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Inferring gene regulatory networks from 
single-cell multiome data using atlas-scale 
external data

Qiuyue Yuan & Zhana Duren     

Existing methods for gene regulatory network (GRN) inference rely on 
gene expression data alone or on lower resolution bulk data. Despite the 
recent integration of chromatin accessibility and RNA sequencing data, 
learning complex mechanisms from limited independent data points still 
presents a daunting challenge. Here we present LINGER (Lifelong neural 
network for gene regulation), a machine-learning method to infer GRNs 
from single-cell paired gene expression and chromatin accessibility data. 
LINGER incorporates atlas-scale external bulk data across diverse cellular 
contexts and prior knowledge of transcription factor motifs as a manifold 
regularization. LINGER achieves a fourfold to sevenfold relative increase in 
accuracy over existing methods and reveals a complex regulatory landscape 
of genome-wide association studies, enabling enhanced interpretation of 
disease-associated variants and genes. Following the GRN inference from 
reference single-cell multiome data, LINGER enables the estimation of 
transcription factor activity solely from bulk or single-cell gene expression 
data, leveraging the abundance of available gene expression data to identify 
driver regulators from case-control studies.

GRNs1,2 are collections of molecular regulators that interact with each 
other and determine gene activation and silencing in specific cellular 
contexts. A comprehensive understanding of gene regulation is fun-
damental to explain how cells perform diverse functions, how cells 
alter gene expression in response to different environments and how 
noncoding genetic variants cause disease. GRNs are composed of tran-
scription factors (TFs) that bind DNA regulatory elements to activate 
or repress the expression of target genes.

Inference of GRNs is a central problem2–4, and there have been 
many attempts to approach this issue2,5–13. Co-expression-based meth-
ods such as WGCNA14, ARACNe9 and GENIE3 (ref. 15) infer the TF–TG 
trans-regulation from gene expression by capturing the TF–TG covari-
ation. Such networks have undirected edges, preventing distinction 
of direction from a TFA–TFB edge. Moreover, co-expressions are inter-
preted as correlations rather than causal regulations16. Genome-wide 
measurements of chromatin accessibility, such as DNase-seq17 and 
assay for transposase-accessible chromatin sequencing (ATAC-seq)18, 

locate REs, enabling TF–RE connections by motif matching and con-
necting REs to their nearby TGs19. However, TF footprint approaches 
cannot distinguish within-family TFs sharing motifs. To overcome this 
limitation, we developed a statistical model, PECA20, to fit TG expres-
sion by TF expression and RE accessibility across a diverse panel of cell 
types. However, the problem still has not been fully resolved because 
heterogeneity of cell types in bulk data limits the accuracy of inference.

The advent of single-cell sequencing technology has enabled 
highly accurate regulatory analysis at the level of individual cell 
types. Single-cell RNA sequencing (scRNA-seq) data enables cell 
type-specific trans-regulation inference through co-expression anal-
ysis such as PIDC and SCENIC21–30. Single-cell sequencing assay for 
transposase-accessible chromatin (scATAC-seq) can be used to infer 
trans-regulation, as in DeepTFni31. Many methods integrate unpaired 
scRNA-seq and scATAC-seq data to infer trans-regulation. Those meth-
ods, including IReNA32, SOMatic33, UnpairReg34, CoupledNMF35,36, DC3 
(ref. 36) and others37 link TFs to REs by motif matching and link REs 
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but extensive parameters. Second, LINGER integrates TF–RE motif 
matching knowledge through manifold regularization, enabling prior 
knowledge incorporation into the model. Third, the accuracy of LINGER 
represents a fourfold to sevenfold relative increase. Fourth, LINGER 
enables the estimation of TF activity solely from gene expression data, 
identifying driver regulators.

Results
LINGER: using bulk data to infer GRNs from single-cell 
multiome data
LINGER is a computational framework designed to infer GRNs from 
single-cell multiome data (Fig. 1 and Methods). Using count matrices 
of gene expression and chromatin accessibility along with cell type 
annotation as input, it provides a cell population GRN, cell type-specific 
GRNs and cell-level GRNs. Each GRN contains three types of interac-
tions, namely, trans-regulation (TF–TG), cis-regulation (RE–TG) and 
TF-binding (TF–RE). Note that TF–TF interactions are included in TF–TG 
pairs but TF self-regulation, which is challenging to model without 
additional data, is not considered. LINGER is distinguished by its ability 

to TGs using the covariation of RE–TG or physical base pair distance. 
Recently, scJoint38 was developed to transfer labels from scRNA-seq 
to scATAC-seq data, which may enable improved cell GRN inference. 
Despite extensive efforts, GRN inference accuracy has remained disap-
pointingly low, marginally exceeding random predictions39.

Recent advances in single-cell sequencing40 provide opportuni-
ties to address these challenges41, exemplified by SCENIC+42. However, 
three major challenges persist in GRN inference. First, learning such 
a complex mechanism from limited data points remains a challenge. 
Although single-cell data offers a large number of cells, most of them 
are not independent. Second, incorporating prior knowledge such as 
motif matching into non-linear models is challenging. Third, inferred 
GRN accuracy assessed by experimental data is only marginally better 
than random prediction39.

To overcome these challenges, we propose a method called LIN-
GER (Lifelong neural network for gene regulation). This research paper 
contributes to the field of GRN inference in multiple ways. First, LINGER 
uses lifelong learning, a previously defined concept43 that incorporates 
large-scale external bulk data, mitigating the challenge of limited data 
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Fig. 1 | Schematic overview of LINGER. a, Schematic illustration of LINGER: a 
model predicting gene expression by TF expression and chromatin accessibility 
using a neural network model. LINGER pre-trains on the atlas-scale external 
bulk data and retains parameters by lifelong learning. The population-level 
GRN is generated from the neural network using the Shapley value. b, Strategy 
for constructing cell type-specific and cell-level GRNs. Cell type-specific and 

cell-level GRNs are inferred by an identical strategy, which combines consistent 
information across all cells, including regulatory strength, motif binding affinity 
and RE–TG distance, with context-specific information on gene expression and 
chromatin accessibility. c, Downstream analyses enabled by LINGER-inferred 
GRNs, including identifying complex regulatory landscape of GWAS traits and 
driver regulator identification.
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to integrate the comprehensive gene regulatory profile from external 
bulk data. This is achieved through lifelong machine learning, also 
called continuous learning. The concept of lifelong learning is that the 
knowledge learned in the past helps us learn new things with little data 
or effort44. Lifelong learning has been proven to leverage the knowledge 
learned in previous tasks to learn the new task better45.

LINGER leverages external data to enhance the inference from 
single-cell multiome data, incorporating three key steps: training on 
external bulk data, refining on single-cell data and extracting regula-
tory information using interpretable artificial intelligence techniques. 
In our approach, we use a neural network model to fit the expression 
of TGs, taking as input TF expression and the accessibility of REs. The 
second layer of the neural network model consists of weighted sums 
of TFs and REs, forming regulatory modules guided by TF–RE motif 
matching by incorporating manifold regularization. This leads to the 
enrichment of TF motifs binding to REs that belong to the same regula-
tory module. First, we pre-train using external bulk data obtained from 
the ENCODE project46, which contains hundreds of samples covering 
diverse cellular contexts, referred to as BulkNN.

For refinement on single-cell data, we apply elastic weight consoli-
dation (EWC) loss, using bulk data parameters as a prior. The magnitude 
of parameter deviation is determined by the Fisher information, which 
reflects the sensitivity of the loss function to parameter changes. In the 
Bayesian context, knowledge gained from the bulk data is the prior 
distribution, forming our initial beliefs about the model parameters. 
As the model trains on new single-cell data, the posterior distribution 
is updated, combining the prior knowledge with the likelihood of the 
new data. EWC regularization encourages the posterior to remain close 
to the prior, retaining knowledge while adapting, preventing excessive 
changes and ensuring a more stable learning process47. After training 
the neural network model on single-cell data, we infer the regulatory 
strength of TF–TG and RE–TG interactions using the Shapley value, 
which estimates the contribution of each feature for each gene. The 
TF–RE binding strength is generated by the correlation of TF and RE 
parameters learned in the second layer (Fig. 1a). LINGER then con-
structs the cell type-specific and cell-level GRNs based on the general 
GRN and the cell type-specific profiles (Fig. 1b and Methods).

We will use independent datasets to validate the inference of 
GRN and then perform several downstream analyses: first, identifica-
tion of the disease or trait-related cell type, TFs and GRN combining 
genome-wide association studies (GWAS) data; second, constructing 
regulon activity on external expression data and identifying driver 
regulators as differentially active TFs (Fig. 1c).

LINGER improves the cellular population GRN inference
To assess the performance of LINGER, we used a public multiome data-
set of peripheral blood mononuclear cells (PBMCs) from 10× Genom-
ics (see Methods for details). To investigate whether a linear model is 
adequate for modeling gene expression or whether a non-linear model 
is necessary, we conducted a comparative analysis between two models. 
The first model employs an elastic net to predict the expression of TG 
by TFs and REs. The second model, single-cell neural network (scNN), is 
a three-layer neural network model sharing LINGER’s architecture. We 
assessed the gene expression prediction ability of the two models using 
fivefold cross-validation. We found that scNN modeled gene expres-
sion better than elastic net, with −log10P = 572.09, especially for those 
substantial proportions of genes that show negative Pearson’s corre-
lation coefficient (PCC) in elastic net predictions (−log10P = 1,060.17; 
Fig. 2a). This demonstrates that the three-layer neural network model 
scNN outperforms the elastic net model in predicting gene expression.

To show the utility and effectiveness of integrating external bulk 
data, we compared LINGER to scNN, BulkNN and PCC. To evaluate 
the performance of trans-regulatory strength, we collected puta-
tive targets of TFs from chromatin immunoprecipitation followed by 
sequencing (ChIP–seq) data using a systematical standard (Methods) 

and, in total, obtained 20 data sets in blood cells as ground truth48 
(Supplementary Table 1). For each ground truth, we calculated the area 
under the receiver operating characteristic curve (AUC) and the area 
under the precision–recall curve (AUPR) ratio (see Methods) by sliding 
the trans-regulatory predictions. Results show that scNN performs 
better than PCC and BulkNN. Compared to other methods, LINGER 
performs better, with a significantly higher AUC (Fig. 2b) and AUPR 
ratio (Fig. 2c) across all ground truth data.

To validate the cis-regulatory inference of LINGER, we calculated 
the consistency of the cis-regulatory coefficients with expression 
quantitative trait loci (eQTL) studies that link genotype variants to their 
TGs. We downloaded variant-gene links defined by eQTL in whole blood 
from GTEx49 and eQTLGen50 (Supplementary Table 2) as ground truth. 
As the distance between RE and TG is important for the prediction, we 
divided RE–TG pairs into different distance groups. LINGER achieved 
a higher AUC and AUPR ratio than scNN in all different distance groups 
in eQTLGen (Fig. 2d,e) as well as GTEx (Extended Data Fig. 1a,b). The 
above results show that LINGER improves the cis-regulatory and 
trans-regulatory strength inference by leveraging external data.

We next sought to investigate the dominant regulation for 
genes; that is, whether a gene is mainly regulated by cis-regulation or 
trans-regulation. To shed light on this question, we compared the aver-
age of cis-regulatory and trans-regulatory strength Shapley values by a 
two-sided unpaired t-test and performed Bonferroni P value correction. 
Our findings reveal that most genes exhibit no significant difference 
in cis-regulation and trans-regulation dominance. Specifically, 4.37% 
of genes are cis-regulation dominant, while 2.00% are trans-regulation 
dominant (Fig. 2f). To discern evolutionary distinctions between 
trans-dominant and cis-dominant genes, we compared their strength of 
selection using pLI, which is an estimate of the ‘probability of being loss 
of function intolerant’51. We observed that the percentage of selectively 
constrained genes with high pLI (>0.9) in the trans-dominant group was 
approximately three times higher than that in the cis-dominant group 
(Fig. 2g). A previous study found that disease-associated genes from 
GWAS were enriched in selectively constrained genes, while eQTL genes 
were depleted in selectively constrained genes52. These observations 
highlight the importance of the trans-regulatory network in under-
standing complex diseases. Functional enrichment analysis53 shows 
that the cis-regulatory dominant genes were significantly enriched 
in 38 GTEx aging signatures (Supplementary Table 3), which aligns 
with the conclusion that chromatin accessibility alterations occur in 
age-related macular degeneration54.

To gain an understanding of parameter sensitivity, we systemati-
cally evaluated the effects of TF–RE motif matching, cis-REs transcrip-
tion start site (TSS) distance, activation function, number of nodes in 
hidden layers and metacell-generating method on the scNN. Note that 
the sigmoid activation function would not improve the gene expres-
sion prediction but would improve the GRN inference (Extended Data 
Fig. 2a). Using motif matching information by manifold regularization 
loss properly by setting the weight will improve the performance. Com-
pared to 0, weight 0.01 improved the performance on 100% (Extended 
Data Fig. 2c) and 80% (Extended Data Fig. 2d) of ground truth data 
based on the AUC and AUPR ratio, respectively. The performance of 
weight 10 decreases compared to 0.01 (Extended Data Fig. 2c,d). To 
verify the robustness of our method to alternative metacell-generation 
approaches (see ‘PBMC 10× data’ in Methods), we used metacells gener-
ated by the SEACells as a substitute for our original metacells. There 
were no significant differences in the performance between SEACells 
metacells and our original metacells (two-sided paired t-test, P = 0.89; 
Extended Data Fig. 2e). Using REs within 1 Mb is the best across 200 kb, 
500 kb, 1 Mb and 2 Mb (Extended Data Fig. 2f,g).

We evaluated LINGER’s capability for lifelong learning by leverag-
ing additional data sources. We split the ENCODE data into two batches 
(ENCODE1, ENCODE2) and applied two rounds of pre-training, then 
trained on PBMCs single-cell multiome data (ENCODE1+ENCODE2+sc). 
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We compared the results with those obtained by using one batch of 
ENCODE data as pre-training (ENCODE1+sc). Extended Data Fig. 2h 
shows that compared to single pre-training, the addition of the second 
round of pre-training improved the performance of TF–TG inference 
for 85.5% (17 out of 20) and 75% (15 out of 20) of ChIP–seq data based 
on the AUC and AUPR ratio, respectively. This validates LINGER’s capa-
bility for continuous refinement through incremental learning from 
diverse datasets.

LINGER improves the cell type-specific GRN inference
We evaluated the cell type-specific GRN inference (Methods) of LINGER 
in PBMCs sc-multiome data as well as an in-silico mixture of H1, BJ, 
GM12878 and K562 cell lines from single-nucleus chromatin acces-
sibility and mRNA expression sequencing (SNARE-seq) data55. To 
assess TF–RE binding prediction, we used ChIP–seq data as ground 
truth, including 20 TFs from four cell types within the blood and 33 
TFs from the H1 cell line48 (Supplementary Table 4). The putative 
target of TF from the ChIP–seq data serves as ground truth for the 
trans-regulatory potential. For the cis-regulatory potential, we incor-
porated promoter-capture Hi-C data of three primary blood cell types 

(Supplementary Table 5)56 and single-cell eQTL57, including six immune 
cell types as ground truth for PBMCs.

To assess the TF–RE binding potential, we compared our method 
with TF–RE correlation (PCC) and motif binding affinity. For example, in 
naive CD4 T cells, LINGER achieves an AUC of 0.92 and an AUPR ratio of 
5.17 for ETS1, which is an improvement over PCC (AUC, 0.78; AUPR ratio, 
2.71) and motif binding affinity (AUC, 0.70; AUPR ratio, 1.92) (Fig. 3a,e). 
For binding sites of MYC in the H1 cell line, LINGER outperforms PCC and 
motif binding affinity-based predictions (Extended Data Fig. 3a,b). For all 
20 TFs in PBMCs, LINGER consistently exhibits the highest AUC and AUPR 
ratios, and the overall distributions are significantly higher than others 
in PBMCs (P ≤ 8.72 × 10−5; Fig. 3b,c and Supplementary Table 6). LINGER 
also outperforms other methods for H1 data (P ≤ 6.68 × 10−6; Extended 
Data Fig. 3c,d). Furthermore, we compared LINGER with a state-of-the-art 
method, SCENIC+42, which predicts TF–RE pairs from multiome single-cell 
data. Given that SCENIC+ does not provide a continuous score for all REs, 
we used the F1 score as a measure of accuracy. Fig. 3d shows that LINGER 
performs better for all 20 TFs binding site predictions.

To assess the cis-regulatory potential, we compared LINGER with 
four baseline methods, including distance-based methods, RE–TG 
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hypothesis testing results in a t-statistic with an effect size of 53.46, df = 15,659, 
−log10P = 572.09 and 95% confidence interval of [0.058, 0.063] from a two-sided 
paired t-test. b, Boxplot of the performance metric AUC for the predicted trans-
regulatory strength across all ground truth data. The ground truth data for  
b and c are putative targets of TFs from 20 ChIP–seq data points from blood cells 
(n = 20 independent samples). PCC denotes Pearson’s correlation coefficient 
between the chromatin accessibility of RE and the expression of TG. Note that 
all boxplots in this study present minima and maxima, the smallest and largest 
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symbol when displaying significance levels. In detail, P = 8.32 × 10−6 for LINGER 
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and PCC. c, Boxplot of the performance metric AUPR ratio for the predicted 
trans-regulatory strength. P values in b and c are from one-sided paired t-tests. 
In detail, P = 3.49 × 10−3 for LINGER and scNN, P = 2.13 × 10−4 for LINGER and 
BulkNN and P = 4.53 × 10−4 for LINGER and PCC. d, AUC for cis-regulatory strength 
inferred by LINGER. The ground truth data for d and e are the variant-gene 
links from eQTLGen. We divide RE–TG pairs into different groups based on the 
distance of the RE from the TSS of TG. e, AUPR ratio for cis-regulatory strength. 
f, Classification of the trans-dominant or cis-dominant gene. TFs contribute 
more to predicting the expression of trans-dominant genes, while REs contribute 
more to cis-dominant genes. g, Probability of trans-dominant and cis-dominant 
being loss-of-function (LoF)-intolerant genes. Points show estimated success 
probability from binomial distribution, at 0.26 and 0.09 for trans-dominant 
and cis-dominant, respectively. n = 317 and n = 693 independent sample size 
for trans-dominant and cis-dominant, respectively. Data are presented as 
means ± 1.96 × s.d.
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correlation (PCC), random predictions, and SCENIC+. We divided 
RE–TG pairs of Hi-C data into six distance groups ranging from 0–5 kb 
to 100–200 kb. In naive CD4 T cells, LINGER achieves AUC ranging from 
0.66 to 0.70 (Fig. 3f) and AUPR ratio ranging from 1.81 to 2.16 (Fig. 3g) 
across all distance groups, while other methods are close to random. In 
other cell types, LINGER exhibits consistent superiority over the base-
line methods (Extended Data Fig. 3e–h). All eQTL pairs were considered 
positive labels owing to the insufficient pairs available for division into 
distance groups. In all cell types, the AUC and AUPR ratio of LINGER 
are higher than the baseline methods (Fig. 3i,j). We also compared our 
method with SCENIC+, which outputs predicted RE–TG pairs without 
importance scores. We selected the same number of top-ranking RE–
TG pairs and calculated the F1 score using nine cutoffs corresponding 
to quantiles ranging from the 10th to the 90th percentile. As a result, 
LINGER attains significantly higher F1 scores than SCENIC+ in all cell 
types (Fig. 3h and Extended Data Fig. 3i,j) based on Hi-C data. Taking 

eQTL as ground truth, the F1 score of LINGER is significantly higher 
than SCENIC+ (Fig. 3k) and other cell types (Extended Data Fig. 3k–o).

To evaluate the accuracy of trans-regulatory potential, we chose 
GENIE3 (ref. 15) and PIDC21 for comparison based on the benchmark-
ing literature of GRN inference from single-cell data39 that we chose in 
previous work58 (see Methods). In addition, we compared LINGER with 
PCC and SCENIC+. For STAT1 in classical monocytes, LINGER improves 
the prediction performance, as evidenced by an AUC of 0.76 versus 
0.57–0.59 and an AUPR ratio of 2.60 versus 1.26–1.36 (Fig. 4a,b). A simi-
lar improvement is observed for CTCF in H1 (Extended Data Fig. 3p,q). 
The average AUPR ratio across ground truth datasets for other methods 
was 1.17–1.29, 0.17–0.29 units above random prediction, whereas LIN-
GER achieves 1.25 units above random prediction, indicating a fourfold 
to sevenfold relative increase (Fig. 4d). Overall, LINGER consistently 
performs better than other methods for all 20 TFs in PBMCs, with a 
significantly higher AUC and AUPR ratio (P ≤ 9.49 × 10−9; Fig. 4c,d and 
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Fig. 3 | Systematic benchmarking of cell type-specific TF–RE binding 
potential and cis-regulatory potential performance. a,e, Receiver operating 
characteristic curve and precision–recall curve of binding potential for ETS1 
in naive CD4 T cells. The ground truth for a and e is the ChIP–seq data of ETS1 
in naive CD4+ T cells. The color in a–e represents the different methods used to 
predict TF–RE regulation. Orange, LINGER; green, PCC between the expression 
of TF and the chromatin accessibility of RE; blue, motif binding affinity of TF 
to RE. b,c, Violin plot of the AUC and AUPR ratio values of binding potential 
across diverse TFs and cell types. The ground truth is the ChIP–seq data for 20 
TFs from different cell types in blood. The original data is in Supplementary 
Table 6. The null hypothesis testing in b, comparing the AUC of LINGER with 
PCC and binding, results in t-statistics (one-sided paired t-test) with effect size, 
8.99; df, 19; P = 1.42 × 10−8, 95% confidence intervals, [0.17, Inf] and effect size, 
18.25; df, 19; P = 8.34 × 10−14; 95% confidence intervals, [0.17, Inf], respectively. 
The null hypothesis testing in c, comparing the AUPR ratio of LINGER with PCC 
and binding, results in t-statistics (one-sided paired t-test) with effect size, 4.65; 

df, 19; P = 8.72 × 10−5; 95% confidence intervals, [1.31, Inf] and effect size, 5.44, 
df, 19; P = 1.49 × 10−5; 95% confidence intervals, [1.51, Inf], respectively. d, The 
performance metrics F1 score of binding potential. Each point represents ground 
truth data (n = 20 independent samples). The P values for d, h and k are based on 
one-sided paired t-tests. f,g, AUC and AUPR ratio of cis-regulatory potential in 
naive CD4+ cells. The ground truth for f–h is promoter-capture Hi-C data. RE–TG 
pairs are divided into six distance groups ranging from 0–5 kb to 100–200 kb. 
PCC is calculated between the expression of TG and the chromatin accessibility 
of RE. Distance denotes the decay function of the distance to the TSS. Random 
denotes the uniform distribution from 0 to 1. h, F1 score of cis-regulatory in 
naive CD4+ cells for LINGER and SCENIC+ (n = 9 independent samples). i,j, AUC 
and AUPR ratio of cis-regulatory potential. The ground truth is eQTL data from 
six immune cell types. k, F1 score of cis-regulatory potential in naive B cells. The 
ground truth is eQTL data from naive B cells (n = 9 independent samples). This 
figure corresponds to the PBMC data.
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Supplementary Table 7). LINGER outperforms other competitors in 
the H1 cell line (P  ≤ 3.00 × 10−8; Extended Data Fig. 3r). Unlike GENIE3 
and PIDC, which solely use scRNA-seq data, our method effectively 
doubles the cell data by integrating both scRNA-seq and scATAC-seq. 
For a fairer comparison, we removed pre-training and used only half 
as many cells as input (scNN_half). Comparing to other competitors 
showed that scNN_half continued to significantly outperform all other 
methods (Extended Data Fig. 2b). We also evaluated cell type-specific 
trans-regulatory potential to predict direct differentially expressed 
genes (DEGs) under perturbation of the TF, using perturbation experi-
ment data as ground truth. We collected eight datasets for PBMCs 
(Supplementary Table 8) from the KnockTF database59. Extended 
Data Fig. 4a,b shows that LINGER outperforms all other methods 
(P ≤ 3.72 × 10−4).

The rationale for constructing a single-cell-level GRN is the same 
as a cell type-specific GRN, replacing the cell type-specific term with 
the single-cell term (Methods). We show the result of trans-regulation, 
taking RUNX1 as an example. RUNX1 is critical for establishing defini-
tive hematopoiesis60 and expresses at high levels in almost all PBMC 
cell types (Fig. 4e,f). RUNX1 regulates SPI1 in monocytes (classical, 
non-classical and intermediate) and myeloid dendritic cells (Fig. 4g,i), 
while regulates PRKCQ in CD56dim natural killer cells, effector CD8 

T cells, mucosal-associated invariant T cells, memory CD4 T cells, naive 
CD4 T cells and naive CD8 T cells (Fig. 4h,i). This example illustrates the 
capability of LINGER to visualize gene regulation at the single-cell level.

LINGER reveals the regulatory landscape of GWAS traits
GWASs have identified thousands of disease variants, but the active 
cells and functions involving variant-regulated genes remain largely 
unknown61. We integrate GWAS summary statistics and cell type-specific 
GRN to identify the relevant cell types, key TFs and sub-GRN (Methods). 
We define a trait regulation score for TFs in each cell type, measuring 
the enrichment of GWAS genes downstream of TFs. In trait-relevant 
cell types, TFs with high trait regulation scores should be expressed 
to perform their function. We identify the trait-relevant cell types by 
assessing the concordance between TF expression and the trait regu-
lation score.

In our specific study on inflammatory bowel disease (IBD), 
we collected the risk loci based on a GWAS meta-analysis of about 
330,000 individuals from the NHGRI-EBI GWAS catalog62 for study 
GCST9022555063. Figure 5a shows that in classical monocytes, trait 
regulation scores for the top-expressed TF are significantly higher 
than randomly selected TFs (P = 8.9 × 10−29, one-sided unpaired t-test), 
while there is no significant difference for non-relevant cell types such 
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Fig. 4 | Systematic benchmarking of cell type-specific trans-regulatory 
potential performance. a,b, Receiver operating characteristic curve and 
precision–recall curve of trans-regulatory potential inference of STAT1 in 
classical monocytes. The ground truth data in a–d are putative targets of TFs 
from ChIP–seq data for the corresponding cell types in PBMCs. c,d, Violin plot 
of AUC and AUPR ratio values of trans-regulatory potential performance across 
diverse TFs and cell types. The original data is in Supplementary Table 7. The 
sample size for the one-sided paired t-test is 20. For c, −log10(P values) are 11.12, 
7.72, 11,13 and 10.17 for GENIE3, PCC, PIDC and SCENIC+, respectively. For d, 

−log10(P values) are 9.59, 8.02, 9.22 and 8.47, respectively. e, Uniform manifold 
approximation and projection (UMAP) of PBMCs including 14 cell types. NK cells, 
natural killer cells; MAIT, mucosal-associated invariant T cells; DCs; dendritic 
cells. f, UMAP of RUNX1 expression across PBMCs. g, UMAP of cell level trans-
regulatory potential for RUNX1(TF)–SPI1(TG) across PBMCs. h, UMAP of cell level 
trans-regulatory potential for RUNX1(TF)–PRKCQ(TG) across PBMCs. i, Violin 
plot of cell level trans-regulatory potential from different cell types. The sample 
size for each boxplot is the number of cells of each cell type, ranging from 98 to 
1,848. This figure corresponds to the PBMCs.
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as CD56dim natural killer cells. The most relevant cell types in PBMCs are 
monocytes and myeloid dendritic cells (Fig. 5b). These findings align 
with previous studies linking monocytes to the pathogenesis of IBD64,65.

We next identified key TFs by the sum of the expression level and 
trait regulation score. Figure 5c lists the top eight candidate TFs in 
classical monocytes. These TFs have been previously reported to be 
associated with IBD in the literature. FOS can increase the risk of recur-
rence of IBD66; one variant identified in the IBD cohort is located at 
the exon of ETV6; IRF1 and ETV6 are key TFs with activity differences 
in IBD67; genes FOS, FOSB and JUN encode potent mediators of IBD68; 
CUX1 is induced in IBD69; and STAT1 epigenetically contribute to the 
pathogenesis of IBD70.

To investigate the downstream targets of key TFs, we chose STAT1 
as an example. Among the top 200 TGs regulated by STAT1 in clas-
sical monocytes, 67 of them overlap with the GWAS genes, which 
is statistically significant with a P value of less than 0.01 based on a 

background distribution from a random selection of TFs (one-sided 
bootstrap hypothesis testing). The numbers of overlapped TGs are all 
significant for the top 500, 1,000, 2,000 and 5,000 TGs (Fig. 5d). Apart 
from GWAS-relevant genes, we collected the DEGs between inflamed 
biopsies and non-inflamed biopsies71 and we found that these DEGs 
significantly overlapped with the top-ranked TGs of STAT1 (one-sided 
bootstrap hypothesis testing; Fig. 5e). The lack of significant overlap 
between DEGs and GWAS genes (P = 0.15, two-sided Fisher’s exact test) 
but the significant overlap of both DEGs and GWAS with the top-ranked 
TGs of STAT1 indicates the robustness and unbiased nature of our 
method.

Finally, we extracted the sub-network of the eight candidate TFs 
from the classical monocyte trans-regulatory network for IBD (Fig. 5f). 
We also observed that the cis-regulatory network of SLC24A4 (Fig. 5g), 
46 kb from a risk single nucleotide polymorphism (SNP) rs11626366 
(P = 7.4 × 10−3), is specifically dense in the IBD-relevant cell types, which 

CD56bright NK cells
CD56dim NK cells

Classical monocytes
E�ector CD8 T cells

Intermediate monocytes
MAIT T cells

Memory B cells
Memory CD4 T cells

Myeloid DCs
Naive B cells

Naive CD4 T cells
Naive CD8 T cells

Plasmacytoid DCs
Non-classical monocytes

0 10

–log10(P value)
20

0.95
1.05
1.15

Odds.ratio

No. of target GWAS
genes

D
en

si
ty

Classical
monocytes
P = 8.9 × 10–26

CD56dim

NK cells
P = 0.25

0
0.005
0.010
0.015
0.020

200 250 300

0

0.005

0.010

0.015

150 200 250

Random
Top

BACH1
CUX1

ETV6
FOS

FOSB IRF1
JUN

STAT1

0

4

2

–2

0 21–2 –1

Classical monocytes

Re
gu

la
tio

n 
sc

or
e

Expression score

SCLT1

NLRP3
MCL1

KLF4

JAK2

ATXN1

CLEC7A

PSAP

IRF1

APOBEC3A

FOSB

ANXA1

STAT1

JUN

BACH1

IL10RA

DNAJA1

FOS

ETV6PTMA

KLF2

CUX1

TF

TG

3

4

5

TF score

2

3

4

5

GWAS
–log10 P

Chromosome 14

chr14:
92,250,000 92,300,000 92,350,000 92,400,000

CD56bright NK cells
CD56dim NK cells

MAIT T cells
Classical monocytes

Gene SLC24A4
RE

E�ector CD8 T cells
Intermediate monocytes

Memory B cells
Memory CD4 T cells

Myeloid DCs
Naive B cells

Naive CD4 T cells
Naive CD8 T cells

Non-classical monocytes
Plasmacytoid DCs

200 500 1,000 2,000 5,000

1,000
1,100
1,200
1,300
1,400
1,500

300

400

500

600

150

200

250

300

75
100
125
150
175

20

40

60

No. of top genes

N
o.

 o
f G

W
AS

ge
ne

s

200 500 1,000 2,000 5,000
225
250
275

300
325
350

100
125
150
175

30

60

90

120

25

50

75

0
10
20
30
40
50

No. of top genes

N
o.

 o
f D

EG
s

a b c

d e

gf

STAT1, classical monocytes STAT1, classical monocytes
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shows the complex regulatory landscape of disease genes across dif-
ferent cell types.

Identify driver regulators based on transcription profiles
Researchers often identify DEGs between cases and controls using bulk 
or single-cell expression data, but the underlying regulatory drivers 
remain elusive. TF activity, focusing on the DNA-binding component of 
TF proteins, is a more reliable metric than mRNA for identifying driver 
regulators. One feasible approach is to estimate TF activity based on the 
expression patterns of downstream TGs, which necessitates the availa-
bility of an accurate GRN. Assuming that the GRN structure is consistent 
for the same cell type across individuals, we employed LINGER-inferred 
GRNs from single-cell multiome data of a single individual to estimate 
the TF activity of other individuals using gene expression data alone 
from the same cell type. By comparing TF activity between cases and 
controls, we identified driver regulators. This approach is valuable, as 
it leverages limited single-cell multiome data to estimate TF activity in 
multiple individuals using only gene expression data (see Methods). 
We present two illustrative examples showcasing its utility.

Example 1: We collected the bulk gene expression data from 
26 patients with acute myeloid leukemia (AML) and 38 healthy 
donors72. We calculated the TF activity for these samples based on 
the LINGER-inferred cell population GRN from PBMCs and found that 
FOXN1 is significantly less active in patients with AML than in healthy 
donors, and it is not differentially expressed (Fig. 6a,b). In addition, we 
calculated the TF activity of the transcriptome profile (bulk RNA-seq 
data) of 671 individuals with AML73 and performed survival analysis, 
which indicated that individuals with high FOXN1 activity level tend 
to have a higher survival probability (Fig. 6c). Furthermore, FOXN1 has 
been reported as a tumor suppressor74.

Example 2: We also present an example of the naive CD4+ T cell 
response upon T cell receptor (TCR) stimulation75, which induces T cell 
differentiation into various effector cells and activates T lymphocytes. 

We calculated the TF activity based on the GRN of naive CD4+ T cells and 
identified differentially active regulators in response to TCR stimula-
tion at 8 h versus 0 h. FOXK2 and NR4A1 are activated at 8 h based on 
regulon activity (Fig. 6d), which is consistent with the whole proteomics 
and phosphoproteomics data (Fig. 6e)76. Other studies have also shown 
that FOXK2 affects the activation of T lymphocytes77,78 and revealed 
the essential roles of NR4A1 in regulatory T cell differentiation79,80, 
suggesting that the identified TFs have important roles in naive CD4+ 
T cell response upon TCR stimulation. However, FOXK2 and NR4A1 
show no significant differences in expression at 8 h versus 0 h (Fig. 6d).

In silico perturbation
We performed in silico perturbation to predict the gene expression 
after knocking out TFs. To do so, we changed the expression of an indi-
vidual TF or combinations of TFs to zero and used the predicted gene 
expression as the in silico perturbation gene expression. We used the 
expression difference before and after in silico perturbation to infer 
the TG. To assess the performance of the prediction, we collected per-
turbation data for eight TFs in blood cells from the KnockTF59 database 
(Supplementary Table 8) as ground truth. We performed the in silico 
individual TF perturbation of the eight TFs using LINGER. As a compari-
son, we performed identical computational perturbation experiments 
using the CellOracle81 and SCENIC+42 methods. The results, shown in 
Extended Data Fig. 4c,d, demonstrate that LINGER is more accurate 
than the alternative approaches (P  ≤ 3.72 × 10−4).

To assess LINGER’s capability to infer differentiation behavior, 
we leveraged CellOracle81 as a downstream analytical tool. We used 
the LINGER-inferred GRN as an input to CellOracle. This allowed us to 
investigate the capacity of LINGER-derived networks to recapitulate 
differentiation responses. Examining bone marrow mononuclear 
cell data82, which contains progenitor populations, we performed an 
in silico knockout of GATA1, a known key regulator of erythroid and 
megakaryocytic differentiation83. CellOracle predictions based on 
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the LINGER GRN showed that GATA1 knockout shifted proerythro-
blasts to a megakaryocytic or erythroid progenitor state (Extended 
Data Fig. 4e), consistent with the functional role of GATA1 in inhibit-
ing erythroblast maturation. These results demonstrate that LINGER 
can not only predict gene expression under perturbation but also 
enable downstream characterizations of differentiation trajectories 
through integration with complementary analytical frameworks 
like CellOracle.

Conclusions and discussions
LINGER is an neural network-based method that infers GRNs from 
paired single-cell multiomic data by incorporating bulk datasets and 
knowledge of TF–RE motif matching. Compared to existing tools, 
LINGER achieves substantially higher GRN inference accuracy. A key 
innovation is lifelong machine learning to leverage diverse cellular 
contexts, continually updating the model as new data emerge. This 
addresses historic challenges from limited single-cell datasets and vast 
parameter spaces hindering complex model fitting. LINGER’s lifelong 
learning approach has the advantage of pre-training on bulk collections, 
allowing users to easily retrain the model for their own studies while 
capitalizing on publicly available resources without direct access. Tra-
ditionally, GRN inference performance is assessed by gene expression 
prediction. However, the use of lifelong learning to leverage external 
data does not lead to improved gene expression prediction but does 
improve the GRN inference. This finding challenges the traditional 
strategy of evaluating GRN inference solely based on gene expression 
prediction and highlights the importance of considering the overall 
network structure and regulatory interactions.

The lifelong learning mechanism will encourage the model to 
retain prior knowledge from the bulk data when adapting to the new 
single-cell data. It is a tradeoff between retaining prior knowledge and 
fitting new data. The flexibility of the variation in prior knowledge 
is not constrained when fitting the new data. The extent to which 
the final result deviates from the prior knowledge depends on the 
loss incurred in fitting the new data. LINGER will learn this tradeoff 
automatically to obtain a maximized usage of the information from 
both datasets.
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Methods
GRN inference by lifelong learning
LINGER is a computational framework to infer GRNs—pairwise regula-
tion among TGs, REs and TFs—from single-cell multiome data. Overall, 
LINGER predicts gene expression by the TF expression and chromatin 
accessibility of REs based on neural network models. The contribu-
tion of each feature is estimated by the Shapley value of the neural 
network models, enabling the inference of the GRNs. To capture key 
information from the majority of tissue lineages, LINGER uses lifelong 
machine learning (continuous learning). Moreover, LINGER integrates 
motif binding data by incorporating a manifold regularization into 
the loss function.

The inputs for full training of LINGER are external bulk and 
single-cell paired gene expression and chromatin accessibility data. 
However, we provided a bulk data pre-trained LINGER model so that 
users can retrain it for their own single-cell data without accessing 
external bulk data. We collected paired bulk data—gene expression 
profiles and chromatin accessibility matrices—from 201 samples from 
diverse cellular contexts84 from the ENCODE project46. Single-cell data 
are raw count matrices of multiome single-cell data (gene counts for 
RNA-seq and RE counts for ATAC-seq). LINGER trains individual mod-
els for each gene using a neural network architecture that includes an 
input layer and two fully connected hidden layers. The input layer has 
dimensions equal to the number of features, containing all TFs and 
REs within 1 Mb of the TSS for the gene to be predicted. The first hid-
den layer has 64 neurons with rectified linear unit activation that can 
capture regulatory modules, each of which contains multiple TFs and 
REs. These regulatory modules are characterized by enriched motifs 
of the TFs on the corresponding REs. The second hidden layer has 16 
neurons with rectified linear unit activation. The output layer is a single 
neuron, which outputs a real value for gene expression prediction.

We first construct neural network models based on bulk data, 
using the same architecture described above. We extract the TF expres-
sion matrix ẼTF ∈ ℝNTF×Nb  from the bulk gene expression matrix 
Ẽ ∈ ℝNTG×Nb, with NTG representing the number of genes, NTF representing 
the number of TFs and Nb representing the number of tissues. The loss 
function consists of mean squared error (MSE) and L1 regularization, 
which, for the ith gene is:

ℒBULK ( ̃ETF, Õ
(i), ̃Ei,⋅,θ(i)b ) = 1

Nb

Nb

∑
n=1

( f (( ̃ETF)⋅,n, Õ
(i)
⋅,n,θ(i)b ) − ̃Ein)

2
+λ0‖θ(i)b ‖

1

where Õ ∈ ℝN(i)
RE×Nb represents the chromatin accessibility matrix, with 

N(i)
RE REs within 1 Mb of the TSS of the ith gene, and f ((ẼTF)•,n, Õ

(i)
•,n,θ

(i)
b ) is 

the predicted gene expression from the neural network of sample n. 
The neural network is parametrized by a set of weights and biases, 
collectively denoted by θ(i)b . The weight λ0 is a tuning parameter.

The loss function of LINGER is composed of MSE, L1 regularization, 
m a n i f o l d  re g u l a r i z a t i o n  a n d  E WC  l o ss :  ℒLINGER = λ1ℒMSE  
+λ2ℒL1 + λ3ℒLaplace + λ4ℒEWC. ℒLaplace represents the manifold regulariza-
tion because a Laplacian matrix is used to generate this regularization 
term. The loss function terms correspond to gene i, and for simplicity, 
we omit subscripts (i) for the chromatin accessibility matrix (O), param-
eters for the bulk model (θb) and parameters for LINGER (θl).

	 (1)	MSE

ℒMSE (ETF,O, Ei,•,θl) =
1

Nsc

Nsc

∑
n=1

(f ((ETF)•,n,O•,n,θl) − Ein)
2

 
Here, ETF ∈ ℝNTF×Nsc represents the TF expression matrix from the 
single-cell RNA-seq data, consisting of Nsc cells; O ∈ ℝN(i)

RE×Nsc repre-
sents the RE chromatin accessibility matrix of the single-cell 
ATAC-seq data; E ∈ ℝNTG×Nsc represents the expression of the genes 
across cells; and θl  represents the parameters in the neural net-

work. We use metacells to train the models; therefore, Nsc is the 
number of cells from metacell data.

	 (2)	L1 regularization

ℒL1(ETF,O, Ei,⋅,θl) = ‖θl‖1

	 (3)	Laplacian loss (manifold regularization) 
We generate the adjacency matrix as: B∗ ∈ ℝ(NTF+N

(i)
RE)× (NTF + N(i)

RE), 
where B∗k,NTF+j

 and B∗NTF+j,k
 represent the binding affinity of the TF 

k  and the RE j, which is elaborated in the following sections. 

LNorm ∈ ℝ(NTF+N
(i)
RE)×(NTF+N

(i)
RE) is the normalized Laplacian matrix 

based on the adjacency matrix.

ℒLaplace (ETF,O, Ei,•,θl) = tr ((θ(1)l )
T
LNormθ(1)l )

where θ(1)l ∈ ℝ(NTF+N
(i)
RE)×64 is the parameter matrix of the first 

hidden layer, which can capture the densely connected TF–RE 
modules.

	 (4)	EWC loss. EWC constrains the parameters of the first layer to 
stay in a region of θ(1)b , which is previously learned from the bulk 
data45. To do so, EWC uses MSE between the parameters θ(1)l  and 
θ(1)b , weighted by the Fisher information, a metric of how 
important the parameter is, allowing the model to protect the 
performance, both for single-cell data and bulk data45.

ℒEWC (ETF,O, Ei,•,θl) =
1

(NTF + NRE) × 64

NTF+NRE

∑
i=1

64
∑
j
Fij(θ(1)l )

i, j
(θ(1)b )

i, j

where F  is the fisher information matrix, which is detailed 
below, and θ(1)l ∈ ℝ(NTF+K)×64 is the parameter matrix of the first 
hidden layer.

To construct a normalized Laplacian matrix, we first generate the 
TF–RE binding affinity matrix for all REs from the single-cell ATAC-seq 
data. We extract the REs 1 Mb from the TSS for the gene to be predicted. 
Let N(i)

RE be the number of these REs and B ∈ ℝNTF×N
(i)
RE be the TF–RE binding 

affinity matrix, where Bkj represents the binding affinity for the TF k  
and RE j. We construct a graph, taking TFs as the first NTF nodes, REs 
as the remaining N (i)

RE  nodes and binding affinity as the edge weight 
between TF and RE. The edge weights of TF–TF and RE–RE are set to 
zero. Then the adjacency matrix B∗ ∈ ℝ(NTF+N

(i)
RE)×(NTF+N

(i)
RE) is defined as:

B∗k,j =

⎧⎪
⎨⎪
⎩

Bk,j−NTF , k ∈ {1, 2,… ,NTF} , j ∈ {NTF + 1,NTF + 2,… ,NTF + N(i)
RE}

Bj,k−NTF , k ∈ {NTF + 1,NTF + 2,… ,NTF + N (i)
RE } , ∶ j ∈ {1, 2,… ,NTF}

0, else

The Fisher information matrix is calculated based on the neural 
network trained on bulk data:

Fij = E
⎡
⎢
⎢
⎣
( ∂
∂(θ(1)b )

ij

ℒMSE (ẼTF, Õ, Ẽi,•,θb))

2
⎤
⎥
⎥
⎦

= 1
Nb

Nb

∑
n=1

( ∂
∂(θ(1)b )

ij

( 1
Nb

f ((ẼTF)•,n, Õ•,n,θb) − Ẽin)
2
)

2

GRN inference by Shapley value
The Shapley value measures the contribution of features in a 
machine-learning model and is widely used in algorithms such as deep 
learning, graphical models and reinforcement learning85. We use the 
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average of absolute Shapley values across samples to infer the regula-
tion strength of TF and RE to TGs, generating the RE–TG cis-regulatory 
strength and the TF–TG trans-regulatory strength. Let βij represent the 
cis-regulatory strength of RE j  and TG i, and γki  represent the 
trans-regulatory strength. To generate the TF–RE binding strength, we 
use the weights from the input layer (TFs and REs) to all nodes in the 
second layer of the neural network model to embed the TF or RE. The 
TF–RE binding strength is calculated by the PCC between the TF and RE 
based on this embedding. αkj represents the TF–RE binding strength.

Constructing cell type-specific GRNs
The TF–RE regulatory potential for a certain cell type is given by:

TFBkj = C sk
kj (ETF)kOj(αkj + Bkj)

where TFBkj is the TF–RE regulation potential of TF k  and RE j; sk  is an 
importance score of TF k  in the cell type to measure the preference of 
TF for activating cell type-specific open chromatin regions (which will 
be described in ‘TF importance score’ below); Ckj is the PCC of TF k  and 
RE j; Oj  is the average chromatin accessibility across cells in the cell 
type; Bkj  is the binding affinity between TF k  and RE j; and αkj  is the 
TF–RE binding strength.

The RE–TG cis-regulatory potential is defined as:

CRPij = βijOjEie
−

dij
d0

where CRPij  is the cis-regulatory potential of TG i and RE j; βij  is the 
cis-regulatory strength of RE j and TG i; Oj is the average chromatin acces-
sibility; Ei is the average gene expression across cells in the cell type; dij is 
the distance between genomic locations of TG i and RE j; and d0 is a fixed 
value used to scale the distance, which is set to 25,000 in this paper.

The TF–TG trans-regulatory potential is defined as the cumulative 
effect of corresponding REs on the TG:

TRPki = γki ∑
j∈Si

TFBkjCRPij

where γki is the TF–TG trans-regulatory strength of TF k  and TG i; Si is 
the set of REs within 1 Mb from the TSS for TG i; CRPij is the cis-regulatory 
potential of TG i and RE j; and TFBkj is the TF–RE regulation potential 
of TF k  and RE j.

Constructing cell-level GRNs
Cell-level GRNs are inferred by integrating information consistent 
across all cells, such as regulatory strength, binding affinity and RE–TG 
distance, with cell-level information, such as gene expression and 
chromatin accessibility. This approach is similar to inferring cell 
type-specific GRNs, with the key difference that cell-level GRNs use 
cell-level TF expression ETF, chromatin accessibility O and gene expres-
sion E  rather than cell type-averaged data. This allows us to infer the 
network for each individual cell based on its specific characteristics 
rather than grouping cells into predefined types.

TF importance score
To systematically identify TFs playing a pivotal role in controlling the 
chromatin accessibility of cell type, we introduce a TF importance 
score. The score is designed to measure the preference of TFs for acti-
vating cell type-specific REs. The input is multiome single-cell data 
with known cell type annotations. There are four steps to generate the 
TF importance score:

	 (1)	�Motif enrichment. We perform the motif enrichment analysis86 
to identify the motifs significantly enriched in the binding sites 
of the top 5,000 cell type-specific REs. We use the P value to 
measure the significant level of motif enrichment.

	 (2)	TF–RE correlation. To avoid dropouts in single-cell data, we 
recover the original count matrix by an average of the observed 
count of nearby cells. We calculate PCC between the TF 
expression and cell type-specific RE chromatin accessibility, 
with rkj  representing the PCC of the TF k  and the RE j. To 
mitigate the bias in the distribution of TF expression and REs 
chromatin accessibility so that the PCC is comparable across 
different TF–RE pairs, we permute the cell barcode in the gene 
expression data and then calculate, generating a background 
PCC distribution for each TF–RE pair. We generate a z-score  
for rkj,

zkj =
rkj − μkj

σkj

where μkj and σ2kj are the mean and the variance of the back-
ground PCC distribution between TFk  and REj.

	 (3)	The co-activity score of the TF-motif pair. To pair TFs with their 
motifs, we match 713 TFs and 1,331 motifs, yielding 8,793 
TF-motif pairs84. Let (k,m) denote the TF-motif pair of TF k  and 
motif m. We then calculate a co-activity score for a TF-motif pair 
for (k,m), defined as the average z-score across cell type-specific 
REs with at least one motif binding site. That is 

z co
k,m = 1

Nm
∑j∈{RE }m

zkj, where {RE}m is the set of REs with the m-th 

motif binding; and Nm = ||{RE}m|| is the number of REs in {RE}m.
	 (4)	TF importance score. The score of the TF-motif pair, (k,m),  

is given by:

s(k,m) = {
z co
(k,m), ifpm < 0.05

NA, otherwise

where pm is the P value of the mth motif from the motif-en-
richment analysis and s(k,m) is the importance score of the 
TF-motif pair (k,m). The TF importance score for the TF k  is 
the average TF-motif pair TF importance score across motifs, 
omitting NA:

sk = {
1

N(k,m)
∑m∈{m|s(k,m)≠NA}

s(k,m), ifN(k,m) > 0

0, ifN(k,m) = 0
,

where N(k,m) = ||{m|s(k,m) ≠ NA}|| is the number of the TF-motif pair 
of the TF k, whose CECI score is not NA.

TF–RE binding affinity matrix
We download 713 TF position weight matrices for the known motifs 
from GitHub page of PECA284, which is collected from widely used 
databases including JASPAR, TRANSFAC, UniPROBE and Taipale. Given 
a list of REs, we calculate the binding affinity score for each TF by motif 
scan using Homer86, as a quantitative measure of the strength of the 
interaction between TF and RE20.

Identify motif-binding REs
We identify the REs with motif binding by motif scan using Homer86.

ChIP–seq-based validation
Given that the choice of TFs for benchmarking may affect the final 
results, we use the following standard to collect all ChIP–seq data from 
the Cistrome database that satisfies the following criteria.

The procedure for choosing ChIP–seq data for PBMC is as follows.

•	 �We downloaded all human TF ChIP–seq information, including 
11,349 datasets.

•	 �We filtered samples that did not pass quality control, and 4,657 
datasets remained.
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•	 �We chose samples in blood tissue, and 609 datasets remained.
•	 �We filtered the cell line data that is not consistent with PBMC cell 

types, and 63 datasets remained.
•	 �We chose the TF expressed in single-cell data and with known 

motifs available, and 39 datasets remained.
•	 �We chose the experiments that were done in one of the 14 cell 

types detected in the PBMC data, and 20 datasets remained.

The procedure for choosing ChIP–seq data for the H1 cell line is 
as follows:
•	 �We downloaded all human TF ChIP–seq information, including 

11,349 datasets.
•	 �We filtered samples that did not pass quality control, and 4,657 

datasets remained.
•	 We chose the H1 cell line, and 42 datasets remained.
•	 �We chose the TF expressed in single-cell data and with known 

motifs available, and 33 datasets remained.

Perturbation-based validation
The criteria for choosing ground truth from the KnockTF database is 
similar to ChIP–seq data.

The procedure for choosing knockdown data for PBMC is as 
follows.
•	 �We selected the molecular type as ‘TF’ and chose the ‘Periph-

eral_blood’ tissue type, with 21 cases remaining.
•	 �There are 11 datasets included in the PBMCs cell type in the 

single-cell data.
•	 �We chose the TF expressed in single-cell data and with known 

motifs available, and 8 datasets remained.

PBMC 10× data
We download the PBMC 10K data from the 10× Genomics website 
(https://support.10xgenomics.com/single-cell-multiome-atac-gex/
datasets). Note that it contains 11,909 cells, and the granulocytes were 
removed by cell sorting of this dataset. We use the filtered cells by 
features matrix from the output of 10× Genomics software Cell Ranger 
ARC as input and perform the downstream analysis. First, we perform 
weighted nearest neighbor analysis in Seurat (version 4.0)87, and it 
removes 1,497 cells. We also remove the cells that do not have surrogate 
ground truth and it results in 9,543 cells. We generate metacells data by 
randomly selecting the square root of the number of cells in each cell 
type and averaging the expression levels and chromatin accessibility 
of the 100 nearest cells to produce the gene expression and chroma-
tin accessibility values of the selected cells. The metacells data were 
directly input into LINGER for analysis.

AUPR ratio
To measure the accuracy of a predictor, we defined the AUPR ratio as 
the ratio of the AUPR of a method to that of a random predictor. For a 
random predictor, the AUPR equals the fraction of positive samples in 
the dataset. The AUPR ratio is defined as AUPR # sample

# real positive
, representing 

the fold change of the accuracy of a predictor compared to the random 
prediction.

LINGER reveals the regulatory landscape of GWAS traits
We propose a method to integrate GWAS summary statistics data and 
cell type-specific GRNs to identify the relevant cell types, key TFs and 
sub-GRNs responsible for GWAS variants. To identify relevant cell 
types, we first project the risk SNP identified from GWAS summary 
data to a gene. We then link the gene within the 200 kb region center-
ing on the SNP and assign the most significant P value of linked SNPs 
to each gene. In this study, the trait-related genes are defined as those 
with P < 0.01 after multiple testing adjustments. We then calculate 
a trait regulation score for each TF in each cell type, measuring the 
enrichment of GWAS genes downstream of the TF based on the cell 

type-specific GRN. We choose 1,000 top-ranked genes according 
to the trans-regulation as the TG of each TF and count the number 
of overlapping genes with trait-related genes. The enrichment of 
cell types to the GWAS traits is measured by a t-test comparing the 
number of overlapping genes between the 100 top-expressed and 
100 randomly chosen TFs.

To identify key TFs of GWAS traits, we combine the trait regula-
tion score and the gene expression level of TFs in each cell type. The 
trait regulation score is the z-score of the number of overlapping 
genes of a TF across all TFs. The expression level is also transformed 
to a z-score based on the gene expression. The final importance of 
key TFs is the summation of the expression level and trait regulation 
score.

Identify driver regulators based on transcription profiles
To measure the activity of each TF on the independent transcrip-
tional profiles, we first constructed a TG set for each TF based on 
the corresponding GRN. We perform quantile normalization to the 
trans-regulation score of each gene across all TFs. We then rank the 
genes for each TF and choose the top 1,000 genes as the target. Next, 
we use the R package AUCell22 to calculate whether the TGs are enriched 
within the expressed genes for each sample, which defines the TF 
activity.

Benchmark the trans-regulatory potential
We compare LINGER’s performance of the trans-regulation prediction 
using PCC, SCENIC+, GENIE3 and PIDC as competitors to LINGER. Owing 
to the time-consuming nature of PIDC’s mutual information-based 
algorithm, we used the 5,000 most variable genes as input. As a result, 
there are 9 TFs and 14 TFs in ground truth data left for PBMCs and the 
H1 cell line, respectively.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The PBMC data used during this study was downloaded from the 10× 
Genomics website (https://s3-us-west-2.amazonaws.com/10x.files/
samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_granulo-
cyte_sorted_10k_fastqs.tar)40. SNARE-seq was downloaded from NCBI 
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under 
accession number GSE126074 (ref. 55).

Code availability
The software is available at GitHub88 (https://github.com/Durenlab/
LINGER) and the Zenodo repository under the GPLv3 license89. We used 
Python and R for this study.
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Extended Data Fig. 1 | Assessing the performance of cis-regulatory strength inferred by LINGER taking eQTL data for GTEx as ground truth. A. AUC for 
cis-regulatory strength inferred by LINGER. The ground truth for A and B is the variant-gene links from GTEx. We divide RE-TG pairs into different groups based on the 
distance of RE and the TSS of TG. B. AUPR ratio for cis-regulatory strength.
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Extended Data Fig. 2 | Parameter sensitivity. A. Sensitivity of neural network 
structure and active function. B. Violin plot of AUC and AUPR ratio values of 
trans-regulatory potential performance across diverse TFs and cell types (n=20 
independent sample). One-sided paired t-test result in -log10P-value 10.73, 7.11, 
10.85, and 9.61 compared with GENIE3, PCC, PIDC, and SCENIC+ in terms of 
AUC, respectively. For AUPR ratio, -log10P-values are 8.94, 7.03, 8.48, and 7.57, 
respectively. C, D. Bar plot of AUC and AUPR ratio difference of different motif 
matching weight. The upper and lower figures refer to the difference in weight 
0.01 to 0 and 0.01 to 10. The x-axis of C, D, and H refers to the ground truth 
data named by the TF name and Cistrome database ID. E. Scatter plot of AUC of 

original metacells and SEACells metacells as input. Each point refers to each ChIP-
seq ground truth data. F, G. Box plot of AUPR ratio and AUC of defining regulatory 
element within different TSS distances from 200 Kb to 2 Mb (n = 20 independent 
sample). Two-sided paired t-test result in p-value 0.055(2 Mb and 1 Mb), 0.088(2 
Mb and 500 Kb), 0.028(2 Mb and 200 Kb), 0.025(1 Mb and 500 Kb), 0.0056(1 
Mb and 200 Kb), and 0.70(500 Kb and 200 Kb) in terms of AUC. For AUPR ratio, 
p-values are 0.0017(2 Mb and 1 Mb), 0.093(2 Mb and 500 Kb), 0.12(2 Mb and 200 
Kb), 0.00048(1 Mb and 500 Kb), 0.00075(1 Mb and 200 Kb), and 0.64(500 Kb and 
200 Kb). H. Bar plot of AUC and AUPR ratio difference of two rounds pre-train and 
single round pre-train.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Systematic benchmarking of cell type-specific GRN. 
A, B. ROC curve and PR curve of binding potential for MYC in H1 cell line. The 
ground truth for A to D is the ChIP-seq data of MYC in the H1 cell line. The color in 
A to D represents the different competitors to predict TF-RE regulation. Orange 
represents LINGER, green represents PCC between the expression of TF and the 
chromatin accessibility of RE, and blue represents motif binding affinity of TF 
to RE. C, D. Violin plot of AUC and AUPR ratio values of binding potential across 
diverse TFs. The ground truth is ChIP-seq data for 33 TFs (n=33 independent 
sample). One-sided paired t-test is performed to test whether there is significant 
difference. In C, -log10P-values are 11.36 and 12.27 compared with PCC and TFBS, 
respectively. In D, -log P-values are 6.21 and 5.18, respectively. E, F. AUC and AUPR 
ratio of cis-regulatory potential in naïve CD8 T cells. The ground truth for E to  
J is promoter capture HiC data. RE-TG pairs are divided into six distance groups 
ranging from 0-5k to 100-200 kb. PCC is calculated between the expression of TG 
and the chromatin accessibility of RE. Distance denotes the decay function of the 

distance to the TSS. Random denotes the uniform distribution. G, H. AUC  
and AUPR ratio of cis-regulatory potential in naïve B cells. I, J. F1 score of cis-
regulatory in naïve CD8 T cells and naïve B cells for LINGER and SCENIC+. P-values 
are from one-sided paired t-test with n=9 independent sample. K to O, F1 score 
of cis-regulatory potential in classical monocytes, effector CD8 T cells, memory 
B cells, non-classical monocytes, and plasmacytoid DC cells for LINGER and 
SCENIC+. The ground truth is eQTL data (n=9 independent sample). P-values are 
from one-sided paired t-test. P, Q. ROC curve and PR curve of trans-regulatory 
potential inference of CTCF in H1 cell line. The ground truth of P to R is putative 
targets of TFs from ChIP-seq data in the H1 cell line. R Violin plot of AUC and 
AUPR ratio values of trans-regulatory potential performance across diverse TFs 
in H1 cell line (n=33 independent sample). One-sided unpaired t-test result in 
-log10P-value 15.89, 15.64, 16.36, and 15.54 compared with GENIE3, PCC, PIDC, and 
SCENIC+ in terms of AUC, respectively. For AUPR ratio, -log10P-values are 11.01, 
10.64, 11.20, and 11.17, respectively.
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Extended Data Fig. 4 | In silico perturbation. A, B. Violin plot of AUC and AUPR 
ratio values of trans-regulatory potential performance across diverse TFs and 
cell types for PBMCs. The ground truth of A to D is 8 experimental perturbation 
data from KnockTF database (n=8 independent sample). One-sided paired t-test 
are performed to test the difference. For AUC, -log10P-values are 3.74, 3.43, 3.64, 

and 3.86 compared with GENIE3, PCC, PIDC, and SCENIC+, respectively. For AUPR 
ratio, -log10P-values are 3.36, 2.14, 1.69 and 1.80, respectively. C, D. Box plot  
of AUC and AUPR ratio values of in silico perturbation predicted target gene. 
P-values are from one-sided paired t-test with 8 independent samples.  
E. Differentiation behavior prediction on BMMC data after knocking out GATA1.
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The PBMCs data used during this study is downloaded from the 10X Genomics website (https://s3-us-west-2.amazonaws.com/10x.files/samples/cell-arc/1.0.0/
pbmc_granulocyte_sorted_10k/pbmc_granulocyte_sorted_10k_fastqs.tar). SNARE-seq is downloaded from NCBI Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/ ) under accession number GSE126074. 
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