Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structures, mechanisms and applications of RNA-centric CRISPR–Cas13

Abstract

Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR–Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR–Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three stages of CRISPR–Cas13 adaptive immunity: adaptation, expression and interference.
Fig. 2: Functional module organization of CRISPR type VI Cas13 loci.
Fig. 3: Mechanisms of crRNA recognition and maturation in type VI-A systems.
Fig. 4: Mechanisms of target RNA recognition in type VI-A systems.
Fig. 5: Mechanism of self–non-self-discrimination in type VI-A systems.
Fig. 6: Modulation mechanisms of type VI systems involving anti-CRISPRs and accessory proteins.
Fig. 7: Active Cas13-based RNA-targeting technologies.
Fig. 8: dCas13-based RNA manipulation technologies.

Similar content being viewed by others

References

  1. Jia, N. & Patel, D. J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat. Rev. Mol. Cell Biol. 22, 563–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Borges, A. L., Davidson, A. R. & Bondy-Denomy, J. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu. Rev. Virol. 4, 37–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR–Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, Y. & Bondy-Denomy, J. Anti-CRISPRs go viral: the infection biology of CRISPR–Cas inhibitors. Cell Host Microbe 29, 704–714 (2021).

    CAS  Google Scholar 

  5. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Shivram, H., Cress, B. F., Knott, G. J. & Doudna, J. A. Controlling and enhancing CRISPR systems. Nat. Chem. Biol. 17, 10–19 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Sontheimer, E. J. & Davidson, A. R. Inhibition of CRISPR–Cas systems by mobile genetic elements. Curr. Opin. Microbiol. 37, 120–127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stanley, S. Y. & Maxwell, K. L. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet. 52, 445–464 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Trasanidou, D. et al. Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-CRISPRs. FEMS Microbiol. Lett. 366, fnz098 (2019).

  10. Wiegand, T., Karambelkar, S., Bondy-Denomy, J. & Wiedenheft, B. Structures and strategies of anti-CRISPR-mediated immune suppression. Annu. Rev. Microbiol. 74, 21–37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marino, N. D., Pinilla-Redondo, R., Csorgo, B. & Bondy-Denomy, J. Anti-CRISPR protein applications: natural brakes for CRISPR–Cas technologies. Nat. Methods 17, 471–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jackson, R. N., van Erp, P. B., Sternberg, S. H. & Wiedenheft, B. Conformational regulation of CRISPR-associated nucleases. Curr. Opin. Microbiol. 37, 110–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishimasu, H. & Nureki, O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr. Opin. Struct. Biol. 43, 68–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Molina, R., Sofos, N. & Montoya, G. Structural basis of CRISPR–Cas type III prokaryotic defence systems. Curr. Opin. Struct. Biol. 65, 119–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Nussenzweig, P. M. & Marraffini, L. A. Molecular mechanisms of CRISPR–Cas immunity in bacteria. Annu. Rev. Genet. 54, 93–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Koonin, E. V. & Makarova, K. S. Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biol. 20, e3001481 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McGinn, J. & Marraffini, L. A. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat. Rev. Microbiol. 17, 7–12 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR–Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amitai, G. & Sorek, R. CRISPR–Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14, 67–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Mosterd, C., Rousseau, G. M. & Moineau, S. A short overview of the CRISPR–Cas adaptation stage. Can. J. Microbiol. 67, 1–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Sasnauskas, G. & Siksnys, V. CRISPR adaptation from a structural perspective. Curr. Opin. Struct. Biol. 65, 17–25 (2020).

    Article  PubMed  Google Scholar 

  23. Hochstrasser, M. L. & Doudna, J. A. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 40, 58–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Makarova, K. S., Zhang, F. & Koonin, E. V. SnapShot: class 1 CRISPR–Cas systems. Cell 168, 946 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Makarova, K. S., Zhang, F. & Koonin, E. V. SnapShot: class 2 CRISPR–Cas systems. Cell 168, 328 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Shmakov, S. et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019). The paper demonstrates that the trans-RNase activity of Cas13 arrests host growth, thereby interrupting the infectious cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016). This article characterizes Cas13 (known as C2c2) for the first time and shows that Cas13a can be programmed for RNA interference in E. coli cells.

    Article  PubMed  PubMed Central  Google Scholar 

  37. van Beljouw, S. P. B., Sanders, J., Rodriguez-Molina, A. & Brouns, S. J. J. RNA-targeting CRISPR–Cas systems. Nat. Rev. Microbiol. 21, 21–34 (2023).

    Article  PubMed  Google Scholar 

  38. Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327–339 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smargon, A. A., Shi, Y. J. & Yeo, G. W. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat. Cell Biol. 22, 143–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Terns, M. P. CRISPR-based technologies: impact of RNA-targeting systems. Mol. Cell 72, 404–412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knott, G. J. & Doudna, J. A. CRISPR–Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, J. Y., Pausch, P. & Doudna, J. A. Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nat. Rev. Microbiol. 20, 641–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, C. et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods 18, 499–506 (2021). Together with ref. 45, this paper reports the smallest known Cas13 orthologs and demonstrates their utility as RNA editors.

    Article  CAS  PubMed  Google Scholar 

  45. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022). Together with ref. 44, this paper reports the smallest known Cas13 orthologs and demonstrates their utility as RNA editors.

    Article  CAS  PubMed  Google Scholar 

  46. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60, 385–397 (2015). This paper provides the first computational pipeline to search for uncharacterized CRISPR–Cas loci by using cas1 as the seed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoikkala, V. et al. Cooperation between different CRISPR–Cas types enables adaptation in an RNA-targeting system. mBio 12, e03338-20 (2021).

  48. O’Connell, M. R. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR–Cas systems. J. Mol. Biol. 431, 66–87 (2019).

    Article  PubMed  Google Scholar 

  49. Perculija, V., Lin, J., Zhang, B. & Ouyang, S. Functional features and current applications of the RNA-targeting type VI CRISPR–Cas systems. Adv. Sci. 8, 2004685 (2021).

    Article  CAS  Google Scholar 

  50. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR–C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, C. et al. Structural basis for the RNA-guided ribonuclease activity of CRISPR–Cas13d. Cell 175, 212–223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Knott, G. J. et al. Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nat. Struct. Mol. Biol. 24, 825–833 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. East-Seletsky, A., O’Connell, M. R., Burstein, D., Knott, G. J. & Doudna, J. A. RNA targeting by functionally orthogonal type VI-A CRISPR–Cas enzymes. Mol. Cell 66, 373–383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, L. et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, L. et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714–726 (2017). The two papers (refs. 54,55) conducted by Liu et al. report the first structures of Cas13a in apo, crRNA-bound and target RNA-bound states, thereby providing mechanistic insights into how Cas13a functions.

    Article  CAS  PubMed  Google Scholar 

  56. Meeske, A. J. et al. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR–Cas immunity. Science 369, 54–59 (2020). This article provides the first detailed mechanistic insights into an Acr targeting Cas13 systems, which is associated with complete evasion of Cas13-mediated immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kick, L. M., von Wrisberg, M. K., Runtsch, L. S. & Schneider, S. Structure and mechanism of the RNA dependent RNase Cas13a from Rhodobacter capsulatus. Commun. Biol. 5, 71 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Slaymaker, I. M. et al. High-resolution structure of Cas13b and biochemical characterization of RNA targeting and cleavage. Cell Rep. 26, 3741–3751 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, B. et al. Structural insights into Cas13b-guided CRISPR RNA maturation and recognition. Cell Res. 28, 1198–1201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, B. et al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nat. Commun. 10, 2544 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tambe, A., East-Seletsky, A., Knott, G. J., Doudna, J. A. & O’Connell, M. R. RNA binding and HEPN-nuclease activation are decoupled in CRISPR–Cas13a. Cell Rep. 24, 1025–1036 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017). This article reports Cas13-based RNA knockdown and binding platforms in mammalian cells.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017). This article reports a Cas13-based RNA A-to-I editing system in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tong, H. & Yang, H. Engineered Cas13 variants with minimal collateral RNA targeting. Nat. Biotechnol. 41, 29–30 (2023).

    Article  Google Scholar 

  65. Jain, I. et al. tRNA anticodon cleavage by target-activated CRISPR–Cas13a effector. Preprint at bioRxiv https://doi.org/10.1101/2021.11.10.468108 (2021).

  66. Meeske, A. J. & Marraffini, L. A. RNA guide complementarity prevents self-targeting in type VI CRISPR systems. Mol. Cell 71, 791–801 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, B. et al. Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Mol. Cell 81, 1100–1115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Makarova, K. S., Gao, L., Zhang, F. & Koonin, E. V. Unexpected connections between type VI-B CRISPR–Cas systems, bacterial natural competence, ubiquitin signaling network and DNA modification through a distinct family of membrane proteins. FEMS Microbiol. Lett. 366, fnz088 (2019).

  69. VanderWal, A. R. et al. Csx28 is a membrane pore that enhances CRISPR–Cas13b-dependent antiphage defense. Science 380, 410–415 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Makarova, K. S., Anantharaman, V., Grishin, N. V., Koonin, E. V. & Aravind, L. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front. Genet. 5, 102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hein, S., Scholz, I., Voss, B. & Hess, W. R. Adaptation and modification of three CRISPR loci in two closely related cyanobacteria. RNA Biol. 10, 852–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, H., Dong, C., Li, L., Wasney, G. A. & Min, J. Structural insights into the modulatory role of the accessory protein WYL1 in the type VI-D CRISPR–Cas system. Nucleic Acids Res. 47, 5420–5428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, P. et al. CRISPR–Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Mol. Cell 78, 850–861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wandera, K. G. et al. Anti-CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases. Mol. Cell 82, 2714–2726 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Johnson, M. C., Hille, L. T., Kleinstiver, B. P., Meeske, A. J. & Bondy-Denomy, J. Lack of Cas13a inhibition by anti-CRISPR proteins from Leptotrichia prophages. Mol. Cell 82, 2161–2166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jing, X. et al. Implementation of the CRISPR–Cas13a system in fission yeast and its repurposing for precise RNA editing. Nucleic Acids Res. 46, e90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Huynh, N., Depner, N., Larson, R. & King-Jones, K. A versatile toolkit for CRISPR–Cas13-based RNA manipulation in Drosophila. Genome Biol. 21, 279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aman, R. et al. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 19, 1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kushawah, G. et al. CRISPR–Cas13d induces efficient mRNA knockdown in animal embryos. Dev. Cell 54, 805–817 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Li, S. et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat. Methods 18, 51–59 (2021).

    Article  PubMed  Google Scholar 

  82. Zhang, Y. et al. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 22, 41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bawage, S. S., Tiwari, P. M. & Santangelo, P. J. Synthetic mRNA expressed Cas13a mitigates RNA virus infections. Preprint at bioRxiv https://doi.org/10.1101/370460 (2018).

  84. Abbott, T. R. et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 181, 865–876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cui, J., Techakriengkrai, N., Nedumpun, T. & Suradhat, S. Abrogation of PRRSV infectivity by CRISPR–Cas13b-mediated viral RNA cleavage in mammalian cells. Sci. Rep. 10, 9617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fareh, M. et al. Reprogrammed CRISPR–Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Nat. Commun. 12, 4270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aman, R., Mahas, A., Butt, H., Aljedaani, F. & Mahfouz, M. Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis. Viruses 10, 732 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freije, C. A. et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell 76, 826–837 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kiga, K. et al. Development of CRISPR–Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun. 11, 2934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blanchard, E. L. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 39, 717–726 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Buchman, A. B. et al. Programmable RNA targeting using CasRx in flies. CRISPR J. 3, 164–176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ai, Y., Liang, D. & Wilusz, J. E. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. 50, e65 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, Q. et al. The CRISPR–Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv. Sci. 6, 1901299 (2019).

    Article  CAS  Google Scholar 

  94. Ozcan, A. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720–725 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, L., Zhou, J., Wang, Q., Wang, Y. & Kang, C. Rapid design and development of CRISPR–Cas13a targeting SARS-CoV-2 spike protein. Theranostics 11, 649–664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tong, H. et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 41, 108–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Wessels, H. H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cheng, X. et al. Modeling CRISPR–Cas13d on-target and off-target effects using machine learning approaches. Nat. Commun. 14, 752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Patchsung, M. et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 4, 1140–1149 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Arizti-Sanz, J. et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 11, 5921 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR–Cas13a and mobile phone microscopy. Cell 184, 323–333 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Joung, J. et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N. Engl. J. Med. 383, 1492–1494 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, T. Y. et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 17, 982–988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, J. et al. Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection. Nat. Chem. Biol. 19, 45–54 (2023).

    Article  PubMed  Google Scholar 

  108. Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR–Cas13. Science 360, 444–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Qin, P. et al. Rapid and fully microfluidic Ebola virus detection with CRISPR–Cas13a. ACS Sens. 4, 1048–1054 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Ackerman, C. M. et al. Massively multiplexed nucleic acid detection with Cas13. Nature 582, 277–282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bruch, R. et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv. Mater. 31, e1905311 (2019).

    Article  PubMed  Google Scholar 

  112. Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, Y. et al. REPAIRx, a specific yet highly efficient programmable A > I RNA base editor. EMBO J. 39, e104748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, G. et al. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing. Cell Commun. Signal. 19, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, X. et al. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J. 39, e104741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fry, L. E., Peddle, C. F., Barnard, A. R., McClements, M. E. & MacLaren, R. E. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Int. J. Mol. Sci. 21, 777 (2020).

  118. Rashnonejad, A., Amini-Chermahini, G., Taylor, N. K., Wein, N. & Harper, S. Q. Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Mol. Ther. Nucleic Acids 23, 476–486 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Xiao, Q. et al. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor. Sci. Transl. Med. 14, eabn0449 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Melfi, R. et al. Investigating REPAIRv2 as a tool to edit CFTR mRNA with premature stop codons. Int. J. Mol. Sci. 21, 4781 (2020).

  121. Manning, K. S. & Cooper, T. A. The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol. 18, 102–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Du, M., Jillette, N., Zhu, J. J., Li, S. & Cheng, A. W. CRISPR artificial splicing factors. Nat. Commun. 11, 2973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Leclair, N. K. et al. Poison exon splicing regulates a coordinated network of SR protein expression during differentiation and tumorigenesis. Mol. Cell 80, 648–665 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rauch, S. et al. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xia, Z. et al. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Res. 49, 7361–7374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, J. et al. Targeted mRNA demethylation using an engineered dCas13b–ALKBH5 fusion protein. Nucleic Acids Res. 48, 5684–5694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, X. M., Zhou, J., Mao, Y., Ji, Q. & Qian, S. B. Programmable RNA N6-methyladenosine editing by CRISPR–Cas9 conjugates. Nat. Chem. Biol. 15, 865–871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rau, K., Rosner, L. & Rentmeister, A. Sequence-specific m6A demethylation in RNA by FTO fused to RCas9. RNA 25, 1311–1323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chang, C., Ma, G., Cheung, E. & Hutchins, A. P. A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. J. Biol. Chem. 298, 102525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rauch, S., He, C. & Dickinson, B. C. Targeted m6A reader proteins to study epitranscriptomic regulation of single RNAs. J. Am. Chem. Soc. 140, 11974–11981 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mo, J. et al. TRADES: targeted RNA demethylation by SunTag system. Adv. Sci. 7, 2001402 (2020).

    Article  CAS  Google Scholar 

  134. Zhao, J., Li, B., Ma, J., Jin, W. & Ma, X. Photoactivatable RNA N6-methyladenosine editing with CRISPR–Cas13. Small 16, e1907301 (2020).

    Article  PubMed  Google Scholar 

  135. Xu, M. et al. CRISPR Cas13-based tools to track and manipulate endogenous telomeric repeat-containing RNAs in live cells. Front Mol. Biosci. 8, 785160 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, M. et al. Live imaging of RNA and RNA splicing in mammalian cells via the dCas13a–SunTag–BiFC system. Biosens. Bioelectron. 204, 114074 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Yang, L. Z. et al. Dynamic imaging of RNA in living cells by CRISPR–Cas13 systems. Mol. Cell 76, 981–997 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, H. et al. CRISPR-mediated live imaging of genome editing and transcription. Science 365, 1301–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Davis, B. J. & O’Connell, M. R. Put on your para-spectacles: the development of optimized CRISPR–Cas13-based approaches to image RNA dynamics in real time. Mol. Cell 77, 207–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, B. et al. CRISPR-based RNA-binding protein mapping in live cells. Biochem. Biophys. Res. Commun. 583, 79–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, Z. et al. Capturing RNA–protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Han, S. et al. RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc. Natl Acad. Sci. USA 117, 22068–22079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Montagud-Martínez, R., Márquez-Costa, R. & Rodrigo, G. Programmable regulation of translation by harnessing the CRISPR–Cas13 system. Chem. Commun. 59, 2616–2619 (2023).

    Article  Google Scholar 

  144. Charles, E. J. et al. Engineering improved Cas13 effectors for targeted post-transcriptional regulation of gene expression. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445687 (2021).

  145. Apostolopoulos, A., Tsuiji, H., Shichino, Y. & Iwasaki, S. CRISPRδ: dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Preprint at bioRxiv https://doi.org/10.1101/2023.05.14.540671 (2023).

  146. Otoupal, P. B., Cress, B. F., Doudna, J. A. & Schoeniger, J. S. CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Res. 50, 8986–8998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cao, C. et al. Enhancement of protein translation by CRISPR/dCasRx coupled with SINEB2 repeat of noncoding RNAs. Nucleic Acids Res. 51, e33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van Beljouw, S. P. B. et al. The gRAMP CRISPR–Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science 373, 1349–1353 (2021).

    Article  PubMed  Google Scholar 

  149. Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Tng, P. Y. L. et al. Cas13b-dependent and Cas13b-independent RNA knockdown of viral sequences in mosquito cells following guide RNA expression. Commun. Biol. 3, 413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.Y. was supported by grants from the CAS project for Young Scientists in Basic research (YSBR-009), the Strategic Priority Research Program of the Chinese Academy of Science (XDB0570300), the National Key R&D Program of China (2023YFA0915600), the Natural Science Foundation of China (32171266 and 31971135), the Shanghai Rising-Star Program (20QA1410700) and the National Natural Science Foundation of Shanghai (22ZR1468900). D.J.P. was supported by funds from the NIH (GM129430, GM145888 and AI141507), the Maloris Foundation and Memorial Sloan-Kettering Cancer Center Core grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. wrote the initial draft and prepared the figures of the review. D.J.P. provided input and assistance in completing the review.

Corresponding authors

Correspondence to Hui Yang or Dinshaw J. Patel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Songying Ouyang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Patel, D.J. Structures, mechanisms and applications of RNA-centric CRISPR–Cas13. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01593-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing