for d, hand k are based on
one-sided paired t-tests. f,g, AUC and AUPR ratio of cis-regulatory potential in
naive CD4" cells. The ground truth for f-his promoter-capture Hi-C data. RE-TG
pairsare divided into six distance groups ranging from 0-5 kb to 100-200 kb.
PCCis calculated between the expression of TG and the chromatin accessibility
of RE. Distance denotes the decay function of the distance to the TSS. Random
denotes the uniform distribution from O to 1. h, F1score of cis-regulatoryin
naive CD4" cells for LINGER and SCENIC+ (n =9 independent samples). i,j, AUC
and AUPR ratio of cis-regulatory potential. The ground truth is eQTL data from
siximmune cell types. k, F1score of cis-regulatory potential in naive B cells. The
ground truthis eQTL data from naive B cells (n = 9 independent samples). This
figure corresponds to the PBMC data.

correlation (PCC), random predictions, and SCENIC+. We divided
RE-TG pairs of Hi-C datainto six distance groups ranging from 0-5 kb
t0100-200 kb. Innaive CD4 T cells, LINGER achieves AUC ranging from
0.66t00.70 (Fig. 3f) and AUPRratio ranging from 1.81to0 2.16 (Fig. 3g)
across all distance groups, while other methods are close torandom. In
other cell types, LINGER exhibits consistent superiority over the base-
linemethods (Extended Data Fig. 3e-h). AlleQTL pairs were considered
positive labels owing to the insufficient pairs available for divisioninto
distance groups. In all cell types, the AUC and AUPR ratio of LINGER
are higher than the baseline methods (Fig. 3i,j). We also compared our
method with SCENIC+, which outputs predicted RE-TG pairs without
importance scores. We selected the same number of top-ranking RE-
TG pairs and calculated the F1score using nine cutoffs corresponding
to quantiles ranging from the 10th to the 90th percentile. As aresult,
LINGER attains significantly higher F1 scores than SCENIC+ in all cell
types (Fig. 3h and Extended Data Fig. 3i,j) based on Hi-C data. Taking

eQTL as ground truth, the F1score of LINGER is significantly higher
than SCENIC+ (Fig. 3k) and other cell types (Extended Data Fig. 3k-o0).

To evaluate the accuracy of trans-regulatory potential, we chose
GENIE3 (ref. 15) and PIDC* for comparison based on the benchmark-
ing literature of GRN inference from single-cell data®’ that we chose in
previous work>® (see Methods). In addition, we compared LINGER with
PCCand SCENIC+. For STATIin classicalmonocytes, LINGER improves
the prediction performance, as evidenced by an AUC of 0.76 versus
0.57-0.59 and an AUPRratio of 2.60 versus 1.26-1.36 (Fig. 4a,b). A simi-
larimprovementis observed for CTCFin H1 (Extended DataFig. 3p,q).
The average AUPRratio across ground truth datasets for other methods
was 1.17-1.29, 0.17-0.29 units above random prediction, whereas LIN-
GER achieves1.25 unitsabove random prediction, indicating a fourfold
to sevenfold relative increase (Fig. 4d). Overall, LINGER consistently
performs better than other methods for all 20 TFs in PBMCs, with a
significantly higher AUC and AUPR ratio (P< 9.49 x107%; Fig. 4c,d and
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from ChIP-seq data for the corresponding cell types in PBMCs. ¢,d, Violin plot
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1,848. This figure corresponds to the PBMCs.
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Trans-regulatory potential

0

Supplementary Table 7). LINGER outperforms other competitors in
the Hl cell line (P <3.00 x 10°%; Extended Data Fig. 3r). Unlike GENIE3
and PIDC, which solely use scRNA-seq data, our method effectively
doubles the cell data by integrating both scRNA-seq and scATAC-seq.
For a fairer comparison, we removed pre-training and used only half
as many cells as input (scNN_half). Comparing to other competitors
showed that scNN_half continued to significantly outperformall other
methods (Extended Data Fig. 2b). We also evaluated cell type-specific
trans-regulatory potential to predict direct differentially expressed
genes (DEGs) under perturbation of the TF, using perturbation experi-
ment data as ground truth. We collected eight datasets for PBMCs
(Supplementary Table 8) from the KnockTF database®. Extended
Data Fig. 4a,b shows that LINGER outperforms all other methods
(P<3.72x107™).

The rationale for constructing asingle-cell-level GRN is the same
as a cell type-specific GRN, replacing the cell type-specific term with
the single-cell term (Methods). We show the result of trans-regulation,
taking RUNXI as an example. RUNX1 is critical for establishing defini-
tive hematopoiesis® and expresses at high levels in almost all PBMC
cell types (Fig. 4¢e,f). RUNXI regulates SPI1 in monocytes (classical,
non-classical and intermediate) and myeloid dendritic cells (Fig. 4g,i),
while regulates PRKCQ in CD56“™ natural killer cells, effector CD8

T cells, mucosal-associated invariant T cells, memory CD4 T cells, naive
CDA4 T cellsand naive CD8T cells (Fig. 4h,i). Thisexampleillustrates the
capability of LINGER to visualize gene regulation at the single-cell level.

LINGER reveals the regulatory landscape of GWAS traits
GWASs have identified thousands of disease variants, but the active
cells and functions involving variant-regulated genes remain largely
unknown®. Weintegrate GWAS summary statistics and cell type-specific
GRNtoidentify therelevant cell types, key TFs and sub-GRN (Methods).
We define a trait regulation score for TFs in each cell type, measuring
the enrichment of GWAS genes downstream of TFs. In trait-relevant
cell types, TFs with high trait regulation scores should be expressed
to perform their function. We identify the trait-relevant cell types by
assessing the concordance between TF expression and the trait regu-
lation score.

In our specific study on inflammatory bowel disease (IBD),
we collected the risk loci based on a GWAS meta-analysis of about
330,000 individuals from the NHGRI-EBI GWAS catalog® for study
GCST90225550%. Figure 5a shows that in classical monocytes, trait
regulation scores for the top-expressed TF are significantly higher
thanrandomly selected TFs (P=8.9 x 10", one-sided unpaired t-test),
while thereis no significant difference for non-relevant cell types such
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Fig. 5| Elucidating GWAS traits through LINGER-inferred regulatory
landscape. a, Distribution of the number of TGs for top expression TFs and
randomly selected TFsin classical monocytes (top) and CD56%™ NK cells
(bottom). The 100 top-expression TFsand 100 randomly selected TFs are used to
generate the distribution. b, Enrichment of IBD GWAS to cell types in PBMCs. The
color of the bubbles corresponds to the odds ratio of the number of TGs between
top expression and randomly selected TFs. The x axis is the —log,,(P value) from
the one-sided unpaired t-test for the number of TGs between top expression and
randomly selected TFs. ¢, Key IBD-associated regulators in classical monocytes.
Thexaxisis the z-score of the expression of TFs across all TFs. The y axis is the
regulationscore of TFs. The TFs inred are the top-ranked TFs according to

the summation of the expression level and regulation score. d, Enrichment of

RE

GWASIBD genes among STATI targets in classical monocytes. The violin plotis
generated by randomly choosing 1,000 TFs; the number of overlapping genes
for STATIis marked by a star. The different violin plots correspond to taking

the top 200-5,000 genes as the TG for each TF, respectively. e, Enrichment

of DEGs between inflamed biopsies and non-inflamed biopsies among STAT1
targetsin classical monocytes. The details are the same as in d. f, Sub-network of
IBD-relevant TFs from classical monocytes trans-regulatory network. The size of
the TF or TG nodes corresponds to their degree in the network. The color of TF
denotes the trait-relevant score, and the color of TG denotes the —log,,(P value)
of GWAS SNP assigned to the gene. g, Cis-regulatory network at locus around
SLC24A4.The interaction denotes significant RE-TG links, and we use the location
of the promoter to represent the gene.

as CD56%™ naturalkiller cells. The most relevant cell typesin PBMCs are
monocytes and myeloid dendritic cells (Fig. 5b). These findings align
with previous studies linking monocytes to the pathogenesis of IBD®*,

We next identified key TFs by the sum of the expression level and
trait regulation score. Figure 5c lists the top eight candidate TFs in
classical monocytes. These TFs have been previously reported to be
associated with IBD in the literature. FOS canincrease therisk of recur-
rence of IBD®’; one variant identified in the IBD cohort is located at
the exon of ETV6; IRF1 and ETV6 are key TFs with activity differences
in IBD%; genes FOS, FOSB and JUN encode potent mediators of IBD®;
CUXI is induced in IBD®’; and STATI epigenetically contribute to the
pathogenesis of IBD"°.

Toinvestigate the downstream targets of key TFs, we chose STAT1
as an example. Among the top 200 TGs regulated by STATI in clas-
sical monocytes, 67 of them overlap with the GWAS genes, which
is statistically significant with a P value of less than 0.01 based on a

background distribution from a random selection of TFs (one-sided
bootstrap hypothesis testing). The numbers of overlapped TGs are all
significant for the top 500,1,000,2,000 and 5,000 TGs (Fig. 5d). Apart
from GWAS-relevant genes, we collected the DEGs between inflamed
biopsies and non-inflamed biopsies” and we found that these DEGs
significantly overlapped with the top-ranked TGs of STATI (one-sided
bootstrap hypothesis testing; Fig. 5e). The lack of significant overlap
between DEGs and GWAS genes (P = 0.15, two-sided Fisher’s exact test)
but thesignificant overlap of both DEGs and GWAS with the top-ranked
TGs of STATI indicates the robustness and unbiased nature of our
method.

Finally, we extracted the sub-network of the eight candidate TFs
from the classical monocyte trans-regulatory network for IBD (Fig. 5f).
Wealso observed that the cis-regulatory network of SLC24A4 (Fig. 5g),
46 kb from arisk single nucleotide polymorphism (SNP) rs11626366
(P=7.4x107),isspecifically densein the IBD-relevant cell types, which

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-024-02182-7

a FOXNI b FOXN1 d
290 > * Oh 8h z-score
c 2 010 F— R
5 05
3 21 ® Regulon** FOXK2 =~ g
o 5 Activity*** NR4A1 -0.5
53 = 0.08 A
W 20 5 Expression Foxk2 -1.5
| & ) I NR4AT | 5
1.9 ‘ ! 0.06 ‘ ! -
< <
& v@\/ &° V@V
S S
& & & &
(4 <
& & NS &
3B 3
c 1.00 FOXNT regulon activity e
> Low — — —— wProtein pProtein Time
] 17— RN R}
3 075 High I B K oh
2 NRAAT . 05 | 05 2h
g 0.50 - o] o] 8h
= FOXKI 05 05 6h
< 0251 NR4AT -1 -1
5 P=0.036 T Q «© Q @ o « o Biologicalreplicates
1%} . c £ £ £ £ £ £ £
o1, : : : © o N o ©® ® © © a
0 50 100 150 b

Time (months)

Fig. 6 | Driver regulator identification. a, Violin plot of FOXNI expression across
healthy donors (n =38 independent samples) and patients with AML (n =26
independent samples), respectively. There is no significant difference in the
mean expression (two-sided unpaired ¢-test). b, Violin plot of regulon activity

of FOXN1 across healthy donors (n = 38 independent samples) and patients with
AML (n=26independent samples), respectively (two-sided unpaired ¢-test,
P=0.035).c, AML survival by the regulon activity of FOXNI (P value is from a
two-sided log-rank test). d, The heatmap of regulon activity and gene expression

inresponse to TCR stimulation at 0 hand 8 h. Two-sided unpaired t-test for the
difference in regulon activity, P= 0.0057 and P= 0.00081 for FOXKI and NR4A1,
respectively; the P value for gene expression is >0.05. Heatmap is scaled by row.
e, Heatmap of whole protein (wProtein) and phosphoproteomics (pProtein)
expression inresponse to TCR stimulationat O h,2 h,8 hand 16 h. There are

two biological replicates, represented by a and b. The wProtein and pProtein
expression of FOXK1and NR4A1is higher at 8 hthanat O h. The heatmap is scaled
by row.

shows the complex regulatory landscape of disease genes across dif-
ferent cell types.

Identify driver regulators based on transcription profiles
Researchers often identify DEGs between cases and controls using bulk
or single-cell expression data, but the underlying regulatory drivers
remain elusive. TF activity, focusing on the DNA-binding component of
TF proteins, isamorereliable metric than mRNA for identifying driver
regulators. Onefeasible approachis to estimate TF activity based on the
expression patterns of downstream TGs, which necessitates the availa-
bility of an accurate GRN. Assuming that the GRN structure is consistent
for the same cell type acrossindividuals, we employed LINGER-inferred
GRNs from single-cell multiome data of asingle individual to estimate
the TF activity of other individuals using gene expression data alone
from the same cell type. By comparing TF activity between cases and
controls, weidentified driver regulators. Thisapproachis valuable, as
itleverages limited single-cell multiome data to estimate TF activity in
multiple individuals using only gene expression data (see Methods).
We present two illustrative examples showcasing its utility.

Example 1: We collected the bulk gene expression data from
26 patients with acute myeloid leukemia (AML) and 38 healthy
donors’. We calculated the TF activity for these samples based on
the LINGER-inferred cell population GRN from PBMCs and found that
FOXNI1 is significantly less active in patients with AML than in healthy
donors, anditis not differentially expressed (Fig. 6a,b). Inaddition, we
calculated the TF activity of the transcriptome profile (bulk RNA-seq
data) of 671 individuals with AML” and performed survival analysis,
which indicated that individuals with high FOXNI activity level tend
to have ahigher survival probability (Fig. 6¢). Furthermore, FOXNI has
beenreported as a tumor suppressor’*.

Example 2: We also present an example of the naive CD4" T cell
responseupon T cell receptor (TCR) stimulation”, whichinduces T cell
differentiationinto various effector cellsand activates T lymphocytes.

We calculated the TF activity based on the GRN of naive CD4" T cellsand
identified differentially active regulators in response to TCR stimula-
tion at 8 h versus O h. FOXK2 and NR4A1 are activated at 8 h based on
regulonactivity (Fig. 6d), whichis consistent with the whole proteomics
and phosphoproteomics data (Fig. 6e)”. Other studies have also shown
that FOXK2 affects the activation of T lymphocytes’”’® and revealed
the essential roles of NR4A1 in regulatory T cell differentiation”®,
suggesting that the identified TFs have important roles in naive CD4*
T cell response upon TCR stimulation. However, FOXK2 and NR4A1
show nosignificant differencesin expressionat 8 hversus 0 h (Fig. 6d).

Insilico perturbation

We performed in silico perturbation to predict the gene expression
after knocking out TFs. To do so, we changed the expression of anindi-
vidual TF or combinations of TFs to zero and used the predicted gene
expression as the in silico perturbation gene expression. We used the
expression difference before and after in silico perturbation to infer
the TG. To assess the performance of the prediction, we collected per-
turbation datafor eight TFsin blood cells from the KnockTF* database
(Supplementary Table 8) as ground truth. We performed the in silico
individual TF perturbation of the eight TFs using LINGER. As a compari-
son, we performed identical computational perturbation experiments
using the CellOracle® and SCENIC+* methods. The results, shown in
Extended Data Fig. 4c,d, demonstrate that LINGER is more accurate
than the alternative approaches (P <3.72x107*).

To assess LINGER’s capability to infer differentiation behavior,
we leveraged CellOracle® as a downstream analytical tool. We used
the LINGER-inferred GRN as aninput to CellOracle. This allowed us to
investigate the capacity of LINGER-derived networks to recapitulate
differentiation responses. Examining bone marrow mononuclear
cell data®, which contains progenitor populations, we performed an
insilico knockout of GATAI, aknown key regulator of erythroid and
megakaryocytic differentiation®>. CellOracle predictions based on
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the LINGER GRN showed that GATAI knockout shifted proerythro-
blasts to amegakaryocytic or erythroid progenitor state (Extended
DataFig.4e), consistent with the functional role of GATAI in inhibit-
ing erythroblast maturation. These results demonstrate that LINGER
can not only predict gene expression under perturbation but also
enable downstream characterizations of differentiation trajectories
through integration with complementary analytical frameworks
like CellOracle.

Conclusions and discussions

LINGER is an neural network-based method that infers GRNs from
paired single-cell multiomic data by incorporating bulk datasets and
knowledge of TF-RE motif matching. Compared to existing tools,
LINGER achieves substantially higher GRN inference accuracy. A key
innovation is lifelong machine learning to leverage diverse cellular
contexts, continually updating the model as new data emerge. This
addresses historic challenges from limited single-cell datasets and vast
parameter spaces hindering complex model fitting. LINGERs lifelong
learning approach has the advantage of pre-training on bulk collections,
allowing users to easily retrain the model for their own studies while
capitalizing on publicly available resources without direct access. Tra-
ditionally, GRNinference performance is assessed by gene expression
prediction. However, the use of lifelong learning to leverage external
data does not lead to improved gene expression prediction but does
improve the GRN inference. This finding challenges the traditional
strategy of evaluating GRN inference solely based on gene expression
prediction and highlights the importance of considering the overall
network structure and regulatory interactions.

The lifelong learning mechanism will encourage the model to
retain prior knowledge from the bulk data when adapting to the new
single-cell data. Itis atradeoff between retaining prior knowledge and
fitting new data. The flexibility of the variation in prior knowledge
is not constrained when fitting the new data. The extent to which
the final result deviates from the prior knowledge depends on the
loss incurred in fitting the new data. LINGER will learn this tradeoff
automatically to obtain a maximized usage of the information from
both datasets.

Online content
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Methods

GRN inference by lifelong learning

LINGERis acomputational framework to infer GRNs—pairwise regula-
tionamong TGs, REs and TFs—from single-cell multiome data. Overall,
LINGER predicts gene expression by the TF expression and chromatin
accessibility of REs based on neural network models. The contribu-
tion of each feature is estimated by the Shapley value of the neural
network models, enabling the inference of the GRNs. To capture key
information from the majority of tissue lineages, LINGER uses lifelong
machinelearning (continuous learning). Moreover, LINGER integrates
motif binding data by incorporating a manifold regularization into
theloss function.

The inputs for full training of LINGER are external bulk and
single-cell paired gene expression and chromatin accessibility data.
However, we provided a bulk data pre-trained LINGER model so that
users can retrain it for their own single-cell data without accessing
external bulk data. We collected paired bulk data—gene expression
profiles and chromatin accessibility matrices—from201samples from
diverse cellular contexts®* from the ENCODE project*®. Single-cell data
are raw count matrices of multiome single-cell data (gene counts for
RNA-seq and RE counts for ATAC-seq). LINGER trains individual mod-
elsfor each gene using a neural network architecture thatincludes an
input layer and two fully connected hidden layers. The input layer has
dimensions equal to the number of features, containing all TFs and
REs within 1 Mb of the TSS for the gene to be predicted. The first hid-
den layer has 64 neurons with rectified linear unit activation that can
captureregulatory modules, each of which contains multiple TFs and
REs. These regulatory modules are characterized by enriched motifs
of the TFs on the corresponding REs. The second hidden layer has 16
neurons with rectified linear unit activation. The output layer is asingle
neuron, which outputs areal value for gene expression prediction.

We first construct neural network models based on bulk data,
usingthe same architecture described above. We extract the TF expres-
sion matrix Ey € RV~ from the bulk gene expression matrix
E € RMroxNy, with Nygrepresenting the number of genes, Nysrepresenting
the number of TFs and N, representing the number of tissues. The loss
function consists of mean squared error (MSE) and L1 regularization,
which, for the i geneis:

R Ny 2
= <) = i 1 A E i
Lo (Eres 0 £:.6)) = 5 30 (F(Ere) s 006 ) = Ein) +A016))),
n=1

where 0 € RN represents the chromatin accessibility matrix, with
N REs within 1Mb of the TSS of the i* gene, and f((ETF)_,,,, 0%, Bg)) is
the predicted gene expression from the neural network of sample n.
The neural network is parametrized by a set of weights and biases,
collectively denoted by 0;:). The weight A, is atuning parameter.

Theloss function of LINGER is composed of MSE, L1regularization,
manifold regularization and EWC loss: Lynger =Ly
+2L01 + 3L aplace + AaLpwe Llaplace FEPTEsents the manifold regulariza-
tionbecause aLaplacian matrixis used to generate thisregularization
term. Theloss function terms correspond to gene i, and for simplicity,
we omitsubscripts (i) for the chromatinaccessibility matrix (0), param-
eters for the bulk model (6,) and parameters for LINGER (6,).

(1) MSE

Z

Lwise (Eve. O.E;.,0)) = NL C (f((ETF).,n’O-,n’el) - Ein>2
1

Here, £y € RM#N« represents the TF expression matrix from the
single-cell RNA-seq data, consisting of Ny cells; O € RMxNe repre-
sents the RE chromatin accessibility matrix of the single-cell
ATAC-seqdata; F € RMe*N«represents the expression of the genes
across cells; and 6, represents the parameters in the neural net-

work. We use metacells to train the models; therefore, N is the
number of cells from metacell data.

(2) L1 regularization

L1(Ere, O,E; ., 0) = |64]l,

(3) Laplacian loss (manifold regularization) , A
We generate the adjacency matrix as: B* € R(Mr Vi) (NTF + Nf{é)

where By and By, . fepresent the binding affinity of the TF

k and the RE j, which s elaborated in the following sections.
[Norm & r(Mre+Nie)x(Mr+M3) i the normalized Laplacian matrix
based on the adjacency matrix.

r
Laplace (Ete. O.E;..6) = tr ((951)) LNO""BED)

where 6" e R(Mr+N )64 i the parameter matrix of the first

hidden layer, which can capture the densely connected TF-RE
modules.

(4)EWCloss. EWC constrains the parameters of the first layer to
stay inaregion of 6( ), whichis previously learned from the bulk
data®. Todo so, EWC uses MSE between the parameters 6" and
6", weighted by the Fisher information, a metric of how
lmportant the parameter is, allowing the model to protect the
performance, both for single-cell data and bulk data®.

Nrp+Nge 64

Lewe (Er. 0.E;..0) = m z Z (67),(8),,

where F is the fisher information matrix, which is detailed
below, and 6" e R +0x64 is the parameter matrix of the first
hidden layer.

To constructanormalized Laplacian matrix, we first generate the
TF-RE binding affinity matrix for all REs from the single-cell ATAC-seq
data. We extract the REs1Mb from the TSS for the gene to be predicted.
Let Nf{ébe the number ofthese REsand B € RV+*M¢ be the TF-RE binding
affinity matrix, where By, represents the binding affinity for the TF «
and RE j. We construct a graph, taking TFs as the first Ny nodes, REs
as the remaining N nodes and binding affinity as the edge weight
between TF and RE. The edge weights of TF-TF and RE-RE are set to
zero. Thenthe adjacency matrix B* € RN <(Vir+Mie) i dfefined as:

Blt,/' =
Bijng k€{1,2,...,

Nie}oj € (Nye + 1, Nrg +2, ..., Nrg + Nl

Bisn, k€ {NTF + LN +2, . Npg + N,gg}, je{l2, ..., N}

0, else

The Fisher information matrix is calculated based on the neural
network trained on bulk data:

GRN inference by Shapley value

The Shapley value measures the contribution of features in a
machine-learning model and is widely used in algorithms such as deep
learning, graphical models and reinforcement learning®. We use the
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average of absolute Shapley values across samples to infer the regula-
tion strength of TF and RE to TGs, generating the RE-TG cis-regulatory
strengthand the TF-TG trans-regulatory strength. Let §; represent the
cis-regulatory strength of RE j and TG i, and y,; represent the
trans-regulatory strength. To generate the TF-RE binding strength, we
use the weights from the input layer (TFs and REs) to all nodes in the
second layer of the neural network model to embed the TF or RE. The
TF-REbindingstrengthis calculated by the PCC between the TF and RE
based on this embedding. a;; represents the TF-RE binding strength.

Constructing cell type-specific GRNs
The TF-RE regulatory potential for a certain cell type is given by:

TFBy = cksjk(ETF)koj(akj +By)

where TFB; is the TF-RE regulation potential of TF k and RE j; sy isan
importance score of TF k in the cell type to measure the preference of
TFfor activating cell type-specificopen chromatin regions (which will
bedescribed in‘TF importance score’ below); Cy;is the PCCof TF k and
RE j; 0; is the average chromatin accessibility across cells in the cell
type; By is the binding affinity between TF k and RE j; and a; is the
TF-RE binding strength.
The RE-TG cis-regulatory potential is defined as:

dij

CRP; = B;0;Eie

where CRP; is the cis-regulatory potential of TG i and RE j; g; is the
cis-regulatory strength of RE jand TGi; O;isthe average chromatinacces-
sibility; F;istheaverage gene expressionacross cellsinthe cell type; d;;is
thedistance between genomiclocations of TGiandRE j;and d,is afixed
value used to scale the distance, whichis set to 25,000 in this paper.

The TF-TG trans-regulatory potential is defined as the cumulative
effect of corresponding REs onthe TG:

TRPy; = yi; », TFB;CRP;
JeSi
where y,; is the TF-TG trans-regulatory strength of TF k and TG i; S; is
theset of REswithin1 Mb from the TSS for TG i; CRP;is the cis-regulatory
potential of TG i and RE j; and TFB,; is the TF-RE regulation potential
of TF kand RE .

Constructing cell-level GRNs

Cell-level GRNs are inferred by integrating information consistent
acrossall cells, such asregulatory strength, binding affinity and RE-TG
distance, with cell-level information, such as gene expression and
chromatin accessibility. This approach is similar to inferring cell
type-specific GRNs, with the key difference that cell-level GRNs use
cell-level TF expression £, chromatinaccessibility O and gene expres-
sion £ rather than cell type-averaged data. This allows us to infer the
network for each individual cell based on its specific characteristics
rather than grouping cellsinto predefined types.

TFimportance score

To systematically identify TFs playing a pivotal role in controlling the
chromatin accessibility of cell type, we introduce a TF importance
score. The scoreis designed to measure the preference of TFs for acti-
vating cell type-specific REs. The input is multiome single-cell data
with known cell type annotations. There are four steps to generate the
TFimportance score:

(1) Motif enrichment. We perform the motif enrichment analysis®
to identify the motifs significantly enriched in the binding sites
of the top 5,000 cell type-specific REs. We use the Pvalue to
measure the significant level of motif enrichment.

(2) TF-RE correlation. To avoid dropouts in single-cell data, we
recover the original count matrix by an average of the observed
count of nearby cells. We calculate PCC between the TF
expression and cell type-specific RE chromatin accessibility,
with r; representing the PCC of the TF k and the RE ;. To
mitigate the bias in the distribution of TF expression and REs
chromatin accessibility so that the PCC is comparable across
different TF-RE pairs, we permute the cell barcode in the gene
expression data and then calculate, generating a background
PCC distribution for each TF-RE pair. We generate a z-score
for ry;,

g — Hig
okj

ij—

where y;and o2 are the mean and the variance of the back-
ground PCC distribution between TF, and RE;.

(3) The co-activity score of the TF-motif pair. To pair TFs with their
motifs, we match 713 TFs and 1,331 motifs, yielding 8,793
TF-motif pairs®*. Let (k, m) denote the TF-motif pair of TF k and
motif m. We then calculate a co-activity score for a TF-motif pair
for (k,m), defined as the average z-score across cell type-specific
REs with at least one motif binding site. That is
zC0 — 1

m = 3 ZjelRe ), 24 where {RE},, is the set of REs with the m-th
motif binding; and N, = |{RE},,|is the number of REs in {RE},,.
(4) TF importance score. The score of the TF-motif pair, (k, m),
isgiven by:

z&"’m), ifp, <0.05

Stkm) =

NA, otherwise

where p,,is the P value of the mth motif from the motif-en-
richment analysis and s ,, is the importance score of the
TF-motif pair (k,m). The TF importance score for the TF k is
the average TF-motif pair TF importance score across motifs,
omitting NA:

E{mb(k,m)#NA} s(k,m)i lf‘N(k,m) >0

1
Nigom) Zn
Sk =
o,

where Ny m) = |imisy ., # NA}|is the number of the TF-motif pair
of the TF k, whose CECl score is not NA.

if Ngm) = O

TF-RE binding affinity matrix

We download 713 TF position weight matrices for the known motifs
from GitHub page of PECA2%, which is collected from widely used
databasesincludingJASPAR, TRANSFAC, UniPROBE and Taipale. Given
alist of REs, we calculate the binding affinity score for each TF by motif
scan using Homer®, as a quantitative measure of the strength of the
interaction between TF and RE%.

Identify motif-binding REs
Weidentify the REs with motif binding by motif scan using Homer®®.

ChIP-seq-based validation
Given that the choice of TFs for benchmarking may affect the final
results, we use the following standard to collect all ChIP-seq data from
the Cistrome database that satisfies the following criteria.

The procedure for choosing ChIP-seq datafor PBMCis as follows.

« We downloaded all human TF ChIP-seq information, including
11,349 datasets.

« Wefiltered samples that did not pass quality control, and 4,657
datasets remained.
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» We chose samples in blood tissue, and 609 datasets remained.

« Wefiltered the cell line data that is not consistent with PBMC cell
types, and 63 datasets remained.

« We chose the TF expressed in single-cell data and with known
motifs available, and 39 datasets remained.

« We chose the experiments that were done in one of the 14 cell
types detected in the PBMC data, and 20 datasets remained.

The procedure for choosing ChIP-seq data for the H1 cell line is
asfollows:

» We downloaded all human TF ChIP-seq information, including
11,349 datasets.

« Wefiltered samples that did not pass quality control, and 4,657
datasets remained.

« We chose the Hl cell line, and 42 datasets remained.

» We chose the TF expressed in single-cell data and with known
motifs available, and 33 datasets remained.

Perturbation-based validation
The criteria for choosing ground truth from the KnockTF database is
similar to ChIP-seq data.
The procedure for choosing knockdown data for PBMC is as
follows.
» Weselected the molecular type as ‘TF’ and chose the ‘Periph-
eral_blood’ tissue type, with 21 cases remaining.
» There are 11 datasets included in the PBMCs cell type in the
single-cell data.
« We chose the TF expressed in single-cell data and with known
motifs available, and 8 datasets remained.

PBMC10x data

We download the PBMC 10K data from the 10x Genomics website
(https://support.10xgenomics.com/single-cell-multiome-atac-gex/
datasets). Note thatit contains 11,909 cells, and the granulocytes were
removed by cell sorting of this dataset. We use the filtered cells by
features matrix fromthe output of 10x Genomics software Cell Ranger
ARC asinput and perform the downstream analysis. First, we perform
weighted nearest neighbor analysis in Seurat (version 4.0)¥, and it
removes 1,497 cells. We also remove the cells that do not have surrogate
ground truth and itresultsin 9,543 cells. We generate metacells databy
randomly selecting the square root of the number of cells in each cell
type and averaging the expression levels and chromatin accessibility
of the 100 nearest cells to produce the gene expression and chroma-
tin accessibility values of the selected cells. The metacells data were
directly input into LINGER for analysis.

AUPRratio

To measure the accuracy of a predictor, we defined the AUPR ratio as
the ratio of the AUPR of a method to that of arandom predictor. For a
random predictor, the AUPR equals the fraction of positive samplesin
the dataset. The AUPRratiois defined as AUPR%, representing
thefold change of the accuracy of apredictor comparedeto therandom
prediction.

LINGER reveals the regulatory landscape of GWAS traits

We propose amethod to integrate GWAS summary statistics dataand
cell type-specific GRNs to identify the relevant cell types, key TFsand
sub-GRNs responsible for GWAS variants. To identify relevant cell
types, we first project the risk SNP identified from GWAS summary
datatoagene. Wethenlink the gene withinthe 200 kb region center-
ing on the SNP and assign the most significant P value of linked SNPs
toeachgene.Inthisstudy, the trait-related genes are defined as those
with P<0.01 after multiple testing adjustments. We then calculate
a trait regulation score for each TF in each cell type, measuring the
enrichment of GWAS genes downstream of the TF based on the cell

type-specific GRN. We choose 1,000 top-ranked genes according
to the trans-regulation as the TG of each TF and count the number
of overlapping genes with trait-related genes. The enrichment of
cell types to the GWAS traits is measured by a ¢-test comparing the
number of overlapping genes between the 100 top-expressed and
100 randomly chosen TFs.

To identify key TFs of GWAS traits, we combine the trait regula-
tionscore and the gene expression level of TFsineach cell type. The
trait regulation score is the z-score of the number of overlapping
genesofaTF across all TFs. The expression level is also transformed
to a z-score based on the gene expression. The final importance of
key TFsis the summation of the expression level and trait regulation
score.

Identify driver regulators based on transcription profiles

To measure the activity of each TF on the independent transcrip-
tional profiles, we first constructed a TG set for each TF based on
the corresponding GRN. We perform quantile normalization to the
trans-regulation score of each gene across all TFs. We then rank the
genes for each TF and choose the top 1,000 genes as the target. Next,
we use the R package AUCell”’ to calculate whether the TGs are enriched
within the expressed genes for each sample, which defines the TF
activity.

Benchmark the trans-regulatory potential

We compare LINGER’s performance of the trans-regulation prediction
using PCC, SCENIC+, GENIE3 and PIDC as competitors to LINGER. Owing
to the time-consuming nature of PIDC’s mutual information-based
algorithm, we used the 5,000 most variable genes asinput. As aresult,
thereare 9 TFs and 14 TFs in ground truth data left for PBMCs and the
Hlcellline, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The PBMC data used during this study was downloaded from the 10x
Genomics website (https://s3-us-west-2.amazonaws.com/10x.files/
samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulo-
cyte sorted_10k fastqs.tar)*°. SNARE-seq was downloaded from NCBI
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE126074 (ref. 55).

Code availability

The software is available at GitHub®® (https://github.com/Durenlab/
LINGER) and the Zenodo repository under the GPLv3 license®. We used
Python andR for this study.

References

84. Duren, Z., Chen, X., Xin, J., Wang, Y. & Wong, W. H. Time course
regulatory analysis based on paired expression and chromatin
accessibility data. Genome Res. 30, 622-634 (2020).

85. Rozemberczki, B. et al. The Shapley value in machine
learning. Preprint at https://doi.org/10.48550/arXiv.2202.05594
(2022).

86. Heingz, S. et al. Simple combinations of lineage-determining
transcription factors prime cis-regulatory elements required
for macrophage and B cell identities. Mol. Cell 38, 576-589
(2010).

87. Hao, Y. et al. Integrated analysis of multimodal single-cell data.
Cell184, 3573-3587 (2021).

88. QiuyueY. & Duren Z. Predicting gene regulatory networks from
single cell multiome data using atlas-scale external data. GitHub
https://github.com/Durenlab/LINGER (2022).

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_fastqs.tar
https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_fastqs.tar
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074
https://github.com/Durenlab/LINGER
https://github.com/Durenlab/LINGER
https://doi.org/10.48550/arXiv.2202.05594
https://github.com/Durenlab/LINGER

Article

https://doi.org/10.1038/s41587-024-02182-7

89. Qiuyue Y. & Duren Z. Predicting gene regulatory networks from
single cell multiome data using atlas-scale external data. Zendo
https://zenodo.org/records/10639041 (2024).

Acknowledgements

The authors are supported by National Institutes of Health grants P20
GM139769 and R35 GM150513. The language in the text has been
polished by GPT-3.5 and Grammarly.

Author contributions

Z.D. conceived the LINGER method. Z.D. and QJ. designed the
analytical approach. QY. performed the data analysis. QY. wrote the
software. Q.. and Z.D. wrote, revised and contributed to the final
manuscript. The authors read and approved the final manuscript.

Competinginterests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41587-024-02182-7.

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41587-
024-02182-7.

Correspondence and requests for materials should be addressed to
Zhana Duren.

Peer review information Nature Biotechnology thanks Marc Sturrock,
Ricard Argelaguet and Olivier Gandrillon for their contribution to the
peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Biotechnology


http://www.nature.com/naturebiotechnology
https://zenodo.org/records/10639041
https://doi.org/10.1038/s41587-024-02182-7
https://doi.org/10.1038/s41587-024-02182-7
https://doi.org/10.1038/s41587-024-02182-7
https://doi.org/10.1038/s41587-024-02182-7
http://www.nature.com/reprints

https://doi.org/10.1038/s41587-024-02182-7

Article
A ® oLinger o © B Linger *
| escNN * °
0.59 ! . o 31 eseNN * |,
° ® *
Qos7{ ® 2 1.2
2 . £le oo
° o * *
- ° ¢
0.55 ° 2114 % o o
os3 1.04
- & o N T T T T T T
REPAIE R A A S
o5 ,\Q (19 Q/ Q/ Q °3/ Q/ Q/ /'\ fl/
& $ I SR
N N
TSS distance TSS distance

Extended Data Fig. 1| Assessing the performance of cis-regulatory strength inferred by LINGER taking eQTL data for GTEx as ground truth. A. AUC for
cis-regulatory strength inferred by LINGER. The ground truth for A and B is the variant-gene links from GTEx. We divide RE-TG pairs into different groups based on the

distance of RE and the TSS of TG. B. AUPR ratio for cis-regulatory strength.
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Extended Data Fig. 2 | Parameter sensitivity. A. Sensitivity of neural network
structure and active function. B. Violin plot of AUC and AUPR ratio values of
trans-regulatory potential performance across diverse TFs and cell types (n=20
independent sample). One-sided paired t-test resultin -log,,P-value10.73, 7.11,
10.85,and 9.61 compared with GENIE3, PCC, PIDC, and SCENIC+ in terms of
AUC, respectively. For AUPRratio, -log,,P-values are 8.94,7.03,8.48,and 7.57,
respectively. C, D. Bar plot of AUC and AUPR ratio difference of different motif
matching weight. The upper and lower figures refer to the difference in weight
0.01to 0 and 0.01to10. The x-axis of C, D, and Hrefers to the ground truth
datanamed by the TF name and Cistrome database ID. E. Scatter plot of AUC of

original metacells and SEACells metacells as input. Each point refers to each ChIP-
seq ground truth data. F, G. Box plot of AUPR ratio and AUC of defining regulatory
element within different TSS distances from 200 Kb to 2 Mb (n =20 independent
sample). Two-sided paired t-test result in p-value 0.055(2 Mb and 1Mb), 0.088(2
Mb and 500 Kb), 0.028(2 Mb and 200 Kb), 0.025(1 Mb and 500 Kb), 0.0056(1

Mb and 200 Kb), and 0.70(500 Kb and 200 Kb) in terms of AUC. For AUPR ratio,
p-values are 0.0017(2 Mb and 1Mb), 0.093(2 Mb and 500 Kb), 0.12(2Mb and 200
Kb), 0.00048(1Mb and 500 Kb), 0.00075(1 Mb and 200 Kb), and 0.64(500 Kb and
200Kb). H. Bar plot of AUC and AUPR ratio difference of two rounds pre-train and
single round pre-train.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3 | Systematic benchmarking of cell type-specific GRN.

A, B.ROC curve and PR curve of binding potential for MYCin H1 cell line. The
ground truth for Ato Dis the ChIP-seq data of MYCin the H1cell line. The colorin
AtoD represents the different competitors to predict TF-RE regulation. Orange
represents LINGER, green represents PCC between the expression of TF and the
chromatin accessibility of RE, and blue represents motif binding affinity of TF
toRE. C, D. Violin plot of AUC and AUPR ratio values of binding potential across
diverse TFs. The ground truth is ChlP-seq data for 33 TFs (n=33 independent
sample). One-sided paired t-test is performed to test whether there is significant
difference. InC, -log,,P-values are 11.36 and 12.27 compared with PCC and TFBS,
respectively. InD, -log P-values are 6.21 and 5.18, respectively. E, F. AUC and AUPR
ratio of cis-regulatory potential in naive CD8 T cells. The ground truth for E to

Jis promoter capture HiC data. RE-TG pairs are divided into six distance groups
ranging from 0-5k to 100-200 kb. PCC is calculated between the expression of TG
and the chromatin accessibility of RE. Distance denotes the decay function of the

distance to the TSS. Random denotes the uniform distribution. G, H. AUC

and AUPR ratio of cis-regulatory potential in naive B cells.1,J. F1score of cis-
regulatory in naive CD8 T cells and naive B cells for LINGER and SCENIC+. P-values
are from one-sided paired t-test with n=9 independent sample. K to O, F1score
of cis-regulatory potential in classical monocytes, effector CD8 T cells, memory
B cells, non-classical monocytes, and plasmacytoid DC cells for LINGER and
SCENIC+. The ground truthis eQTL data (n=9 independent sample). P-values are
from one-sided paired t-test. P, Q. ROC curve and PR curve of trans-regulatory
potential inference of CTCF in H1 cell line. The ground truth of P to R is putative
targets of TFs from ChIP-seq data in the H1 cell line. R Violin plot of AUC and
AUPR ratio values of trans-regulatory potential performance across diverse TFs
inH1cellline (n=33 independent sample). One-sided unpaired t-test resultin
-log,,P-value 15.89,15.64,16.36, and 15.54 compared with GENIE3, PCC, PIDC, and
SCENIC+in terms of AUC, respectively. For AUPR ratio, -log,,P-values are 11.01,
10.64,11.20,and 11.17, respectively.
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and 3.86 compared with GENIE3, PCC, PIDC, and SCENIC+, respectively. For AUPR
ratio, -log,,P-values are 3.36, 2.14,1.69 and 1.80, respectively. C, D. Box plot

of AUC and AUPR ratio values of in silico perturbation predicted target gene.
P-values are from one-sided paired t-test with 8 independent samples.

E. Differentiation behavior prediction on BMMC data after knocking out GATAL.
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