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Immune cells need to sustain a state of constant alertness over a lifetime.
Yet, little is known about the regulatory processes that control the fluent
and fragile balance that is called homeostasis. Here we demonstrate

that JAK-STAT signaling, beyond its role in immune responses, is a major
regulator ofimmune cell homeostasis. We investigated JAK-STAT-mediated
transcription and chromatin accessibility across 12 mouse models, including
knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline
JAK-STAT signaling was detected in CD8" T cells and macrophages of
unperturbed mice—but abrogated in the knockouts and in unstimulated
immune cells deprived of their normal tissue context. We observed diverse
gene-regulatory programs, including effects of STAT2 and IRF9 that were
independent of STAT1. In summary, our large-scale dataset and integrative
analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of
JAK-STAT signaling in unstimulated immune cells, where it contributes to a
poised epigenetic and transcriptional state and helps prepare these cells for
rapid response to immune stimuli.

The concept of cellular homeostasis refers to the ability of cells to
actively maintain a viable and functional state over time. Forimmune
cells, whichneed torespond rapidly to potential threats such as infec-
tion or tissue damage' >, this includes maintaining constant alertness
under homeostatic conditions (that is, in the absence of stimuli that
can trigger an active immune response). Importantly, mammalian
immune cells do not use asimple on-off switch between homeostatic
maintenance and immune activation. Rather, they appear toimplement
gradual regulatory processes with baseline activity under homeostatic

conditions and rapid upregulation of key immune signaling pathways
when the cells encounter pathogens or other immune stimuli*”.
Immune cells employ signaling pathways to transmit cell-extrinsic
immune stimuli to the nucleus, where they trigger specific transcrip-
tional programs associated with acute immune responses®’. These
pathways usually comprise cell surface receptors, signal transducers
such as kinases and transcription factors that regulate their target
genesets®’. JAK-STAT signaling is a prototypical example of animmune
response pathway'* ", Cytokine receptors with associated JAK-family
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a Transcriptome and chromatin profiling of 12 JAK-STAT transgenic
mice reveals the pathway's role in immune cell homeostasis
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Fig.1| Transcriptome effects of JAK-STAT mutants in homeostasis. a, Outline
ofthe experimental approach for dissecting the gene-regulatory landscape

of JAK-STAT signaling under homeostatic conditions. b, Bar plots showing the
number of differentially expressed genes (at a 5% FDR cutoff and FC greater
than 2) between JAK-STAT mutant and wild-type mice in fiveimmune cell types.
¢, Gene expression for selected IFN response genes inimmune cells from
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JAK-STAT mutant and wild-type mice. Bar plots display the mean and standard
error.d, Similarity of transcriptional effects of JAK-STAT mutant mice in T cells
and macrophages, based on multi-dimensional scaling (MDS) of Spearman
correlation coefficients amonglog,FCs compared with wild-type mice. Results
for all cell types are shown in Extended Data Fig. 2d,e. FDR, false discovery rate;
log,FC, log, fold change.

kinases phosphorylate STAT-family transcription factors, which tran-
sitionto the nucleus and regulate specific target genes, thus enabling
rapid cellular information processing.

Inmouse and human, JAK-STAT signaling comprises four different
JAKs and seven different STATs, which control a broad range of bio-
logical functions relevant to the response toimmune stimuli®**, STAT
proteins bind two types of promoter sequences: (1) the GAS elementis
bound by all STAT homodimers and heterodimers except STAT1-STAT2;
(2) the ISRE element is bound by the interferon (IFN)-activated ISGF3
complex, which consists of a STAT1-STAT2 heterodimer complexed
with the IRF9 transcription factor™ ™",

Under homeostatic conditions, one would expect IFN signaling
and ISGF3 activity to be silenced and stably repressed, given that they
target many proinflammatory genes whose inappropriate activation
is likely to harm the host through excess inflammation and ensuing
tissue damage. Nevertheless, previous studies found low-level expres-
sion of STAT1 and STAT2 target genes in the absence of exogenous
stimuli® . While this observation suggests that JAK-STAT signaling
may retain baseline activity under homeostatic conditions, the means

and purposes of JAK-STAT signaling under homeostatic conditions
remain poorly understood.

Here we pursue the hypothesis that JAK-STAT signaling, in addition
toitsestablished rolein activeimmune responses, constitutes amajor
regulator of immune cell homeostasis (for the purpose of this study,
we operationally defined homeostasis as the unperturbed state of
immune cells obtained from wild-type laboratory mice that live under
specific-pathogen-free conditions in a normally clean animal house).
We obtained CD8" T cells and macrophages from 12 JAK-STAT mutant
mouse models under homeostatic conditions and subjected these
immune cells to transcription profiling and chromatin accessibility
mapping (Extended Data Fig.1).

Our analysis uncovered genes and gene-regulatory modules that
are controlled by JAK-STAT pathway members under homeostatic
conditions. We observed widespread baseline activity of JAK-STAT
signaling, with STAT2 and IRF9 as the most important regulators.
STAT1knockout had less pronounced effects, despite its key rolein the
IFN-stimulated gene factor (ISGF3) complex. We functionally assessed
the homeostatic roles of JAK-STAT signaling by removing wild-type
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cells from their in vivo tissue context, which resulted in transcrip-
tional changes that mimicked those observed in JAK-STAT mutants.
This context deprivation phenotype was partially rescued by type |
IFN stimulation of wild-type and JAK-STAT mutant cells. In summary,
our study establishes baseline JAK-STAT activity as a key mediator of
homeostasis in unstimulated immune cells.

Results

Transcription regulation by JAK-STAT inimmune homeostasis
JAK-STAT signalingis animportant regulatory pathway and a plausible
candidate for controlling immune cell homeostasis. Building upon
decades of research on JAK-STAT signaling inimmunology and devel-
opment*?, recent studies utilized RNA sequencing (RNA-seq) and
epigenome profiling to investigate JAK-STAT signaling in response to
acute immune stimuli** >, However, a systematic analysis of JAK-STAT
in homeostasis has been lacking. We thus mapped and analyzed the
transcriptomes and epigenomes of homeostaticimmune cells for 12
JAK-STAT mouse models, including knockouts and function-altering
mutants (Fig. 1a). We focused our analyses on sort-purified CD8" T cells
and macrophages from spleen, thus covering both the lymphoid and
myeloid lineage with cell types that show robust expression of JAK-STAT
proteins. Inadditionto our mainfocuson CD8" T cellsand F4/80" mac-
rophages, we also investigated MHCII* CD11c" dendritic cells, NK1.1*
naturalkiller (NK) cells and CD19" B cells for some of the mouse models
(Supplementary Fig.1).

Weincluded knockouts of all STATs (STAT1, STAT2, STAT3, STAT4,
STAT5a/b, STAT6) as the pathway’s regulators of transcription and
chromatin. Because knockouts of STAT3 and STAT5 are embryonically
lethal®**, we studied these two transcription factors using conditional
knockouts in hematopoietic cells (Vav-iCre). For in-depth analysis of
STAT1, we further included two isoform-specific mouse models: STAT1
beta-only mutant (Statlb-only, where only Statlp is expressed) and
STAT1alpha-only mutant (Statla-only, where only STAT1a is expressed).
We also included knockout mice for the STAT cofactor IRF9, and mice
with the hyperactivating, oncogenic STAT5BN***" (Stat5b-hyp) mutation.
Finally, weincludedJanus kinase TYK2 knockout mice and kinase-dead
TYK2%2*E mutant mice (Tyk2-inact), to assess kinase-independent
effects. We did not include knockouts of the Janus kinases JAK1, JAK2
and JAK3 because these are perinatally or embryonically lethal (JAK1,
JAK?2) and interfere with normal hematopoiesis (JAK1, JAK2, JAK3)'*,

In total, we obtained 469 high-quality transcriptomes by
RNA-seq and 496 high-quality epigenome profiles with the assay
for transposase-accessible chromatin using sequencing (ATAC-seq)
(Supplementary Table 1). All samples were processed according to
well-defined standard operating procedures to enhance consistency
across six laboratories and three mouse facilities in our consortium. We
always processed wild-type mice along with the JAK-STAT mice to control
for batch effects (such as mouse facility, processing date or experi-
menter). We extensively validated the quality, sensitivity and robustness
of our dataset (Extended Data Fig. 2a, Supplementary Figs.2-4 and Sup-
plementary Note). All data are available for download and for interactive
browsing as UCSC Genome Browser tracks (http://jakstat.bocklab.org).

Our analysis uncovered characteristicregulatory roles of all inves-
tigated JAK-STAT proteins (Fig. 1b and Supplementary Table 2). Knock-
out of STAT2, STAT3, STATS5 and IRF9 had the strongest transcriptional
consequences (Fig. 1b). Knockout of STAT1 or one of its isoforms had
smaller effects, despite its prominent role in the ISGF3 complex. For
IFN-stimulated genes (ISGs) as prototypical targets of JAK-STAT sign-
aling, we observed marked downregulation in knockouts of ISGF3
complex members (STAT1, STAT2, IRF9), in TYK2 knockouts and in
the kinase-dead TYK2** mutant (Fig. 1c and Extended Data Fig. 2b).
STAT3 and STATS5 knockouts led to downregulation of asubset of ISGs
mainly in macrophages, indicating cooperative regulation of ISGs by
STAT3 and STAT5 with ISGF3 members under homeostatic conditions
(Extended DataFig. 2b).

Transcriptional changes were often shared across two or more
JAK-STAT mutants, indicative of synergy and cooperativity. How-
ever, we did not detect a single JAK-STAT signature that was consist-
ently abrogated by all JAK-STAT knockouts (Extended Data Fig. 2c).
Rather, each JAK-STAT protein appears to control a characteristicand
cell-type-specific set of target genes (Supplementary Table 2). To visual-
ize these effects across mutants and cell types, we performed dimen-
sionality reduction with multi-dimensional scaling on the differentially
expressed genes (Fig. 1d and Extended Data Fig. 2d,e). We observed a
global separationin the transcriptional response for JAK-STAT knock-
outswithaprimaryroleintheIFNresponse (STAT1, STAT2, IRF9, TYK2;
green areas in Fig. 1d) versus those that are more strongly involved
in cell maturation and differentiation (STAT3, STAT4, STATS, STAT6;
brownareasinFig.1d). Moreover, we identified six clusters with distinct
properties (Fig. 1d, Extended Data Fig. 2d,e, Supplementary Table 2
and Supplementary Note).

In summary, our transcriptome analysis of 12 JAK-STAT mutant
mouse models identified widespread and cell-type-specific
gene-regulatory roles of JAK-STAT pathway members in homeostatic
immune cells.

Shared and specific gene modules regulated by JAK-STAT
Foracomprehensive picture of JAK-STAT-mediated transcription regu-
lation in homeostasis, we grouped all differentially expressed genes
(n=6,247)into gene-regulatory modules across mutants and cell types
(Fig. 2a), establishing a transcriptional similarity map of genes using the
Uniform Manifold Approximation and Projection (UMAP) algorithm.
This method is widely used to visualize the similarity of single cells or
samples, but here we applied it to visualize the similarity of effects on
genes across mutants and cell types, to define regulatory modules.
Based on the nearest neighbor graph from the UMAP algorithm, we
clustered differentially expressed genes into 16 gene-regulatory mod-
ulesthatare regulated by JAK-STAT proteins (Fig. 2b and Supplementary
Table 2). For each of these gene modules, we determined the average
changeingene expressionin each JAK-STAT mutant (Fig. 2c,d), and we
annotated each module withits putative biological functions based on
characteristic gene set enrichments (Fig. 2e).

Our analysis identified a gene cluster (module P) that was highly
enriched for the previously described ‘ISG core’ gene set” (Extended
Data Fig. 3). This module was strongly downregulated in knockouts
of all three ISGF3 members (STAT1, STAT2, IRF9), in TYK2 knockouts
and in the kinase-dead TYK2*°*f mutant, implicating these factors
in tonic IFN signaling and baseline ISG expression in homeostatic
immune cells***°, STAT2-dependent gene expression was associated
with ‘Oxidative phosphorylation” and ‘mRNA-splicing’ (module D) in
T cells but not in macrophages. IRF9 knockout increased expression
of ‘Activation of NIMA kinases’ and ‘Beta2 integrin cell surface interac-
tions’in T cells (module O) and macrophage-specific downregulation
of module M, which was associated with ‘betalintegrin signaling’ and
‘NCAMLlinteractions’.

Downregulation of module Mwas also observedin STAT5 knockout
mice, indicative of cooperativity between IRF9 and STATS. Moreover,
IRF9 knockouts were characterized by increased expression of module
F, whichwas enriched for ribosomal function and regulation of transla-
tion. STAT2 and IRF9 knockouts shared a pronounced effect on core
ISGs that was consistent across cell types and appears to constitute
a context-independent regulatory mechanism. However, core ISGs
accounted only for aminority of their target genes, and other affected
genes (including genesinvolvedin cell differentiation and in broad IFN
response signatures) showed much more cell-type-specific patterns
(Supplementary Fig. 5). Overall, these observations suggest diverse
regulatory effects of IRF9 that are independent of its established role
asamember of the ISGF3 complex?**42,

STATS knockout affected several modules in cell-type-specific
ways. Most notably, module B was downregulated in T cells but not
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Gene-centric UMAP analysis describes the gene-regulatory landscape of JAK-STAT signaling in homeostatic immune cells
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Fig.2|Gene-regulatory modules underlying JAK-STAT signaling in
homeostasis. a, Outline of the analytical approach for identifying JAK-STAT
gene-regulatory modules. b, Similarity of genes in terms of their differential
expression patterns across JAK-STAT mutants, based on a UMAP of log,FCs
between JAK-STAT mutant and matched wild-type samples. This UMAP
places genes with similar effects of JAK-STAT mutants on their transcriptome
in proximity. Itincludes all genes with a twofold or greater change in gene

expression for at least one mutant, and it places them in16 gene clusters marked
by letters A to P. ¢, Overlay of mutant-specific differential expression (with color-
coded log,FCs) onthe gene UMAP from b. d, Dot plot showing the average log,FC
acrossallgenesin the clusters fromb, for two cell types and 12 JAK-STAT mice.

e, Dot plot showing gene set enrichment for the gene clusters from b (two-sided
Fisher’s exact test, corrected for multiple comparisons). The four most enriched
gene sets are shown for each cluster. OR, odds ratio.

in macrophages, while downregulation of module F was much more
pronouncedinmacrophages thaninT cells (Fig. 2d). We also observed
upregulation of module O in T cells, which was associated with cell
cycle regulators such as NIMA-related kinases (NEK1, NEK2) (Fig. 2e).
Hyperactivated STAT5B*** had a less pronounced effect on modules
G,Jand Nthan STAT5 knockout, while affecting abroader range of other

modules. It thus seems that this oncogenic variant of STAT5 has lost
much of the conventional regulatory effects of the wild-type protein
while having acquired many new target genes.

Our module-based analysis thus revealed diverse and often
cell-type-specificregulatory processes and target genes in homeostatic
immune cells, of which classical ISGs constitute only a small fraction.
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Fig.3 | Characteristic roles of JAK-STAT signaling in homeostasis.

a, Differential gene expression for IRF9 and STAT2 knockouts. Left, scatterplot
oflog,FCs for the two knockouts relative to matched wild-type samples. Right,
bar plots of differential expression levels relative to wild type for selected genes,
displaying mean and standard error. b, Differential gene expression for STATS
modulation and IL-2 treatment in T cells. Left, scatterplot of log,FCs for the
hyperactivated STATSB™** mutant (STAT5-hyp) and STATS knockout relative to
wild type, and for the response of wild-type T cell to in vitro IL-2 treatment at two
time points. Right, gene set enrichment analysis for the differentially expressed
genes (two-sided Fisher’s exact test, corrected for multiple comparisons).
Upregulation, downregulation and no change areindicated by ‘+,‘~"and ‘0’,
respectively. ¢, Differential gene expression for STAT1isoforms. Left, scatterplot
oflog,FCs for the two STAT1isoforms and for the full STAT1 knockout. Right,

box plots showing STAT1isoform effects (log,FC) for genes with significant
STAT1 effectin macrophages, grouped by the effects of full STAT1 and STAT2
knockouts. Upregulation, downregulation and no change are indicated by a ‘+,
‘~"and ‘0’, respectively. Box plots show the full data range, with the box indicating
interquartile range and median. Bottom, bar plots showing the expression levels
of selected genes affected by these mutants. d, Differential gene expression

for TYK2 modulation. Left, scatterplot of log,FCs for the TYK2 knockout and

the kinase-dead TYK2X°*® mutant. Right, TYK2 mutant effects on selected

IL-12 regulated genes (two-sided linear mixed models, corrected for multiple
comparisons). Bottom, bar plots showing the expression levels of selected
genes affected by these mutants. Mac, macrophage; r, Spearman correlation
coefficient. Bar plots display the mean and standard error.

In addition, these results uncovered a much broader and more inde-
pendentrole for IRF9 than previously appreciated.

Effect of JAK-STAT isoforms and mutations onimmune cells
The homeostasis-linked gene modules (Fig. 2) comprise many target
genes of JAK-STAT signaling with well-known roles in active immune
responses. However, we also observed characteristic differences and
properties that appear to be specific to homeostatic immune cells.
Here we focus on four examples (two are summarized below and two in
the Supplementary Note): broad effects of STAT2 and IRF9 knockouts
(Fig. 3a), dramatic changesinthe specificity of hyperactivated STATSBN*
(Fig.3b), differences between the two STAT1splicingisoforms (Fig. 3cand
Extended DataFig. 4) and kinase-independent effects of TYK2 (Fig. 3d).
IRF9 and STAT2 are known for their rolein the IFN response as part
ofthe ISGF3 complex, but we observed muchbroader and only weakly

correlated transcriptional changes for STAT2 and IRF9 knockouts in
homeostaticimmune cells (Figs. 2c and 3a). For example, IRF9 appears
to regulate the following genes independent of STAT1 and the ISGF3
complex: Rdh14, important for signaling downstream of the retinoic
acidreceptor*’; Tprkb, a critical component for the generation of trans-
fer RNAs with aknown role in p53-deficient cancers**; and Usb1, which
is involved in hematopoietic malignancies® (Fig. 3a). Our analyses
demonstrate that IRF9 regulates many of its target genes independ-
ent of STAT1, STAT2 and of the canonical ISGF3 complex, possibly by
interacting with other transcription factors including members of the
STAT family***. The transcriptional changes observed in IRF9 knock-
outs showed a high correlation with those found in STAT3 and STAT5
knockout macrophages (Extended Data Fig. 2e), suggesting STAT3 and
STATS5 as potential interaction partners of IRF9 in macrophages under
homeostatic conditions.
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Fig. 4 |Invivo validation of baseline JAK-STAT signaling in homeostasis.

a, Spatial transcriptomics profiles of spleens from wild-type and STAT1 knockout
mice, shown for samples collected after in vivo cell fixation using formaldehyde.
First row: hematoxylin and eosin (H&E) stains highlighting the anatomical
structures of the spleen. Second row: spatial transcriptomics profiles annotated
with gene expression clusters. Third and fourth row: expression levels of the

T cell marker gene Cd8a and the macrophage marker gene Cd33in the spatial
transcriptomics data (scale bars,1 mm). b, Violin plots showing the expression of
STAT1-driven genes (top-15 downregulated genes comparing STAT1 knockout and
wild type based on the RNA-seq data) and housekeeping genes (Actb, Hprt and

d In vivo expression at sub-cellular resolution
reveals Oas3 dependency on STAT1

Bl Autofluorescence (475 nm), erythroid cells in the red pulp
Oas3 (a STAT target gene)
W Cd3(aT cell marker gene)
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B Autofluorescence (475 nm), erythroid cells in the red pulp
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Ubc) inthe spatial transcriptomics data. ¢, Violin plots showing the expression
oftheISGs Oas3, Ifit3 and [fit1 in Cluster 4 of the spatial transcriptomics data.

d, Representative RNA-FISH images for the ISG Oas3 (yellow) and the T cell
marker gene Cd3e (dark blue) in spleen samples from wild-type and STAT1
knockout mice (scale bar, 50 pm). Autofluorescence of the red pulp is visible

in magenta. e, Representative RNA-FISH images for the ISG /fit3 (yellow) and

the T cell marker Cd3e (dark blue) in spleen samples from wild-type and STAT1
knockout mice (scale bar, 50 pm). Experiments comprised two mice (a-c) or
three mice (d and e) as biological replicates. Box plots (b and c) show the full data
range, with the box indicating the interquartile range and median.

Wealsoinvestigated STAT5 knockout and STAT5BN®* (Stat5-hyp)
mutants with additional experiments. In canonical JAK-STAT signaling,
STATSisactivatedinresponse toIL-2signalingin T cells, prompting us
to treat splenic T cells from wild-type, STAT5 knockout and Stat5-hyp
mutant mice with IL-2. We assessed the effects of IL-2 treatment after
1.5and 20 h and observed pronounced differences between STATS
wild-type and knockout T cells (Fig. 3b), with correlations close to zero
(Spearman’s r=-0.006 at 1.5 h; Spearman’s r = 0.064 at 20 h). STATS
knockout thus compromises the gene-regulatory program associ-
ated with IL-2 stimulation. Surprisingly, STAT5B"**"-mutant T cells
also showed little overlap with STAT5 wild type upon IL-2 stimulation
(Spearman’sr=0.071at1.5 h; Spearman’sr= 0.248 at 20 h), suggesting
that this oncogenic driver mutation compromises normal STATS func-
tion and redirects the regulatory activity. Gene set analysis identified
enrichment for AURORA kinase signaling (in line with a recent obser-
vation®), cell cycle progression and target genes of the transcription
factors E2F4 and FOXML (Fig. 3b). These results suggest a switch of
target genes for the STAT5BY**?" mutant compared with STAT5 wild
type, which likely contributes to its role in T cell proliferation and
lymphoma/leukemia development.

These results illustrate the breadth and complexity of
JAK-STAT-mediated gene regulation under homeostatic conditions,
which diverges in part from our knowledge of JAK-STAT signaling
in active immune responses. Most notably, we found widespread

IRF9-regulated gene expressionindependent of STAT1and STAT2, and
aswitch to de novo gene targets for the STAT5B** driver oncogene.

Baseline JAK-STAT signaling in the in vivo tissue context
Akeyresult of our study is the unexpected breadth and complexity of
baseline JAK-STAT signaling under homeostatic conditions, which we
observed in T cells and macrophages extracted from the spleens of
unperturbed mice. To exclude that this effect is due to sample handling
rather thanreflecting true biology (for example, tissue dissociation may
activateimmune cells), we investigated the expression of JAK-STAT tar-
getgenesdirectlyinspleen tissue using spatial transcriptomics (Visium
assay) and RNA-based fluorescence in situ hybridization (RNA-FISH),
withoutany cellisolation or fluorescence-activated cell sorting (FACS).
For spatial transcriptomics profiling, we fixed spleens from
wild-type and STAT1 knockout mice in situ via transcardial perfusion
with formaldehyde, which effectively removes therisk of altering gene
expression during ex vivo sample handling. The spatial transcriptomics
datareflected the expected architecture of the spleenin both wild-type
and knockout mice (Fig. 4a and Extended Data Fig. 5). The k-means
clustering of the spatially resolved transcriptional profiles identified
six clusters, four of which (Clusters1to4) corresponded to well-known
morphological regions of the spleen, including areas of white and
red pulp. The overall tissue architecture was unaffected by the STAT1
knockout, and the localization of T cells (marked by Cd8a expression)
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Fig. 5| Epigenome effects of JAK-STAT mutants in homeostasis. a, Outline
ofthe analysis dissecting JAK-STAT modulation of the epigenome (based on
ATAC-seq data) and transcriptome (based on RNA-seq data). b, Genome browser
tracks showing chromatin accessibility profiles for the promoter regions

of the Stat5a gene, the macrophage marker gene CdI14 and the T cell marker
gene Cd28. ¢, Transcription factor footprinting analysis, showing differential
chromatin accessibility footprints for certain JAK-STAT mutants and cell types.
Shaded areas indicate the standard error. d, Bar plots showing the percentage

of genes and genomic regions affected by transcriptome and epigenome
changes upon JAK-STAT modulation (relative to the number of all tested genes

or genomicregions), as well as the Pearson correlation between transcriptome
and epigenome changes (log,FCs of gene expression versus chromatin
accessibility of the corresponding gene promoter across all tested genes). Group
annotations (in blue) were manually assigned based on qualitative similarities
inthe transcriptome and epigenome effects. e, Scatterplot of log,FCs for
transcriptome versus epigenome changes upon STAT3 and STATS5 knockout.

and macrophages (marked by Cd33 expression) was similar between
wild-type and knockout mice.

We then quantified the expression of the top-15 downregulated
genes between STAT1 knockout and wild-type mice (based on our
RNA-seq data) in the spatial transcriptomics data. We observed sig-
nificantly higher expression of these putative STAT1 target genes in
wild-type compared with STAT1 knockout mice specifically for spatial

Cluster 4, which corresponds to white pulp—an area that contains many
T cellsand macrophages (Fig. 4b and Extended Data Fig. 5). For exam-
ple, the classical ISGs Oas3, Ifit3 and Ifitl were expressed in wild-type
mice but almost completely absent in STAT1 knockouts (Fig. 4c). In
contrast, a control gene signature comprising the putative housekeep-
ing genes Actb, Hprt and Upc showed similar expression levels between
wild type and STAT1 knockouts (Fig. 4b and Extended Data Fig. 5).
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Giventhattheresolution of the spatial transcriptomics assay does
notsupportsingle-cell analysis, we further validated these results using
single-molecule RNA-FISH for Oas3and [fit3 (Fig. 4d,e). Consistent with
the spatial transcriptomics data, we observed Oas3 and [fit3 expression
inwild-type mice but notin STAT1knockout mice, both forthe spleen’s
white pulp (whichis marked by Cd3-expressing T cells) and the red pulp
(marked by erythrocyte-mediated autofluorescence).

These results show that baseline JAK-STAT signaling under homeo-
static conditionsisaninvivo characteristic of splenicimmunecellsin
wild-type mice and is abrogated in STAT1 knockout mice.

JAK-STAT chromatin regulationin homeostaticimmune cells
Epigenetic mechanisms play animportant roleinthe regulation of cell
state*>*°, and JAK-STAT is known to induce changes to the epigenome
upon acute immune stimulation®*?>*'**, We thus hypothesized that
baseline JAK-STAT activity helps maintain the ‘epigenetic potential’ of
immune cells** %, by keeping immune cells in a regulatory state that
supportsrapid activation without previous chromatin remodeling. We
investigated the effect of perturbed JAK-STAT signaling on chromatin
accessibility (ATAC-seq) for the same JAK-STAT mutants and cell types
asinthetranscriptome analysis (Fig. 5a, Extended DataFig. 6 and Sup-
plementary Table1). These epigenome maps showed mutant-specific as
well as cell-type-specific differences (Fig. 5b). For example, chromatin
accessibility of the Stat5a gene promoter was reduced in STAT5 knock-
out macrophages and T cells, indicative of abrogated feed-forward
regulation, and anintronic region of Cd28 carried accessible chromatin
only in T cells, whereas an upstream enhancer of the Cd14 gene was
accessible only in macrophages.

To link the affected genomic regions to putative regulators, we
inferred transcription factor binding from DNA sequence motif's (Fig. 5¢).
We identified enriched binding sites of RUNX2 in STAT5BY*?" mutant
T cells, EOMES and AP1 heterodimer (FOS/JUN) in STAT5 knockout T cells,
GATA1/TAL1in STAT5 knockout macrophages and NFkBin STAT6 knock-
out macrophages—all associated with regions with increased chroma-
tin accessibility in the JAK-STAT mutants. Conversely, binding sites of
ZBED1, whichregulates cell proliferation®’, were enriched in regions with
decreased chromatinaccessibility in STAT4 knockout T cells.

Moreover, to quantify the effects of JAK-STAT proteins on the epi-
genomes of homeostatic immune cells, we systematically compared
the chromatin accessibility profiles between JAK-STAT mutant and
wild-type mice (Supplementary Table 3). Mutants with many differ-
ences in their epigenomes also tended to differ strongly in their tran-
scriptomes, although the association was far from perfect (Fig. 5d). We
further compared the JAK-STAT mutant effects on promoter accessibil-
ity withthose on gene expressionacross genes (Fig. 5d,e and Extended
Data Figs. 7 and 8). Correlations ranged from zero to above 0.4, and
weidentified three groups of JAK-STAT mutants with distinct patterns
(Fig. 5d and Supplementary Note).

Thefirstgroup comprised knockouts of STAT1and its two isoforms
(inbothcelltypes), STAT4 (inbothcelltypes) and STAT6 (in Tcells) and the
kinase-dead TYK2X*® mutant (in T cells). These mutants induced rela-
tively few changes to the epigenome (<2.5% of tested regions) and to
the transcriptome (<4.5% of genes), and the changes were not well
correlated (Pearson’sr<0.2).

The second group of JAK-STAT mutants was characterized by
many transcriptional changes (>4.5% of genes) but fewer epigenome
changes (<2.5% of tested regions), and limited correlation between
the two (Pearson’s r < 0.2). This group included knockouts of IRF9,
STAT2 and STAT3 (inboth cell types). STAT2 and IRF9 knockouts led to
decreased expression of ISGs such as Oasl1, Ifit2, Ifi27, Oasla, Oas2 and
Ladl.Moreover, STAT3 knockouts caused widespread transcriptional
changes but only modest changes of the epigenome, despite STAT3’s
essential role as a developmental regulator.

The third group was characterized by a stronger effect on
the epigenome (>2.5% of tested regions). This group included the

hyperactivating STATSBV**** mutant (in T cells), knockouts of STATS (in
both celltypes), STAT6 (in macrophages) and TYK2 (inboth cell types)
and the kinase-dead TYK2%°? mutant (in macrophages). These mutants
(except for TYK2) also exhibited strong transcriptome effects (>4.5%
of tested genes) and a relatively high correlation of epigenome and
transcriptome. Knockouts of STATS5 and STAT6 resulted in increased
chromatin accessibility specifically in macrophages, indicative of a
repressive role of these factors under homeostatic conditions and in
linewithknown STAT6-mediated repression of M1 polarization genes®
(Fig. 5e). The oncogenic STAT5BY**" mutant lost the repressive effect of
STAT5and instead caused T cell-specificincreased chromatin accessi-
bility, as well as upregulation of T cell effector genes (granzymes Gzmk,
Gzmb), of killer cell lectin-like receptors (Klrc1, Kirel) and of the cell
cycle regulator Mki67, which likely contributes to hyperproliferation
of STATSBN*" T cells.

Integrative epigenome and transcriptome analysis thus identi-
fied chromatin-regulatory roles of multiple JAK-STAT pathway mem-
bers, which were not always linked to changes in gene expression.
Our observations suggest that baseline JAK-STAT signaling under
homeostatic conditions actively maintains a chromatin accessibility
landscape that supports rapid immune responses—but carries the
risk of oncogenic transformation, asillustrated by the changes associ-
ated with STAT5BM** and the well-established oncogenic role of this
mutant.

Loss of JAK-STAT signaling upon removal of tissue context

Our analyses uncovered widespread changesin the transcriptomes and
epigenomes of homeostaticimmune cells obtained from the spleen
of JAK-STAT mutant mice, strongly suggestive of baseline JAK-STAT
signalingin wild-type micein the absence of acuteimmune stimuli. We
hypothesized that this baseline JAK-STAT signaling under homeostatic
conditionsis triggered by the in vivo tissue context of the immune cells.
To test this hypothesis, we deprived T cells and macrophages of their
tissue context through short-term ex vivo culture, effectively remov-
ing them from interactions with other cell types and from secreted
factors that may trigger baseline JAK-STAT signaling activity in intact
tissue (Fig. 6a). In addition, we stimulated the ex vivo-cultured cells
with IFN-p to actively induce JAK-STAT activity, and we conducted
a control experiment in which we supplied macrophages only with
the macrophage colony stimulating factor M-CSF to enhance their
tolerance for ex vivo culture. We profiled the transcriptomes and
epigenomes of all samples and compared the results with wild-type
cells purified from homeostatic tissue samples (Supplementary
Tables4 and55).

Deprivation of tissue context by ex vivo culture resulted in strong
downregulation of genes (Fig. 6b) and pathways (Fig. 6¢) related to
JAK-STAT and IFN signaling, both in T cells and in macrophages. In
contrast, IFN-f stimulation upregulated these gene signatures well
above homeostaticlevels (Fig. 6b,c). These effects were robust across
biological replicates and strongly exceeded technical variationin our
dataset (Supplementary Figs. 6 and 7). The transcriptional changes
observed in T cells were consistent with switching between different
levels of JAK-STAT signaling activity based on extrinsic signaling input.
In contrast, macrophages depleted of their tissue context not only
exhibited widespread loss of JAK-STAT-mediated gene expression, but
also a broader downregulation of macrophage-specific gene expres-
sion programs (Extended DataFig. 9a,b). Neither IFN-[3 stimulation nor
treatment with macrophage growth factor M-CSF was able to rescue
this wider loss of macrophage-specific gene expression programs. In
otherwords, both T cells and macrophages depended on signals from
theinvivo tissue context to maintain baseline JAK-STAT signaling activ-
ity, butonly macrophages depended on the tissue context to maintain
their cellular identity.

To assess which JAK-STAT proteins may mediate the stimulatory
effect of the in vivo tissue context, we compared the differentially
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Fig. 6 | Abrogated baseline JAK-STAT signaling outside of the in vivo tissue
context. a, Outline of the experimental approach: ex vivo culture for 20 hwith
basal medium and 10% FCS without supplements or with M-CSF (to support
macrophage viability) or with IFN-f3 stimulation either in thelast 1.5 h before
sample collection or for the full 20 h, followed by transcriptome profiling.

b, Differential expression upon ex vivo culture compared with homeostatic
conditions in wild-type cells. Bar plots display the mean and standard error

of log,FCs. ¢, Enrichment or depletion of JAK-STAT-related gene sets among

the differentially expressed genes fromb. d, Enrichment or depletion of
differentially expressed genes between JAK-STAT mutants and wild type fromin

Ligand-receptor pair
vivo homeostatic conditions among the differentially expressed genes fromb.
For example, enrichment (red) of STAT1 knockout genes for IFN- stimulation
indicates that our homeostatic STAT1 target genes are preferentially induced by
IFN-f stimulation. e, Summary of inferred receptor-ligand interactionsin the
spleen asinferred from the Tabula Muris dataset. Interactions where CD8" T cells
and macrophages represent targets (that is, express the receptor) are highlighted
by black arrows. f, Selected ligand-receptor interactions of CD8* T cells (top)
and macrophages (bottom) with other types of immune cells. NES, normalized
enrichmentscores. Pvaluesin c,d and fare based on two-sided random
sampling, corrected for multiple comparisons.

expressed genes for JAK-STAT pathway mutants (relative to wild
type) with the differentially expressed genes for the ex vivo-cultured
wild-type cells (relative to uncultured wild-type cells) (Fig. 6d).
We found that target genes of STAT1 (including each of the two
isoforms), STAT2, IRF9 and TYK2 (including its catalytically inac-
tive mutant) were downregulated upon deprivation of tissue
context in wild-type cells. Ex vivo stimulation with IFN-p rescued
most of these effects, with the exception of STAT1-beta-dependent
genes. In macrophages, context deprivation also led to the down-
regulation of STAT3-, STAT4- and STAT6-dependent genes, which was
not rescued by IFN-f stimulation. Finally, STAT5-dependent genes
were downregulated in cultivated T cells and not restored by IFN-f3
stimulation (Fig. 6d).

Our observation that baseline JAK-STAT signaling is lost in
context-deprived ex vivo culture, but partially restored by IFN- stimu-
lation, suggests cell-extrinsic triggers of baseline JAK-STAT signaling

under homeostatic conditions. In contrast, it excludes cell-intrinsic
effects that would persist in cell culture (for example, accumulating
DNA damage in adult mice) as the primary cause of baseline JAK-STAT
signaling. To identify cell-extrinsic factors that may induce baseline
JAK-STAT signaling in vivo, we inferred receptor-ligand interactions
of T cells and macrophages with other cell types of the spleen, based
on published single-cell transcriptome atlas data (Fig. 6e,f, Extended
Data Fig. 9¢,d and Supplementary Table 6)*°. For example, splenic
CD8' T cells highly expressed the KLRB1receptor, supporting cell-cell
interactions with immune cells that express CLEC2B or other c-type
lectins®. Splenic macrophages were characterized by high expression
of checkpoint molecule receptors such as SIGLECI (which caninteract
withSPNon T cells)**and LILRB1 (which caninteract with HLA-F/MHC-I
onmany cell types)®’. Moreover, the HAVCR2/TIM3-LGALS9 receptor-
ligand pair®* may mediate macrophage interactions with most types
of myeloid immune cells in the spleen.
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Fig. 7| Partial restoration of wild-type signaling upon stimulation of JAK-
STAT mutant T cells. a, Outline of IFN-f stimulation experiments and analyses
inJAK-STAT knockout cells cultured ex vivo. This figure focuses on T cells, while
corresponding results for macrophages are shown in Extended Data Fig. 10.

b, Grouping of genes based on the observed IFN-f3 stimulation effects in wild-type
and mutant cells. Lines correspond to the mean transcriptional change across
allgenesin eachgroup. ¢, Prevalence of the five gene groups from b in each JAK-
STAT mutant. Genes with significant but minor differences of stimulation effects
between wild-type and mutant cells were not assigned to any group (marked in
black). d, Differential gene expression heatmap for IRF9 knockout and wild-type

T cells upon IFN-B stimulation, annotated with the grouping of differentially
expressed genes (rows). e, Share of genes for which the JAK-STAT mutant effect
reverts the IFN-B stimulation effect. This is calculated as the percentage of all
genes with anIFN-B stimulation effect in wild-type cells, the total number of
whichis shownin brackets. f, Mean differential gene expression (log,FC) upon
IFN-f stimulation across 80 core ISGs. Box plots show the full data range, with the
boxindicatinginterquartile range and median. g, Share of genes for which the
IFN-f stimulation reverts the JAK-STAT mutant effect, relative to allgenes with a
JAK-STAT mutant effect in unstimulated cells (shown in brackets). MUT, mutant;
WT, wild type.

These functional experiments show that removing T cells and
macrophages from their in vivo tissue context abrogates the baseline
JAK-STAT activity that we found to be characteristic of homeostatic
immune cells. Deprivation of tissue context mimicked the effect of
certain JAK-STAT pathway knockouts and was partially rescued by the
strong exogeneous stimulation provided by IFN-3, suggesting that
low-level IFN signaling and ISGF3 activity are important contributors
to homeostatic JAK-STAT signaling.

IFN-B partially rescues JAK-STAT signaling in mutant cells

Given that deprivation of tissue context in wild-type cells mimicked
certain JAK-STAT mutant effects (Fig. 6), we further tested whether
IFN-f stimulation could restore JAK-STAT signaling activity not only
in context-deprived wild-type but also in JAK-STAT mutant immune

cells. We thus cultured JAK-STAT mutant cells in vitro and stimulated
them with IFN-f (Fig. 7a), in the same way as for wild-type cells shown
in Fig. 6. We focused this analysis primarily on T cells (Fig. 7) given
their stronger response to IFN-f in wild-type cells (Fig. 6¢), while
observing similar yet weaker effects also for macrophages (Extended
DataFig.10).

To compare the transcriptome response of IFN-f3 stimulation
between wild-type cells and each JAK-STAT mutant, we fitted linear
modelswith correspondinginteraction terms (Fig.7a). Based onthese
fitted models, we assigned the differentially expressed genes to five
signatures (Fig. 7b and Supplementary Table 7): (1) de novo response to
IFN-B stimulation in mutant cells that is not observed in wild-type
cells; (2) enhanced effect of stimulation (difference of stimulated
versus unstimulated) in mutant cells compared with wild type;
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(3) reduced effect of stimulation in mutant cells compared with wild
type; (4) enhanced mutant effect (difference of mutant to wild type)
in stimulated cells; and (5) reduced mutant effect in stimulated cells.
Ingroups (2) and (3) the mutant effect is minor, while ingroups (4) and
(5) the stimulus effect is minor. Across comparisons, most genes fell
into signatures (1), (3) and (5) (Fig. 7c).

De novo effects of IFN- stimulation (signature 1, red linein Fig. 7b)
comprise genes with transcriptional changes upon IFN-3 stimulation
specifically in JAK-STAT mutant cells. Signature 1included the tran-
scription factor Fomes downregulated in STAT2 knockout T cells; the
SWI/SNF family member Smarca4 downregulated in STAT2 and IRF9
knockout T cells (Fig. 7d); the Gzma gene, encoding the T cell effector
molecule granzyme A, downregulated in TYK2 knockout T cells; and
the transcription factor Kif16 upregulated in TYK2 knockout T cells
(Supplementary Table 7). Genes with a reverted stimulation effect in
mutant cells (signature 3, dark blue line in Fig. 7b) were upregulated
uponIFN-pB stimulationinwild-type cells only, whichincluded many tar-
getgenes of theJAK-STAT pathway (Extended Data Fig.10c¢). Signature
3 was most prominent for knockouts of STAT1, STAT2, IRF9 and TYK2
(Fig.7e,f),and included ISGs such as Mx1, Oas2 and Cxcl10 (Supplemen-
tary Table 7). Finally, IFN-f stimulation partially reverted a negative
effect of JAK-STAT pathway mutants (signature 5, dark green line in
Fig.7b), comprising many genes for almost all knockouts (Fig.7g), for
example, the chromatin remodeler Chdé6 and the lysine demethylase
Kdm3aupregulatedin IRF9 knockout T cells, as well as the Kmt5b gene
encodingalysine methyltransferase and the Sfpg gene encoding a HAT
complex member and splicing factor upregulated in STAT2 knockout
T cells (Supplementary Table 7).

In summary, IFN-f3 stimulation provided partial rescue of
JAK-STAT-regulated gene expression in all tested JAK-STAT mutants,
indicative of pathway redundancy and the ability of IFN signaling to
restore expression of mutant-affected genes wellbeyond the core ISGs.
Thestimulation-induced restoration of wild-type gene expression was
most pronounced for target genes of STAT2 and IRF9, which appear to
have key roles in maintaining baseline JAK-STAT signaling inimmune
cells under homeostatic conditions.

Discussion

JAK-STAT signaling is one of the most studied and best understood
signaling pathways. It constitutes a prototypical example of how cells
recognize external stimuli using cell surface receptors, process these
inputs through kinase signaling and activate transcription factors that
control specific sets of target genes. The rapid conversion of exter-
nal signals into transcriptional responses makes JAK-STAT signaling
an ideal mechanism for immune gene activation'**>*® and response
to certain developmental stimuli®”®®, In contrast, its dependence on
external stimuli makes JAK-STAT signaling a less obvious candidate
for maintaining cellular homeostasis.

Here we described widespread JAK-STAT signaling activity in
immune cells from the spleen of unperturbed mice, which was trig-
gered by signals and cell-cellinteractions provided by the in vivo tissue
context. Baseline JAK-STAT signaling was essential for maintaining
immune gene activity and chromatin accessibility, and in the case of
macrophages, for maintaining cellular identity. These observations
were based on transcriptome (RNA-seq) and epigenome (ATAC-seq)
profiles for 12JAK-STAT mutant mouse modelsin fiveimmune cell types
(mainly T cellsand macrophages) and multiple conditions (sorted pri-
mary cells, ex vivo culture to deplete tissue context, and IFN-3 stimula-
tionin wild-type and mutant mice). This large dataset also establishes
abroadly useful resource of the JAK-STAT pathway, which will provide
motivation and guidance for further research into the homeostatic
roles of JAK-STAT. Indeed, the scale and scope of this study might make
it the most comprehensive epigenome/transcriptome dissection of
one signaling pathway that has yet been performed, and a blueprint
for profiling other signaling pathways in immunology and beyond.

Using acomparative analytical approach across different mutant mice,
celltypes and stimuli, we uncovered both shared and specific patterns
of JAK-STAT signaling between different STATs, between T cells and
macrophages, and inresponse to IFN-3 stimulation.

The picture emerges of an elaborate signaling pathway character-
ized by specialization and cooperativity. Homeostatic immune cells
lacking different subunits of the ISGF3 complex (STAT1, STAT2 or IRF9)
allshowed downregulation of core ISGs, indicative of low-level canoni-
cal JAK-STAT signaling under homeostatic conditions. We also found
aspects of baseline JAK-STAT signaling deviating from the pathway’s
well-established response toimmune stimulation. For example, STAT2
and IRF9 knockout resulted in transcriptome changes that were dif-
ferent from each other and independent of STAT1. These target genes
were not typical ISGs but partially overlapped with genes regulated by
STAT3 and STATS. Moreover, our analysis identified STAT1as aregulator
of chromatin accessibility well beyond its role in the ISGF3 complex,
particularly for macrophages.

We found that homeostatic JAK-STAT signaling collapsed when we
deprivedimmune cells of theirin vivo tissue context, and the resulting
transcriptional changes showed similarities with those observed in
certainJAK-STAT mutants, highlighting the important stimulatory role
oftheinvivotissue context. We were able to restore baseline JAK-STAT
signaling and partially rescued its transcriptional effects by IFN-f3
stimulation—both for tissue context-deprived cells and for JAK-STAT
pathway mutants. The effect of IFN- stimulation was most pronounced
for core ISGs, but also regulated many other genes that are not classi-
calimmuneresponse genes. This broader role for JAK-STAT signaling,
which includes genes involved in proliferation and cell cycle, may
explain the oncogenic properties of the STAT5BN*? hyperactivation
mutant. Our datasuggest that this oncogenic driver of T cell leukemia/
lymphomashould be thought of as ade novo transcription factor with
a set of cancer-associated target genes that is qualitatively different
fromwild-type STAT5B.

In conclusion, this large-scale analysis of JAK-STAT regulatory
programs uncovered diverse roles of JAK-STAT signaling in maintaining
immune cell homeostasis. Our results highlight thatimmune signaling
pathways should not be seen as binary on-off switches solely trig-
gered by pathogens and proinflammatory stimuli, but often maintain
baseline activity in their in vivo tissue context, with widespread epi-
genetic and transcriptional implications that help maintain the cells’
regulatory state and their readiness to respond rapidly to immune
stimuli. Given that mutations in JAK-STAT pathway members cause
diseases such as inborn errors of immunity, inflammatory disorders
and cancer>**%"? it will be interesting to investigate the potential
roles of perturbed baseline JAK-STAT signaling in the pathophysiology,
diagnosis and treatment of these diseases.
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Methods

Mouse models

Twelve JAK-STAT mouse models were included in this study: Statl-ko
(Stat1”"; B6.129P2-Stat1™ ™)™, Stat2-ko (Stat2”"; B6.129-Stat2msmd)7,
Stat3-ko (Stat3"Vav®; B6.129-Stat3™"*°Tg(vavi-iCre)**°/))7>77,
Stat4-ko (Stat4”~; C57BL/6)-Stat4°™*A%m/]: JAX stock no. 028526),
Stat5-ko (Stat5"Vav'®; B6.129S6-StatSh™™*™ Stat5a ™M™ /Mmjax
(vavi-iCre)**°/))**77 Stat6-ko (Stat6™"; B6.129S2(C)-Stat6™"/J, JAX
stock no.005977)78, Irf9-ko (Irf9™"; B6.Cg-Irfo'™'"€)"*, Tyk2-ko (Tyk2"C-
MVE; B6.129P2- Tyk2™ B4 Tg(CMV-cre)1Cgn)5*%, Statla-only (Stat1™*;
B6.129P2-Statlbeta™"®*)%, Statlb-only (Stat1??; B6.129P2-Statlal-
phatmlBiat)SZ, StatS-hyp (5tat5bN642H; B6N_Tg(StatSbN642H)7263iaz)4x and
Tyk2-inact (Tyk2"***;B6.129P2-Tyk2tm3-1K923BBiat)40 Al mouse mod-
els were on a C57BL/6N genetic background, with the exception of
Stat4-ko, which was on a C57BL/6) background. Mice were kept in
specific-pathogen-free conditions according to Federation of European
Laboratory Animal Science Associations (FELASA) guidelines, with
standard chow diet and water ad libitum. The room temperature for the
micewas20 °Cto22 °C, with relative humidity of 55 + 10% and 12-h light/
darkcycles (light period from 6:00 t0 18:00). No in vivo experimental
perturbations such as infection or other immune stimuli were used
in this study. We refer to this setup as ‘homeostatic conditions’ while
acknowledginginevitable variationin the conditions across different
animal houses. Mice were bred as approved by the Ethics and Animal
Welfare Committee of the University of Veterinary Medicine Vienna
in accordance with the university’s guidelines for Good Scientific
Practice and authorized by the Austrian Federal Ministry of Education,
Science and Research (BMWFW-68.205/0068-WF/V/3b/2015, BMBWF _
GZ:2020-0.200.397, BMWFW-68.205/0093-WF/V/3b/2015, BMBWF-
68.205/0091-V/3b/2019, BMWFW-68.205/0166-WF/V/3b/2015) in
accordance with current legislation. All experiments were performed
oncells collected from female mice withinan age range of 8-12 weeks.

Immune cellisolation and purification

Weestablished and validated astandard immune cellisolation and sort-
ing workflow, which was applied consistently across all experiments.
Spleens were resected and immediately placed into tubes containing
cold PBS (Gibco). Tissue was smashed with a 100-pum strainer (SPL
Life Sciences) using asyringe plunger and a 50-ml tube. A new strainer
was used for each spleen and rinsed with 10 to 20 ml of DMEM (Gibco)
containing 10% FCS (Sigma) and 5 ml of penicillin streptomycin with
10,000 U mI™*(Gibco). For the isolation of dendritic cells, spleens were
injected withand placed ina digestion mixture (RPMI (Sigma), 2% FBS,
1mg ml™Collagenase D, 20 pg ml™” DNasel) and thenincubated at 37 °C
for 30 min in a 24-well cell culture dish, before proceeding with the
same mashing through a100-pm strainer. We pooled cells from three
littermates to obtain sufficient cellnumbers. Samples were centrifuged
at500gfor5minat4 °C. Pellets were resuspended in1 ml of Red Blood
Cell Lysis Solution (Promega, Z3141) and incubated for 5 min on ice.
Thelysis was stopped by adding 50 ml of 1 x PBS. Samples were centri-
fuged at 500gfor 5 minat4 °C.Supernatant was discarded and pellets
were resuspended in 1 ml of PBS supplemented with 2% BSA (Sigma).
Samples were filtered through a 70-um strainer (SPL Life Sciences).
The strainer was washed with 1 ml of PBS supplemented with 2% BSA.
MHCII" CD11c" dendritic cells were enriched by magnetic activated
cell sorting (MACS) using the Miltenyi Pan Dendritic Cell Isolation Kit
(mouse) according to the manufacturer’sinstructions (MiltenyiBiotec,
130-100-875). Samples were centrifuged at 500g for 5 min at 4 °C and
supernatant was discarded.

Cell pellets were resuspended in 100 pl of PBS (2% BSA) and anti-
CD16/CD32 (clone 93, Biolegend) was added at a concentration of
1:500 for 15 min to prevent nonspecific binding. Cell suspensions were
then stained with combinations of antibodies (all from Biolegend)
against TER-119 (APC-Cy7, clone TER-119), F4/80 (FITC, clone BMS8),
CD19 (PerCP-Cy5.5, clone 6D5), NK1.1 (PE-Cy7, clone PK136, when no

NK cells were purified) and CD45 (AF700, clone 30-F11) in a concen-
tration of 1:100; CD8 (APC, clone 53-6.7), CD3 (PE, clone 17A2), Ly-6C
(PE-Cy7, clone HK1.4), Ly-6G (PE-Cy7, clone 1A8), NK1.1 (PE-Cy5, clone
S17016D, when NK cells were purified) ina concentration of1:200, and
Fixable Viability Dye eFluor 780 (APC-eFluor 780, eBioscience). For
dendritic cell purification, we used CD11c (PE-Cy7, clone N418, eBio-
science) and MHCII (PE, MHC Class Il (I-A/I-E) Monoclonal Antibody
(M5/114.15.2), eBioscience) in a concentration of 1:200 and Fixable
Viability Dye eFluor 780 (APC-eFluor 780, eBioscience). Cells were
stained for 30 minat4 °Cinthedark. Then,1 ml of PBS supplemented
with 2% BSA wasadded, and suspensions were centrifuged at 500g for
Sminat4 °C.Pellets wereresuspendedin 300 pl of PBS supplemented
with 2% BSA and filtered over a 40-pum strainer (SPL Life Sciences),
and filters were rinsed with 1 ml of PBS supplemented with 2% BSA.
Cells were sorted with a BD FACS-Aria Il Fusion instrument into PBS
supplemented with 20% BSA using the gating strategy depicted in
Supplementary Fig. 1. Data analysis was performed with the FlowJo
v.10 (Tree Star) software. Aliquots of the sort-purified cell populations
were stored for RNA/DNA isolation in RLT buffer (Qiagen) or directly
processed with the ATAC-seq assay. Due to massive expansion of the
T cell compartment in the STAT5B"**?" mutant, we were not able to
sort-purify sufficient numbers of macrophages from the spleens in
atime frame that was compatible with the sort duration for the other
genotypes.

Ex vivoimmune cell culture and stimulation

Splenic macrophages and CD8" T cells were cultured in 48-well tissue
culture plates for in vitro treatment with the different stimuli. To that
end, the cells were centrifuged at 500g for 5 min at 4 °C. Then, 1x10°
macrophagesand 3 x10°T cells were seeded per wellin 300 pl of media.
Macrophages were resuspended in DMEM (10% FCS, 5 ml of penicillin
streptomycinwith10,000 U ml™) and T cells in RPMI (10% FCS, 5 ml of
penicillinstreptomycinwith 10,000 U mlI™). The following conditions
wereapplied: (1) 20 hin culture untreated; (2) 20 hin culture with treat-
ment; and (3) 18.5 hin culture followed by treatment for the last 1.5 h.
Treatmentsincluded murine recombinant IFN-f carrier-free (PBL Assay
Science, catalog no. 12401-1) at a final concentration of 1,000 U ml™
or recombinant murine IL-2 (PeproTech, catalog no. 212-12) at a final
concentration of 1,000 ng ml™ or murine M-CSF (PeproTech, catalog
no.315-02) atafinal concentration of 100 ng ml™.

T cells were collected by transferring them into a reaction tube,
adding cold PBS (0.2% BSA), centrifuging at 500g for 5 minat4 °Cand
removing supernatant. T cells were resuspended in 1 ml of PBS (0.2%
BSA) and split equally between the two tubes. Macrophages were col-
lected by removing the supernatant and gently rinsing the cells with
cold PBS (0.2% BSA), followed by the addition of cold PBS (0.2% BSA).
Macrophages were scraped and equally split between the two tubes.
Tubeswere then centrifuged at 500g for 5 min at4 °C and either taken
forRNA/DNAisolation or ATAC-seq. After centrifugation, the superna-
tant was carefully removed, and the pellet was resuspended in 350 pl
of RLT buffer (Qiagen) with 3.5 pl of B-mercaptoethanol (Sigma). After
vortexing the sample for 1 min, it was stored at —80 °C until further
processing. RNA and DNA were isolated with the AllPrep RNA/DNA
Micro Kit (Qiagen) following the manufacturer’s instructions and
stored as recommended.

Transcriptome profiling with Smart-seq2

We used 500 pg of RNA as input. Reverse transcription and PCR were
performed as described®. Library preparation was conducted on1ng
of complementary DNA using the Nextera XT DNA Sample Prepara-
tionKit (Illumina) followed by SPRI (Beckman Coulter) size selection.
Sequencing was performed by the Biomedical Sequencing Facility at
CeMM using the lllumina HiSeq3000/4000 platform and the 50-base
pair (bp) single-end configuration. Sequencing statistics are provided
inSupplementary Table 1.
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Spatial transcriptomics

We used 8-12-week-old mice from either wild-type or STAT1 knockout
strains for organ isolation. Mice were euthanized according to insti-
tutional guidelines, within an enclosed fume hood. Immediately after
euthanasia, the thoracic cavity was opened and a25 G needle attached
toacanulaandsyringe containing 7.5% formaldehyde was inserted into
the ascending aortawithinthe left ventricle. The needle was securedin
position with hemostatic forceps. Theright atriumwas incised using a
pair of fine scissors. Before perfusion, the abdominal cavity was opened
tovisualize theliver. Perfusion with formaldehyde was performed atan
average rate of 5 ml min™, with a total of20-25 ml of formaldehyde used
per animal. Successful perfusion was determined by general stiffness
within tissues and pale appearance of the liver. The spleen was dissected
carefully with minimal contact and utilizing the fascia associated with
the splenic capsule to gently isolate the tissue. The splenic tissue was
cut (2mm) at either end and incubated in formaldehyde for further
fixation. Wherever possible, minimal pressure and handling of tissue
was employed to avoid disrupting the tissue architecture.

After fixation, tissue specimens were processed using a vacuum
infiltration processor (Sakura Tissue-Tek VIP 6 Al) equipped with a
graded series of alcohol solutions, xylene and molten paraffin. Subse-
quently, formalin-fixed samples were embedded into paraffin blocks
on an embedding workstation (Thermo Scientific HistoStar) before
sectioning onarotary microtome (Thermo Scientific HM 355S). Before
starting, all surfaces and work areas were wiped with ethanol. After
trimming excess paraffin, the formalin-fixed paraffin-embedded (FFPE)
blocks were placed in an ice bath and incubated for 15 min, before
taking 5-um tissue sections, which were placed on the capture area of
a Visium Spatial Gene Expression for FFPE slide (10X Genomics). The
slide was placed in adrying rack and incubated in an oven at 42 °C for
3 h, and then placed in a desiccator overnight at room temperature.
Subsequent stepsto obtainsequencing-ready libraries were performed
following the manufacturer’sinstructions. Sequencing was performed
by the Biomedical Sequencing Facility at CeMM using the Illumina
NovaSeq 6000 platformand the 50-bp paired-end configurationona
NovaSeq SP flowcell. Raw sequencing data were processed using the
SpaceRanger pipeline v.2.0.0 (10X Genomics) with default parameters.
Processed data were analyzed using LoupeCellBrowser v.6.0 (10X
Genomics).

Single-molecule RNA-FISH

Spleens were fixed in 10% formalin for 24 h at room temperature and
embedded in paraffin. Insitu RNA hybridization was performed using
the RNAscope Multiplex Fluorescent Detection Kit v2 (Advanced Cell
Diagnostics) with the following target probes: Mm-Qas3 (catalog no.
1054261-C2), Mm-Ifit3 (catalog no. 508251-C2), Mm-Cd3e (catalog no.
314721-C3), using a previously described protocol®. After the final
amplification step, hybridized probes were visualized using Cy3 or
Opal650 conjugated tyramide (Perkin ElImer). Sections incubated with
anegative control probe targeting the DapB gene from Bacillus subtilis
were analyzed in parallel. Positive control probes against murine Ppib
and Ubcwere used to confirm RNA integrity in each detection channel
for each of the analyzed spleens. Images were acquired with a NIKON
Eclipse Ti2-E/Yokogawa CSU-W1 confocal spinning disk microscope
with a CFI PlanApo A x20 objective/0.75 numerical aperture/1 mm
working distance and a 50-pum pinhole disc.

Epigenome profiling with ATAC-seq

Chromatin accessibility mapping by ATAC-seq was performed as pre-
viously described®>®¢, with minor adaptations. After centrifugation,
the pellet was carefully resuspended in the transposase reaction mix
(12.5 plof 2 x TD buffer, 2 pl of TDE1 (Illumina), 10.25 pl of nuclease-free
water and 0.125 pl of 10% NP-40 (Sigma) for macrophages and dendritic
cells or 0.25 pl of 1% digitonin (Promega) for all other cell types) and
incubated for 30 min at 37 °C. Following DNA purification using the

MinElute kit, DNAwas eluted in 11 pl. We used 1 pl of the eluted DNAina
quantitative PCRreaction to estimate the optimum number of amplifi-
cationcycles. The remaining 10 pl of each library was amplified for the
number of cycles corresponding to the Cqvalue from the quantitative
PCR (that is, the cycle number at which fluorescence has increased
above background levels, rounded down). Library amplification was
followed by SPRI bead (Beckman Coulter) size selection to exclude
fragments larger than 1,200 bp. DNA concentration was measured
with a Qubit fluorometer (Life Technologies). Library amplification
was performed using custom Nextera primers®. The libraries were
sequenced by the Biomedical Sequencing Facility at CeMM using the
lllumina HiSeq3000/4000 platform and the 50-bp single-end configu-
ration. Sequencing statistics are provided in Supplementary Table 1.

Processing and quality control of the RNA-seq data
RNA-seqdatawere processed and quality-controlled using established
bioinformatics software. Raw reads were trimmed using trimmomatic
(v.0.32)¥ and aligned to the mouse reference genome (mm10) using
STAR (v.2.7.1)%. Gene expression was quantified by counting uniquely
aligned reads in exons using the function summarizeOverlaps from
the GenomicAlignments package (v.1.6.3) in R (v.3.2.3). Gene annota-
tions were based on the Ensembl GENCODE Basic set (genome build
GRCm38 release 93)¥. In a first quality control step, samples were
excluded that had fewer than10° reads, an alignment rate below 0.5 or
anexome alignmentrate below 0.3. Next, outliers were removed based
onsimilarity across biological replicates (that is, samples of the same
JAK-STAT mutant, celltype and treatment). Tothat end, the Spearman
correlation between each sample and its replicates was calculated,
and samples with amean correlation below the following cutoffs were
excluded as outliers. For homeostaticimmune cells, the average Spear-
man correlation between wild-type macrophage and wild-type CD8"
T cells (that s, two clearly distinct and distinguishable cell types) was
used as the cutoff. For cultured samples, an arbitrary threshold of 0.5
was used because of the strong effects of cell culture on macrophages
(Extended Data Fig. 9a,b). When fewer than three samples passed the
cutoffforagiven condition, the three samples with highest correlations
with each other were kept.

Processing and quality control of the ATAC-seq data

ATAC-seq data were processed and quality-controlled using estab-
lished bioinformatics software. Raw reads were trimmed with trim-
momatic (v.0.32)* and aligned to the mouse reference genome (mm10)
using bowtie2 (v.2.2.4). Primary alignments with mapping quality
greater than 30 were retained. ATAC-seq peaks were called using MACS
(v.2.7.6)°° on each individual sample. Peaks were aggregated into a
list of consensus peaks using the function reduce of the package
GenomicRanges (v.1.38.0) in R (v.3.6.1). Consensus peaks that over-
lapped with known blacklisted genomicregions (https://github.com/
Boyle-Lab/Blacklist/tree/master/lists) were discarded. Quantitative
measurements were obtained by counting reads within consensus
peaks using the function summarizeOverlaps from the GenomicAlign-
ments (v.1.22.1) package in R (v.3.6.1). For quality control, samples with
fewerthan 5 x 10°reads, fewer than 10° peaks, alignment rate lower than
0.5or fraction of reads overlapping consensus peaks below 0.025 were
excluded from the analysis. Moreover, outliers were identified and
removed in the same way as for the RNA-seq data, using the average
Spearman correlation between wild-type macrophages and wild-type
CD8' T cells as cutoff. For the in vitro cultured cells, only untreated cells
were used to calculate the cutoff.

Data analysis software

Data analysis was performed in R (v.3.6.1) using the packages limma
(3.42.2)", variancePartition (1.16.1)*?, edgeR (v.3.28.1)*, Ime4 (v.1.1.21)*,
fgsea(v.1.12.0), LOLA (v.1.16.0)”*,umap (v.0.2.5.0)*° and igraph (v.1.2.4.2;
https://igraph.org). The HOMER software tool (v.4.11)” was called using
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Perl (v.5.10.1). Additional enrichment analyses were performed in R
(v.4.0.2) using the packages tMOD (v.0.46.2)*® and chipenrich (v.2.14.0)*°.
The TOBIAS software (v.0.14.0)'°° was called using Python (v.3.7.12).
Receptor-ligandinteraction analysis was performedinR (v.4.2.2) using
the packages CellChat (v.1.5.0)'°' and ProjecTILs (v.3.0.0)'*.

Transcriptome analysis of homeostaticimmune cells
Todissectthe gene-regulatory roles of the different JAK-STAT members,
we identified differentially expressed genes using alinear mixed model
framework with a fixed categorical effect for the mutants (setting wild
type as the baseline reference level) and arandom intercept effect for
the experimentidentifier as nuisance variable, to account for potential
batch effects such as the processing date, experimenter, laboratory
and geneticbackground. Hypothesis testing with this model was done
using the function dream from the variancePartition package (which
isawrapper for the function Imer from package Ime4), separately for
each cell type. To obtain maximum likelihood estimates, the option
REML was set to false.

Raw read counts were normalized to log, counts per million
(log,CPM) and gene expression weights were calculated using the
function voomWithDreamWeights from the variancePartition package,
with normalizing factors calculated using the function calcNormFac-
tors from the edgeR package. Lowly expressed genes with average
log,CPM below zero were excluded from the analysis. The fitted linear
models provided log, fold changes (log,FCs) as estimates of effect size
and associated P values, for each mutant compared with wild type at
each tested gene in each cell type. P values across all comparisons
were adjusted for multiple testing using the false discovery rate (FDR)
approachimplemented in the function p.adjustin base R with method
‘BH’. Adjusted Pvalues (P,4;) lower than 0.05 were declared significant
(5% FDR cutoff). For visualization, raw read counts were further normal-
ized to transcripts per million to correct for transcript length.

In addition to the model comparing JAK-STAT mutants with wild
type, to test whether differences of genetic backgrounds influence
mutant effects, we also performed differential expression analysis
as described above but comparing wild-type samples from C57BL/6)
mice and C57BL/6N mice.

Gene set enrichment analyses

To identify enriched biological processes among differentially reg-
ulated genes, we performed gene set enrichment analysis for gene
sets downloaded from EnrichR'%, including biological pathways
(KEGG_2019_Mouse, NCI-Nature_2016, WikiPathways_2019_Mouse,
Reactome_2016), transcription factor target genes (TRANSFAC_and_
JASPAR_PWMs, ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X,
ENCODE_TF_ChIP-seq_2015, ChEA_2016, TRRUST Transcription_Fac-
tors_2019) and target genes of kinase perturbations (Kinase_Pertur-
bations_from_GEO_down, Kinase_Perturbations_from_GEO_up). In
addition, we obtained gene sets related toimmune processes including
IFN signaling from three sources. First, gene sets were downloaded
from MSigDB'** (collection 7, ‘immunologic signatures’) and filtered
to those relevant to our study by selecting only gene sets with the
strings ‘CD8&’,‘IL, ‘IFN’,‘MAC’, ‘'STAT or ‘JAK’in the name of the gene set.
Second, IFN response genes were retrieved from a published analysis
of IFN signaling®®. IFN response genes from 11 cell types were extracted
from Supplementary Table 1A of that publication. Genes with alog,FC
greater than1in each cell type were selected as IFN response genes in
that cell type. Genes with log,FC greater than1in all 11 cell types were
combined into the ‘ISG core’ signature. Third, data from Interferome.
org'® were kindly provided by Paul Hertzog and Jamie Gearing, com-
prising IFN response signatures of multiple individual experiments as
wellasaggregated core signatures of IFN-a, IFN-$ and IFN-y signaling.
Based on these gene sets, enrichment analysis was performed using
the function fgsea from the fgsea package and the tmodCERNOtest
function from the tmod package. To this end, genes were ranked by

the negative log,,-transformed Pvalue of differential expression, mul-
tiplied by the sign of the log,FC.

Dimensionality reduction and identification of gene clusters
To visualize similarities and differences in gene expression, we pro-
jectedstrongly differential genes (P, lower than 0.05 and an absolute
log,FCgreater than2) ontwo dimensions using the UMAP algorithm. An
aggregated matrix of log,FC values for mutant and stimulation effects
was derived, with genes as rows and coefficients (effects) as columns.
This matrix was passed to the umap function from the umap package
(withdefault parameters), which generated a k-nearest-neighbor graph
and placed all genes in a two-dimensional space based on this graph.
Weidentified gene clusters using graph clustering with randomwalks
on the k-nearest-neighbor graph obtained from the UMAP R object.
Clustering was performed using the function cluster_walktrap from the
igraph package with default parameters. Finally, we performed gene
set enrichment analysis on the identified clusters using the function
fisher.testinR.

Epigenome analysis of homeostaticimmune cells
To dissect the effect of the different JAK-STAT proteins on the epig-
enome, we compared ATAC-seq signal intensities between mutant and
wild-type mice. Hypothesis testing was performed in analogy to the
transcriptome analysis, using a fixed categorical effect for the mutants
and a random intercept for the experiment identifier, separately for
eachcelltype. The number of readsin each ATAC-seq consensus region
(peak) was normalized to log,CPM, and regions with average log,CPM
below zero were excluded from the analysis. Weights were calculated
using the function voomWithDreamWeights from the variancePartition
package. Toimprove computational efficiency, hypothesis testing was
done with function Imer from package Ime4 directly (thisis only a dif-
ferenceinimplementationand notinthe modelitself). P,y values lower
than 0.05were declared significant, corresponding to a5% FDR cutoff.
To interpret epigenome effects of JAK-STAT mutants, we per-
formed a series of enrichment analyses. First, we performed gene
set enrichment using the function chipenrich from the chipenrich
package’’ using all supported gene sets for mouse. Second, to identify
transcriptional regulators associated with differential regions, we
performed motif enrichment analysis using the function findMotifsGe-
nome.pl fromHOMER?, querying vertebrate motifs with known associ-
ated transcription factor; and enrichment of experimentally derived
binding sites using the functions runLOLA and cleanLOLA from LOLA%,
queryingallregions defined in the package. Third, toidentify transcrip-
tion factor footprints we used the functions ATACorrect, Footprint-
Scores and BINDetect from TOBIAS'*?, using the JASPAR2022 (ref. 106)
core nonredundant position frequency matrices from JASPAR. As
TOBIAS did not support differential analysis with biological replicates,
we performed differential analysis using the dream function fromthe
variancePartition package based on a matrix of footprint mean scores
ofeachtranscription factorin each sample, which were obtained from
BINDetect and subsequently normalized using the function normal-
izeQuantiles from the limma package. Finally, aggregate plots were
generated using the function PlotAggregate from TOBIAS.

Analysis of ex vivo cell culture effects

To identify genes and genomic regions affected by context depriva-
tionin cell culture, we compared samples from wild-type mice before
and after 20 h of cell culture with short or long IFN-f stimulation, or
no stimulation. These analyses were performed separately but analo-
gously for RNA-seq and ATAC-seq data, and hypothesis testing was
doneseparately for each cell type. We used linear fixed-effects models
with afixed categorical effect for culture condition (setting uncultured
homeostatic cells as the baseline reference level) and a fixed effect for
the experimenter as nuisance variable for this statistically straightfor-
ward comparison.
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Analysis of receptor-ligand interactions in vivo

Toinfer cell-cellinteractions of T cellsand macrophagesin vivo, recep-
tor-ligand interactions were inferred based on single-cell datasets
fromhuman and murine spleen cells. Dataon human spleen cells were
obtained from Tabula Sapiens'”’. Cell types were aggregated into mye-
loid dendritic cells, CD4" T cells, CD8" T cells, monocytes, NK cells, NK
Tcells, B cells and plasmacytoid dendritic cells. Dataon mouse spleen
cells were obtained from Tabula Muris/Tabula Muris Senis®*'®, T cell
subtypes were inferred using ProjecTILs'®. Based on the above data-
sets, cellular networks were inferred using the package CellChat'"".

Comparison of JAK-STAT mutant and IFN-f stimulation effects
Todissect the effect of JAK-STAT mutants on IFN-[ stimulation and vice
versa, we compared IFN-3 treated with untreated context-deprived
cells, and JAK-STAT mutant with wild-type cells. This analysis was
restricted to cells maintained in culture. We fitted linear mixed models
with three fixed effects: first, a fixed categorical effect of stimulation
(‘stimulation effect’) with two factor levels, ‘IFN-f stimulation’ and
‘no stimulation’ (baseline reference level); second, a fixed categorical
effect of JAK-STAT mutants (‘mutant effect’), where wild type was used
asthebaseline reference level; third, aninteraction effect between the
two previous effects. The stimulation effect thus reflects the effect of
IFN-f stimulation compared with untreated cells in wild-type cells,
while the mutant effect reflects the effect of JAK-STAT mutants com-
pared with wild typein untreated cells. Interaction effects are present
ifthe change in one factor depends on the other factor. For example,
if genes are upregulated upon stimulation in wild type but are not
upregulated upon stimulation in the STAT2 knockout, this will lead to
anegative interaction effect. The experiment identifier was included
asarandom effect to account for potential batch effects. Hypothesis
testing was performed with the function dream from variancePartition.
Data normalization, exclusion of lowly expressed genes and calcula-
tion of weights were performed as described above. The fitted models
(oneper celltype) resultedin three sets of log,FC effect size estimates
and associated P values: one for the stimulation effect, one for the
mutant effect and one for the interaction effect between stimulation
and mutant effects. To assess statical significance, we applieda 5% FDR
cutoff using the function p.adjust in base R with method ‘BH".

Grouping of genes based on main and interaction effects

Interaction effects can have different interpretations for different
genes, depending onthe corresponding main effect. We thus grouped
genes withsignificantinteraction effects based on the relative magni-
tude (log,FC) of their main and interaction effects. This grouping was
performed separately for each gene, mutant and stimulation. A gene
canthusbeindifferent groups for different mutants. The grouping was
performed using a multi-step procedure:First, if the absolute log,FC of
theinteraction effect was twofold greater than the absolute log,FC of
both maineffects, the gene was classified as ‘de novo effect’ (group 1).
Second, ifthe absolute log,FC of the interaction effect was not twofold
greater thanthe absolute log,FC of either main effect, the gene was clas-
sified as ‘minorinteraction effect’. This group was not further analyzed
(no group). Third, if the absolute log,FC of the interaction effect was
twofold greater than the absolute log,FC of the mutation effect but
not twofold greater than the absolute log,FC of the stimulation effect,
then the stimulation effect of the gene was modified by the JAK-STAT
mutant. In this case, if the interaction and stimulation effects had the
same sign (both positive or both negative), the gene was classified as
‘mutant enhances stimulation effect’ (group 2). If the signs differed,
the gene was classified as ‘mutant reverts stimulation effect’ (group 3).
Fourth, if the absolute log,FC of the interaction effect was twofold
greater than the absolute log,FC of the stimulation effect but not two-
fold greater than the absolute log,FC of the mutation effect, then the
mutant effect of the gene was modified by the stimulation. In this case,
ifthe interaction and mutant effects had the same sign (both positive

or both negative), the gene was classified as ‘stimulation enhances
mutant effect’ (group 4). If the signs differed, the gene was classified
as ‘stimulation reverts mutant effect’ (group 5). To interpret these gene
groups, we performed gene set enrichment analyses (as above), using
Fisher’s exact test to identify enriched gene sets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The Supplementary Website (http://jakstat.bocklab.org) provides data
links and genome browser tracks for interactive data visualization. Raw
and processed RNA-seqand ATAC-seq dataare also available from the
NCBI Gene Expression Omnibus (GEO) repository (accession num-
ber: GSE204736). Genome assemblies and gene annotations (mm10/
GRCm38release 93) are available from Ensembl (https://ensembl.org).

Code availability

The source code underlying the presented analyses is available from
the Supplementary Website (http://jakstat.bocklab.org) and fromthe
Zenodo repository via https://doi.org/10.5281/zenod0.10649062
(ref.109).
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Hypothesis: Baseline JAK-STAT signaling underlies
immune cell homeostasis
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Homeostatic JAK-STAT signaling: main achievements and key findings
A) Deliverables
Homeostasis of wildtype cells
¢ Transcriptome and epigenome variability in T cells and macrophages isolated from large cohorts of C57BL/6 mice
3-way perturbation of wildtype cells
e Gene knockout of TYK2-STATs-IRF9 and expression of enzymatically inactive TYK2 and hyperactive STATS
e  Tissue context deprivation
e  Cytokine challenge
Bioinformatic data integration and analysis
¢ Differential expression with linear mixed models to account for technical variables (experimenter, time point, mouse house, genetic background,...)
¢ Robust transcriptomic and epigenomic signatures under homeostatic and perturbed conditions
¢ UMAP-based two-dimensional visualization of mutation effects and identification of gene-regulatory modules
B) Transcriptome and epigenome alterations in wildtype compared to JAK-STAT mutant cells

Genotype T cells Macrophages
Homeostatic transcriptome Homeostatic epigenome Homeostatic transcriptome Homeostatic epigenome
Statl-ko +; ISG +; ISG +; ISG +; ISG
Statla-only +; selected ISG +; ISG +; selected ISG +; selected ISG
Stat1b-only +; selected ISG +; ISG +; selected ISG +; selected ISG
Stat2-ko +++; ISG, nonISG +; ISG ++; ISG, nonISG ++; ISG
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synthesis, synthesis
Stat4-ko +; selected ISG ++; »; nonISG +; selected ISG +; *; nonISG
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1rf9-ko +++; ISG, nonISG +; ISG +++; ISG, nonISG ++; ISG
Tyk2-ko ++; ISG, nonISG ++; ISG +; ISG, nonISG ++; ISG
Tyk2-inact ++; ISG, nonISG +; ISG +; ISG, nonISG +++; ISG

C) Interactive effects of JAK-STAT pathway
e Tissue context deprivation of macrophages and T cells leads to loss of gene signatures provided by JAK-STAT in situ
e Single cytokine treatment restores multiple JAK-STAT pathways: IFN-b re-establishes signatures also to pathways not employing the ISGF3 complex
e IRF9 cooperates or complexes with STATSs other than those constituting ISGF3, or with non-STAT TFs

+, ++, +++: strength of effect; *: few selected genes do not allow for broader annotation; ISG, interferon-stimulated gene;n.d., not determined

Extended Data Fig. 1| Study overview. lllustration of the study design and

key results as agraphical abstract (a) and asummary table of transcriptome

and epigenome alterations in JAK-STAT mutant cells (b). We hypothesized that
baseline JAK-STAT signaling underlies immune cell homeostasis, beyond its well-
established role duringimmune stimulation. We analyzed homeostatic JAK-STAT

signaling through transcriptome and epigenome profiling in alarge collection
of JAK-STAT mutants and validated our results by depriving cells from their
cellular context in ex vivo culture. Our molecular maps of homeostatic JAK-STAT
signaling reveal substantial roles of JAK-STAT signaling in specific homeostatic
JAK-STAT complexes and regulated gene modules.
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Extended Data Fig. 2| Transcriptome effects of JAK-STAT mutants in five
immune cell types. (a) Expression levels of two classical IFN target genes across
cell types, mutants and sample processing laboratories. Downregulation of
genes upon JAK-STAT mutants (differences to wildtype) strongly exceeded

experimental variability across laboratories (variability within wildtype samples,
indicated by the shape and size of points). (b) Effects of mutants on gene
expression levels of JAK-STAT genes (two-sided linear mixed models, corrected

for multiple comparisons). (c) Analysis of a pan-STAT signature (two-sided

linear mixed models, corrected for multiple comparisons), showing only genes
affected by multiple STAT mutants are shown. No gene was affected by all STAT
mutants. (d-e) Transcriptional effects of JAK-STAT-mutant mice in all cell types,

visualized by multi-dimensional scaling (MDS) (d) of Spearman correlation
coefficients among log,FCs compared to wildtype mice (e). FC: fold change; padj:

adjusted p-value.
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Extended Data Fig. 3| Differential expression of core ISGs between JAK-STAT mutant and wildtype mice. Dot plot showing log,FCs for the 50 genes with the
largest log,FC (two-sided linear mixed models, corrected for multiple comparisons). Genes are grouped based on the clusters derived from the UMAP analysis. padj:
adjusted p-value.
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | JAK-STAT modulated chromatin accessibility at genes (c),JAK-STAT target genes (d), and other transcriptional regulators (e).
promoters of transcriptional regulator genes. (a, b) Chromatin accessibility padj: adjusted p-value. P-values in panels c-e are based on two-sided linear mixed
(ATAC-seq signal) transformed to z-scores for JAK-STAT genes in CD8" T cells models corrected for multiple comparisons.

(a) and macrophages (b). (c-e) Differential accessibility results for JAK-STAT
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Extended Data Fig. 7| Comparison of transcriptome versus epigenome changes for each of the JAK-STAT mutants. Scatterplots of log,FCs for differential gene
expression and differential promoter chromatin accessibility across the twelve JAK-STAT mutants. The Pearson correlation (r) is indicated in each plot.
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Extended Data Fig. 8 | Integrative analysis of JAK-STAT mutant effects on
the transcriptome and epigenome. (a) Enrichment of regulator binding

transcription factor binding motif analyses) in differential chromatin regions
(two-sided hypergeometric test, corrected for multiple comparisons).

(c) Enrichment of gene sets in differential chromatin regions (two-sided logistic
regression, corrected for multiple comparisons). (d) Enrichment of gene sets in
differentially expressed genes (two-sided chi squared test, corrected for multiple
comparisons). OR: odds ratio; padj: adjusted p-value.

regions (from public ChIP-seq datasets) in differential chromatin regions
(two-sided Fisher’s exact test, corrected for multiple comparisons). Grey dots
represent examples where both enrichment and depletion were identified for
different ChlP-seq datasets. (b) Enrichment of regulator binding profiles (from
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Source (expresses ligand)

Extended Data Fig. 9 | Loss of baseline JAK-STAT signaling outside of the in
vivo tissue context. (a) Average sample-to-sample Spearman correlation among
homeostatic, context-deprived and stimulated immune cells, visualizing the
effects of ex vivo culture on wildtype immune cells. The average correlation
among samples under homeostasis is shown as baseline indicated by a black

line. (b) SingleR similarity scores’ comparing cultured and homeostatic cells to
external reference profiles from the ImmGen consortium'™. (¢, d) Inferred

Target (expresses receptor)

receptor-ligand interactions of T cells and macrophages in single-cell
transcriptome data from Tabula Sapiens. Examples of ligand-receptor
interactions (c) between CD8" T cells (left), macrophages (right) and various
splenic cells (rows) (two-sided random sampling, corrected for multiple
comparisons), and the total number of receptor-ligand interactions inferred
from Tabula Sapiens (d). padj: adjusted p-value.
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Extended Data Fig. 10 | Partial restoration of baseline JAK-STAT signaling
upon stimulation of JAK-STAT mutant macrophages. (a) Prevalence of the
five gene groups from Fig. 7b in each JAK-STAT mutant. This figure focuses on
macrophages, while similar results for T cells are shown in Fig. 7b. (b) Share of
genes for which the JAK-STAT mutant effect reverts the IFN- stimulation effect.
Thisis calculated as the percentage of all genes with a IFN-f3 stimulation effect
inwildtype cells, the total number of which is shown in brackets. (c) Enrichment
of core ISGs and IFN-3 target genes among genes for which JAK-STAT mutants

revert stimulation effects (two-sided Fisher’s exact test, corrected for multiple
comparisons). This panel is the only panel in this figure that shows results for
both macrophages and T cells. (d) Mean differential gene expression (log,FC)
upon IFN-f stimulation across 68 core ISGs. Box plots show the full data range,
with the box indicating interquartile range and median. (e) Share of genes for
which the IFN-f stimulation reverts the JAK-STAT mutant effect, relative to all
genes with aJAK-STAT mutant effect in unstimulated cells (shown in brackets).
OR: odds ratio; padj: adjusted p-value.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Software and code

Policy information about availability of computer code

Data collection  RNA-seq data were processed and quality-controlled using established bioinformatics software. Raw reads were trimmed using trimmomatic
(version 0.32) and aligned to the mouse reference genome (mm10) using STAR (version 2.7.1). Gene expression was quantified by counting
uniquely aligned reads in exons using the function summarizeOverlaps from the GenomicAlignments package (version 1.6.3) in R (version
3.2.3). Gene annotations were based on the Ensembl GENCODE Basic set (genome build GRCm38 release 93).

ATAC-seq data were processed and quality-controlled using established bioinformatics software. Raw reads were trimmed with trimmomatic
(version 0.32) and aligned to the mouse reference genome (mm?10) using bowtie2 (version 2.2.4). Primary alignments with mapping quality
greater than 30 were retained. ATAC-seq peaks were called using MACS (version 2.7.6) on each individual sample. Peaks were aggregated into
a list of consensus peaks using the function reduce of the package GenomicRanges (version 1.38.0) in R (version 3.6.1). Quantitative
measurements were obtained by counting reads within consensus peaks using the function summarizeOverlaps from the package
GenomicAlignments (version 1.22.1).

Data analysis Data analysis was performed in R (version 3.6.1) using the packages limma (3.42.2), variancePartition (1.16.1), edgeR (version 3.28.1), Ime4
(version 1.1.21), fgsea (version 1.12.0), LOLA (version 1.16.0), umap (version 0.2.5.0), and igraph (version 1.2.4.2). The HOMER software tool
(version 4.11) was called using Perl (version 5.10.1). Additional enrichment analyses were performed in R (version 4.0.2) using the packages
tMOD (version 0.46.2) and chipenrich (version 2.14.0). The TOBIAS software (version 0.14.0) was called using Python (version 3.7.12).
Receptor-ligand interaction analysis was performed in R (version 4.2.2) using the packages CellChat (version 1.5.0)120 and ProjecTILs (version
3.0.0). The Supplementary Website (http://jakstat.bocklab.org) provides data links and the source code underlying the presented analyses.
FACS data analysis was performed with the FlowJo v10.6.1 (Tree Star) software. For spatial transcriptomics raw sequencing data were
processed using the SpaceRanger pipeline version 2.0.0 (10X Genomics) with default parameters. Processed data were analyzed using
LoupeCellBrowser version 6.0 (10X Genomics).
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The source code underlying the presented analyses is available from the Supplementary Website (http://jakstat.bocklab.org) and from the
Zenodo repository (https://doi.org/10.5281/zenodo.10649062).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The Supplementary Website (http://jakstat.bocklab.org) provides data links and genome browser tracks for interactive data visualization. Raw and processed RNA-
seq and ATAC-seq data are also available from the NCBI Gene Expression Omnibus (GEO) repository (accession number: GSE204736). Genome assemblies and gene
annotations (mm10 / GRCm38 release 93) are available from Ensembl (https://ensembl.org).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender ~ Not applicable

Population characteristics Not applicable
Recruitment Not applicable
Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Three independent biological replicates were obtained as is common practice in the field.

Data exclusions  Samples with fewer than one million reads, alignment rate below 50%, or exome alignment rate (for RNA-seq) below 30% were excluded.
Qutliers were removed based on similarity across biological replicates (i.e., samples of the same JAK-STAT mutant, cell type, and treatment).
To that end, the Spearman correlation coefficients between each sample and its biological replicates were calculated, and samples with mean
correlation below the following cutoffs were excluded as outliers: For homeostatic immune cells, the average Spearman correlation between
wildtype macrophage and wildtype CD8+ T cells (two clearly distinct and distinguishable cell types) was used as the cutoff. In cultured
samples, an arbitrary threshold of 0.5 was used because of the strong effects of cell culture on macrophages. The three samples with highest
correlations were always kept, in order to maintain an adequate representation of conditions with intrinsically variable transcriptomes.

Replication Sample collection was repeated until three independent biological replicates passed the filtering on data quality (described above).

Randomization  Processing of samples from the various genotypes and cell types was recorded and did not follow any particular order. Experimental batches
were included as covariates in mixed linear models.

Blinding No blinding of genotypes or treatments was implemented in this study. To control for potential biases and batch effects, each experiment
included mutant mice together with matched wildtype mice of the same strain that were processed in the same batch.

Reporting for specific materials, systems and methods

>
Q
]
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXX XS
OOXOOX

Antibodies

Antibodies used Cell pellets were resuspended in 100 ul PBS (2% BSA) and anti-CD16/CD32 (clone 93, Cat #101302, Biolegend) was added at a
concentration of 1:500 for 15 min to prevent nonspecific binding. Cell suspensions were then stained with combinations of
antibodies (all from Biolegend) against TER-119 (APC-Cy7, clone TER-119, Cat #116223), CD8 (APC, clone 53-6.7, Cat #100712), F4/80
(FITC, clone BMS8, Cat #123108), CD19 (PerCP-Cy5.5, clone 6D5, Cat #115534), CD3 (PE, clone 17A2, Cat #100206), Ly-6C (PE-Cy7,
clone HK1.4, Cat #128018), Ly-6G (PECy7, clone 1A8, Cat #127618), NK1.1 (PE-Cy7, clone PK136, Cat #108714, if NK cells were not
purified) or NK1.1 (PE-CyS5, clone S17016D, Cat #156524, if NK cells were purified), and CD45 (AF700, clone 30-F11, Cat #103128),
and Fixable Viability Dye eFluor 780 (APC-eFluor 780, eBioscience, Cat #65-0865-18). For dendritic cell purification, we used CD11c
(PE-Cy7, clone N418, eBioscience, Cat #25-0114-82), MHCII (PE, MHC Class Il (I-A/I-E) Monoclonal Antibody (M5/114.15.2,
eBioscience, Cat #12-5321-82). Cells were stained for 30 min at 4 °C in the dark.
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Validation All antibodies were purchased from commercial vendors as indicated. Each lot of the antibodies purchased from Biolegend or
eBioscience was quality controlled by immunofluorescent staining with flow cytometric analysis, according to the manufacturers
protocol. Species specificity was assessed by staining of mouse splenocytes or cells from the bone marrow of C57BL/6 mice. FACS
profiles of these tests are available from the manufacturers website following the catalog numbers as depicted above.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The following twelve JAK-STAT mice were included in this study: Stat1l-ko (Stat1-/-; B6.129P2-Stat1tm1Dlv), Stat2-ko (Stat2-/-;
B6.129-Stat2tm1Shnd), Stat3-ko (Stat3flVaviCre; B6.129-Stat3tm1VpoTg(vavl-iCre)A2Kio/l), Stat4-ko (Stat4-/-; C57BL/6J-
Stat4em3Adpmc/J JAX stock #028526), Stat5-ko (Stat5flVaviCre; B6.12956-Stat5btm1Mam StatSatm2Mam/Mmijax(vavl-iCre)A2Kio/
J), Stat6-ko (Stat6-/-; B6.12952(C)-Stat6tm1Gru/J, JAX stock #005977), Irf9-ko (Irf9-/-; B6.Cg-Irfotm1Ttg), Tyk2-ko (Tyk2fICMVCre;
B6.129P2-Tyk2tm1BiatTg(CMV-cre)1Cgn), Statla-only (Statla/a; B6.129P2-Stat1betatm1Biat), Stat1b-only (Stat1B/B; B6.129P2-
Statlalphatm1Biat), Stat5-hyp (StatSbN642H; BEN-Tg(Stat5SbN642H)726Biat), and Tyk2-inact (Tyk2K293E;B6.129P2-
Tyk2tm3.1(K923E)Biat).

All mouse models were on a C57BL/6N genetic background, with the exception of Stat4-ko, which was on a C57BL/6J background.
Wild animals The study did not involve wild animals
Reporting on sex All experiments were performed on cells collected from female mice within an age range of 8 to 12 weeks
Field-collected samples  The study did not contain samples collected from the field

Ethics oversight Mice were bred at the University of Veterinary Medicine Vienna as approved by the Ethics and Animal Welfare Committee of the
University of Veterinary Medicine Vienna in accordance with the university’s guidelines for Good Scientific Practice and authorized by
the Austrian Federal Ministry of Education, Science and Research (BMWFW-68.205/0068-WF/V/3b/2015,
BMBWF_GZ:2020-0.200.397, BMWFW-68.205/0093-WF/V/3b/2015, BMBWF-68.205/0091-V/3b/2019, BMWFW-68.205/0166-WF/
V/3b/2015) in accordance with current legislation.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

X, A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

We established and validated an immune cell isolation and sorting workflow, which was applied consistently across all
experiments. Spleens were resected and immediately placed into tubes containing cold PBS (Gibco). Tissue was smashed with
a 100 um strainer (SPL Life Sciences) using a syringe plunger and a 50 ml tube. A new strainer was used for each spleen and
rinsed with 10 to 20 ml DMEM (Gibco) containing 10% FCS (Sigma) and 5 ml penicillin streptomycin with 10,000 U/ml (Gibco).
For the isolation of dendritic cells (DCs) spleens were injected with and placed in a digestion mixture (RPMI (Sigma), 2% FBS,
1 mg/ml Collagenase D, 20 pug/ml DNase 1) and then incubated at 37 °C for 30 minutes in a 24-well cell culture dish, before
proceeding with the same mashing through a 100 um strainer. We pooled cells from three littermates to obtain sufficient cell
numbers. Samples were centrifuged at 500 g for 5 min at 4 °C. Pellets were resuspended in 1 ml Red Blood Cell Lysis Solution
(Promega, Z3141) and incubated for 5 min on ice. The lysis was stopped by adding 50 ml 1x PBS. Samples were centrifuged at
500 g for 5 min at 4 °C. Supernatant was discarded and pellets were resuspended in 1 ml PBS supplemented with 2% BSA
(Sigma). Samples were filtered through a 70 um strainer (SPL Life Sciences). The strainer was washed with 1 m| PBS
supplemented with 2% BSA. MHCII+ CD11c+ dendritic cells were enriched by magnetic activated cell sorting (MACS) using the
Miltenyi Pan Dendritic Cell Isolation Kit (mouse) according to the manufacturer’s instructions (Miltenyi Biotec, 130-100-875).
Samples were centrifuged at 500 g for 5 min at 4 °C and supernatant was discarded.

Cell pellets were resuspended in 100 ul PBS (2% BSA) and anti-CD16/CD32 (clone 93, Biolegend) was added at a
concentration of 1:500 for 15 min to prevent nonspecific binding. Cell suspensions were then stained with combinations of
antibodies (all from Biolegend) against TER-119 (APC-Cy7, clone TER-119), F4/80 (FITC, clone BM8), CD19 (PerCP-Cy5.5, clone
6D5), NK1.1 (PE-Cy7, clone PK136, if NK cells were not purified) and CD45 (AF700, clone 30-F11) in a concentration of 1:100;
CD8 (APC, clone 53-6.7), CD3 (PE, clone 17A2), Ly-6C (PE-Cy7, clone HK1.4), Ly-6G (PECy7, clone 1A8), NK1.1 (PE-CyS, clone
$17016D, if NK cells were purified) in a concentration of 1:200, and Fixable Viability Dye eFluor 780 (APC-eFluor 780,
eBioscience). For dendritic cell purification, we used CD11c (PE-Cy7, clone N418, eBioscience), MHCII (PE, MHC Class Il (I-A/I-
E) Monoclonal An-tibody (M5/114.15.2), eBioscience) in a concentration of 1:200 and Fixable Viability Dye eFluor 780 (APC-
eFluor 780, eBioscience). Cells were stained for 30 min at 4 °C in the dark. 1 ml PBS supple-mented with 2% BSA was added
and suspensions were centrifuged at 500 g for 5 min at 4 °C. Pellets were resuspended in 300 pl PBS supplemented with 2%
BSA and filtered over 40 um strainer (SPL Life Sciences), filters were rinsed with 1 ml PBS supplemented with 2% BSA. Cells
were sorted with a BD FACS-Aria Ill Fusion instrument into PBS supplemented with 20% BSA using the gating strategy
depicted in Supplementary Fig. 1. Data analysis was performed with the FlowJo v10.6.1 (Tree Star) software. Aliquots of the
sort-purified cell populations were stored for RNA/DNA isolation in RLT-buffer (Qiagen) or directly processed with the ATAC-
seq assay. Due to massive expansion of the T cell compartment in the STATSBN642H mutant, we were not able to sort-purify
sufficient numbers of macrophages from the spleens in a time frame that was compatible with the sort duration for the other
genotypes.

BD FACS-Aria Il Fusion
FlowJo v10.6.1 (Tree Star). No absolute or relative abundances were calculated in this study

The FACS purified fraction contained only one sorted population. Purity was assessed by re-sorting an aliquot of the sorted
fraction and confirming that more than 98% of all cells were detectable in the gates required to select the population.

FSC-H and FSC-A was used to determine single cells and SSC-A against FSC-A to define non-debris. Expression of TER-119
(APC-Cy7) was used to exclude erythrocytes. CD45 (AF700) was used to identify immune cells. From this gate we defined T
cells as CD3 (PE) positive CD19 (PerCP-Cy5.5) negative, CD8 (APC) positive; B cells as CD19 (PerCP-Cy5.5) positive and Ly-6C/
Ly-6G (PE-Cy7) negative; NK cells as CD3 (PE) / CD19 (PerCP-Cy5.5) and F4/80 (FITC) negative, NK1.1 (PE-Cy5) positive. F4/80
positive and Ly-6C/Ly-6G (PE-Cy7) negative cells were taken as macrophages.

To isolate dendritic cells, we used FSC-H and FSC-A to determine single cells and SSC-A against FSC-A to define non-debris.
Viable cells (APC-eFluor 780 negative cells) were selected based on their expression of both CD11c (PE-Cy7) and MHCII (PE).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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