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Metastatic castration-resistant prostate cancer is typi-
cally lethal, exhibiting intrinsic or acquired resistance to 
second-generation androgen-targeting therapies and minimal 
response to immune checkpoint inhibitors1. Cellular programs 
driving resistance in both cancer and immune cells remain 
poorly understood. We present single-cell transcriptomes 
from 14 patients with advanced prostate cancer, spanning 
all common metastatic sites. Irrespective of treatment expo-
sure, adenocarcinoma cells pervasively coexpressed multiple 
androgen receptor isoforms, including truncated isoforms 
hypothesized to mediate resistance to androgen-targeting 
therapies2,3. Resistance to enzalutamide was associated 
with cancer cell–intrinsic epithelial–mesenchymal transition 
and transforming growth factor-β signaling. Small cell carci-
noma cells exhibited divergent expression programs driven 
by transcriptional regulators promoting lineage plasticity and 
HOXB5, HOXB6 and NR1D2 (refs. 4–6). Additionally, a subset 
of patients had high expression of dysfunction markers on 
cytotoxic CD8+ T cells undergoing clonal expansion follow-
ing enzalutamide treatment. Collectively, the transcriptional 
characterization of cancer and immune cells from human met-
astatic castration-resistant prostate cancer provides a basis 
for the development of therapeutic approaches complement-
ing androgen signaling inhibition.

Prostate cancer cells depend on the activity of the transcription 
factor androgen receptor (AR), which represents a major thera-
peutic target both in primary and advanced disease. Metastatic 
castration-resistant prostate cancer (mCRPC) is treated with 

second-generation androgen-targeting therapies, including enzalu-
tamide and abiraterone1. Development of resistance to these thera-
pies is nearly universal and neuroendocrine prostate cancer (NEPC) 
is often intrinsically resistant1,7. Despite successes in other solid 
tumors, immune checkpoint inhibitors have provided minimal ben-
efit except in rare subsets of patients1. Both cancer cell–intrinsic and 
extrinsic programs contributing to resistance remain areas of active 
investigation. Large-scale genomic analyses have associated altera-
tions in RB1, AR, TP53, Wnt/β-catenin pathway, PI3K pathway and 
homologous recombination repair genes with worse outcomes on 
second-generation androgen-targeting therapies8–11. Moreover, sub-
stantial attention has been focused on a diverse set of AR isoforms, 
particularly those lacking a ligand-binding domain and hypothe-
sized to be constitutively active2,3. As bulk sequencing of biopsies of 
varying tumor purity collected from diverse metastatic sites, which 
harbor different nonmalignant cells, may obscure cell type–specific 
expression programs, we profiled human mCRPC using single-cell 
transcriptomics.

With informed consent, we collected fresh biopsies from the three 
common mCRPC metastatic sites (bone, lymph node and liver) for 
whole exome sequencing, bulk RNA sequencing (RNA-seq) and 
single-cell RNA-seq (scRNA-seq) using the Smart-seq2 protocol 
(Methods)12. Patients had varied treatment histories, with biopsies 
approximately evenly represented before and after enzalutamide 
exposure (Extended Data Fig. 1 and Supplementary Table 1). In 
addition to adenocarcinomas, one tumor exhibited a small cell carci-
noma histology. After quality control, our cohort consisted of 2,170 
cells from 14 patients and 15 biopsies (Methods; Supplementary 
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Fig. 1 | Complex AR isoform coexpression within individual cells and tumors is common across disease stages and resistance states. a, Heat map 
displaying frequency of isoform-specific reads mapping to AR splice variants (Supplementary Fig. 1). Each column represents AR variants detected in 
a single cell, with only cells and isoforms that had at least one isoform-specific read shown. Short-read-based approaches cannot specifically identify 
full-length AR (Methods). b, PSA histories for the four patients for whom immediately pre-enzalutamide biopsies are shown in a. Patient 01115666 
remained on enzalutamide beyond the 300 d shown. c–e, Heat maps displaying frequency of isoform-specific reads in bulk RNA-seq of healthy prostate 
(n = 4)15, TCGA primary prostate adenocarcinoma (n = 496)14 and advanced prostate adenocarcinoma (n = 127, poly-A-sequenced only, enzalutamide 
and abiraterone-naive or enzalutamide-exposed)8. Gleason score and enzalutamide exposure status are shown for TCGA and Abida et al. cohorts, 
respectively. For each cohort, AR variants detected in at least 20% of samples are shown. f, Schematic representation of AR locus. Rectangles indicate 
exons. Exons corresponding to the full-length AR transcript are numbered, with exons comprising different functional domains colored. Select alternative 
exons included in AR splice variants are indicated. g, Fraction of total AR coverage upstream of exon 4 (including the DNA-binding domain but excluding 
the ligand-binding domain) in single cells. h, Fraction of total AR coverage in intron 3 (including multiple cryptic/alternative exons included in truncated 
splice variants) in single cells. i, Total AR expression in single cells. g–i, P value compares cells before (n = 112) and after (n = 83) enzalutamide treatment 
for patient 01115655 (two-sided Mann–Whitney U-test).
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Table 3). We labeled clusters for dominant cell type based on marker 
gene expression (Extended Data Fig. 2; Methods).

To investigate the role of AR isoforms in resistance, we developed 
methodology to specifically identify literature-described isoforms 
(Supplementary Figs. 1 and 2a,b; Methods). Isoform-specific reads 
corresponding to multiple AR variants were detected in the same 
cell across tumors and treatment exposures. AR-V7, AR-V8 and 
AR-V9, which lack the ligand-binding domain, were present both in 
cells exposed to and naive to second-generation androgen-targeting 
compounds (Fig. 1a). All three were detected in enzalutamide- and 
abiraterone-naive cells from patient 01115655, who nonetheless 
experienced a large decrease in prostate-specific antigen (PSA) lev-
els following enzalutamide initiation (Fig. 1b). In post-enzalutamide 
cells from the same patient, we observed no evidence of a selec-
tive sweep driven by any dominant single AR isoform, and almost 
all post-treatment isoforms were detectable in some cells before 
enzalutamide. In cancer cells from patient 01115578, who had no 
clinical response to enzalutamide, we did not robustly detect any 
isoform, except AR-45 (hypothesized to be dominant negative)2,13. 
Across the cohort, AR-45 and AR-V7 were coexpressed in signifi-
cantly fewer cells than expected by chance, but we did not observe 
a replacement of AR-45-expressing cells by AR-V7-expressing 
cells in post-enzalutamide biopsies (Supplementary Fig. 2c). More 
generally, we did not consistently detect any isoform specific to 
post-enzalutamide biopsies.

Applying our approach to bulk RNA-seq of normal prostate, 
TCGA primary prostate adenocarcinoma and mCRPC adenocarci-
nomas, we consistently detected coexpression of multiple isoforms 
within the same tumor across disease stages (Fig. 1c–e)8,14,15. AR-V7, 
AR-V8 and AR-V9 were detected even in normal prostate and in 
mCRPC, no AR isoform was significantly associated with duration 
on treatment (Extended Data Fig. 3a). While we observed robust 
increases in AR-V7 after enzalutamide exposure, increases were 
observed for most of the detected isoforms (Extended Data Fig. 3b). 
After normalizing the number of isoform-specific reads to AR read 
count (as opposed to total read count), we observed no significant dif-
ferences between exposed and naive tumors (Extended Data Fig. 3c).  
These observations suggest that the increased abundance after 
enzalutamide exposure of many isoforms (including AR-V7) may 
largely be a consequence of increased total AR expression and that 
the relative abundances of the different isoforms may be largely 
unchanged. Similarly, higher Gleason scores were more common 
in primary tumors with increased abundance of many AR isoforms 
but not of a specific variant (Fig. 1d). Collectively, these results sug-
gest no single AR isoform is a major driver of resistance to therapy.

Substantial numbers of reads from the AR genomic interval 
failed to map to any curated isoform, suggesting described isoforms 
form an incomplete census (Supplementary Fig. 2d). Short-read 
sequencing precludes direct isoform reconstruction, so we defined 
two measures of AR splicing that may be functionally informative. 
Intron 3 contains many of the terminal cryptic/alternative exons 
included in truncated isoforms, so we quantified the proportion 
of total AR coverage from intron 3 or from a larger interval that 
includes upstream exons (Fig. 1f)2. Increases in these measures may 
suggest expression of a greater proportion of transcripts that encode 
ligand-independent proteins.

We detected an increase in both measures after enzalutamide 
treatment for patient 01115655, but the more dramatic effect was an 
increase in total AR expression and copy number (Fig. 1g–i). Across 
samples, wide variation in cells from the same tumor was pervasive. 
Some enzalutamide-exposed biopsies (09171123 and 0917144) had 
high proportions of cells with high values for both measures, but 
so did some number of cells from all enzalutamide-naive biopsies, 
including from both patients with subsequent PSA response. More 
generally, the observed isoform coexpression patterns muddy inter-
pretation of their functional effects, especially given poorly under-
stood heterodimerization2,13. Combined with the lack of systematic 
differences before and after therapy, our observations suggest that 
assessments of single AR variants may be insufficient for a causal 
understanding of a tumor’s sensitivity to androgen-targeting thera-
pies even if their detection can serve as a proxy of total AR.

Next, we sought to identify broad expression changes following 
enzalutamide exposure. We scored cancer cells for expression of the 
MSigDB hallmark gene sets and curated literature-derived gene sets 
corresponding to proposed resistance mechanisms using a subsam-
pling procedure to filter out patterns driven by individual tumors 
(Fig. 2a; Methods)16–27. Enzalutamide-exposed cells upregulated 
gene sets for epithelial–mesenchymal transition (EMT) and trans-
forming growth factor (TGF)-β signaling (Fig. 2a–c). We observed 
consistent increases when restricting only to the patient with 
paired biopsies (Supplementary Fig. 4a,b). In a cohort of mCRPC 
bulk RNA-seq, we found a similar effect for TGF-β signaling in 
enzalutamide-exposed lymph node biopsies, although the number 
of exposed biopsies was small and the effect was not statistically sig-
nificant (Fig. 2d)8. EMT scores were confounded with tumor purity 
in these bulk data, with large differences likely driven by presence of 
benign cells (Supplementary Fig. 4c)28.

Concordantly, in VCaP-16, a cell line generated from long-term 
culture in enzalutamide until emergence of resistance, we observed 
increased SMAD2 phosphorylation following equivalent TGF-β 

Fig. 2 | Enzalutamide-exposed adenocarcinoma cells upregulate expression programs associated with EMT and TGF-β signaling. a, Comparison of 
gene set expression scores in enzalutamide-exposed versus naive adenocarcinoma cells. Gene sets included include the MSigDB hallmark collection16 
and literature-curated gene sets hypothesized to be related to enzalutamide resistance (Supplementary Table 5). q values from Benjamini–Hochberg 
adjustment of P values from two-sided Mann–Whitney U-tests (Supplementary Table 6). The broken lines indicate q = 0.05. Only G1 cells were included 
in analyses. Results shown are the median of a subsampling procedure designed to even out representation of cells from different biopsies. Each 
subsample included 67 exposed and 76 naive cells. Hashed bars correspond to results that were nonrobust in an additional leave-one-sample-out 
sampling step, suggesting that the effect is driven by patient-specific mechanisms. For details of subsampling used during statistical testing, see Methods 
and Supplementary Fig. 3. enza, enzalutamide; IL, interleukin; GR, glucocorticoid receptor. b,c, MSigDB hallmark EMT (b) and TGF-β signaling gene set 
expression scores (c) for individual cells (G1 only) collected before and after enzalutamide treatment. Each dot represents a single cell and is colored 
corresponding to biopsy. Biopsy clinical attributes are indicated in parentheses in legend (B, bone biopsy; LN, lymph node biopsy; abi, previous abiraterone 
exposure). P values from two-sided Mann–Whitney U-test, including all G1 cells. d, MSigDB hallmark TGF-β signaling gene set expression scores for bulk 
RNA-seq of mCRPC lymph node biopsies8 collected before and after enzalutamide treatment. Each dot represents a single tumor. P value from one-sided 
Mann–Whitney U-test. e, Western blot of SMAD2/3 and phospho-SMAD2 levels in enzalutamide-sensitive VCaP-D and enzalutamide-resistant 
VCaP-16. Cells were grown in basal maintenance medium with 0.5% FBS for 48 h, then treated for 2 h with the TGF-β receptor inhibitor SB-431542, 
recombinant TGFβ-1 protein or a combination of both. Cells treated with SB-431542 were pretreated for 24 h with SB-431542 before addition of 
recombinant TGFβ-1 protein. SE, short exposure; LE, long exposure. For uncropped images and both sets of vinculin loading controls, see Source Data. 
DMSO, dimethylsulfoxide. f, Immunohistochemical staining of phospho-SMAD2 in longitudinal biopsies from two patients immediately before and after 
enzalutamide treatment. Each row corresponds to one patient. All biopsies are from bone metastases. Scale bars, 50 μm. Box plots are represented by 
center line, median; box limits, upper and lower quartiles; whiskers extend at most 1.5× interquartile range past upper and lower quartiles.
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stimulation compared to enzalutamide-sensitive VCaP-D cells, 
indicating they are primed to amplify downstream signaling by 
TGF-β (Fig. 2e; Methods). Short-term exposure of wild-type VCaP 
cells to enzalutamide had minimal effect (Supplementary Fig. 4d). 
Furthermore, in two pairs of patient biopsies collected immediately 
before enzalutamide initiation and after progression, nuclear local-
ized phosphorylated SMAD2 increased in the post-treatment biop-
sies (Fig. 2f). While other hypothesized resistance programs were 
not robustly upregulated in our cohort, our observations support 
clinical studies of TGF-β inhibition in the context of enzalutamide 
resistance (Fig. 2a).

One biopsy was of a small cell carcinoma, a rare, aggressive  
form of prostate cancer that does not respond to androgen-targeting 

therapies7. Cancer cells from this biopsy had no detectable AR, 
downregulated an AR-regulated gene set and upregulated a NEPC 
gene set (Fig. 3a,b and Supplementary Fig. 5)17,18. With only one 
NEPC biopsy, we analyzed expression levels of gene sets inferred in 
our scRNA-seq to be regulated by specific transcription factors (reg-
ulons), an approach shown to identify more generalizable expres-
sion programs (Methods)29.

Comparing the single-cell results and a bulk-sequenced cohort 
that we scored for expression of the regulons inferred in scRNA-seq, 
we observed concordant patterns of differential regulon activ-
ity between adenocarcinoma and small cell carcinoma (Fig. 3c; 
Methods)8. Adenocarcinomas exhibited higher activity of HOXB13, 
which mediates AR regulatory activity, and of several ETS family 
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transcription factors30. Small cell carcinoma had higher activity of 
NANOG, SOX2 and EZH2, which promote lineage plasticity and 
resistance to androgen-targeting therapies4–7. Additionally, we 
observed increased activity of three transcriptional regulators 

whose role in NEPC has not been reported: HOXB5 and HOXB6, 
two homeobox containing transcription factors and NR1D2, a 
nuclear hormone receptor family member (Fig. 3c,d). In a second, 
independent, bulk-sequenced clinical cohort, inferred regulon 
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activity of these transcription factors partitioned tumors by his-
topathology classification (Fig. 3e)18. Furthermore, all three were 
consistently expressed in NEPC patient-derived organoids but not 
in adenocarcinoma models (Fig. 3f). In aggregate, we recovered 
generalizable patterns of cancer cell–intrinsic expression in NEPC, 
recovering known regulators mediating resistance and implicating 
new transcription factors.

To complement therapeutic strategies targeting cancer cell–
intrinsic mechanisms, clinical trials have tested immune checkpoint 
inhibitors in prostate cancer, but responses in mCRPC have been 
limited1. We characterized infiltrating cytotoxic cells from various 
metastatic niches to improve understanding of mCRPC immuno-
biology. We subclustered T and natural killer (NK) cells into two 
CD4+ T cell populations, three largely CD8+ T cell populations and 
a population of strongly CD16+ and largely CD3− cells dominated 
by NK cells (Fig. 4a and Extended Data Fig. 4a). Aside from a popu-
lation of CXCR4-expressing CD8+ T cells chiefly derived from bone 
biopsies, cytotoxic clusters exhibited widespread GZMB expression 
(Fig. 4b and Supplementary Fig. 6a). One CD8+ T cell population 
largely derived from lymph node biopsies was marked by expression 
of PDCD1 (encoding PD-1), HAVCR2, TOX, TIGIT, ICOS, FASLG 

and LAG3, suggestive of a dysfunctional effector phenotype (Fig. 4b 
and Extended Data Fig. 4b,c). This population also exhibited ele-
vated expression of both ENTPD1 and ITGAE, whose coexpression 
identifies infiltrating cytotoxic cells reactive to cancer cells in other 
human cancers31. We did not observe a distinct cluster of TCF7 
and SLAMF6 dual-expressing progenitor cells reported to mediate 
response to anti-PD-1 therapy in melanoma, but it remains unclear 
whether this explains poor response to immune checkpoint inhibi-
tors in mCRPC (Extended Data Fig. 4e,f)32.

To identify potential immune system responses to metastasis, we 
examined T cell clonal expansion by reconstructing T cell receptor 
(TCR) complementarity-determining region 3 (CDR3) sequences 
in individual cells and matching bulk RNA-seq (Methods). Groups 
of T cells forming part of an expanded clonotype group with a 
shared CDR3 sequence were detected in six patients. Clonotype 
groups detected in lymph node metastases largely comprised cells 
from the CD8+ T cell cluster with elevated co-inhibitory receptor  
expression, whereas clonotype groups detected in bone metastases 
largely comprised cells from the CXCR4-expressing CD8+ T cell  
cluster (Fig. 4c). In one enzalutamide-exposed bone biopsy 
(09171144), a large clonotype group included cells with high 
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CX3CR1 expression. CD8+ T cells with high effector molecule, low 
exhaustion marker and CX3CR1 expression have recently been 
characterized as highly cytolytic but poorly proliferative and unre-
sponsive to PD-L1 blockade33–35.

In patient 01115655, we collected cells from before and after 
enzalutamide treatment and noted marked changes in the infiltrat-
ing T cell populations. Before treatment, cytotoxic cells formed a 
minority of infiltrating T cells, but following treatment, most infil-
trating T cells were dysfunctional PDCD1-expressing CD8+ T cells. 
For the largest clonotype group in this patient, we detected the corre-
sponding TCRα and TCRβ CDR3 sequences in bulk RNA-seq from 
both time points. The clonal fraction estimated from bulk RNA-seq 
increased sharply from approximately 5% before treatment to 25% 
after treatment, making it the largest detected clone (Fig. 4d).  
All cells of this clonotype group detected in scRNA-seq were  
part of the PDCD1-expressing dysfunctional cluster. To assess 
whether this phenomenon occurs in other patients, we examined a 
longitudinal mCRPC cohort (NCT01942837) with bulk RNA-seq, 
comparing biopsies collected before and after enzalutamide treat-
ment. As a measure of the abundance of CD8+ T cells resembling 
those clonally expanded in 01115655, we examined the ratio of 
PDCD1 to CD8A expression (Fig. 4e). Two patients had marked 
increases in this ratio following enzalutamide treatment and in both, 
we observed reduced T cell diversity after enzalutamide. Owing to 
increased tumor purity in enzalutamide-exposed biopsies, we gen-
erally detected fewer clonotypes after treatment; however, in patient 
01115462, we detected large increases in clonal fraction of two 
CDR3 sequences (Fig. 4f).

The observed clonal expansions paired with relatively increased 
PDCD1 expression suggests that in some tumors, CD8+ T cells 
do mount an antitumor response in the context of enzalutamide 
exposure. This may explain why some patients respond to immune 
checkpoint inhibition following enzalutamide resistance36. While 
atezolizumab, an anti-PD-L1 therapy, was recently reported to 
provide no benefit in conjunction with enzalutamide, the obser-
vation of expanded T cell clones after enzalutamide may indicate 
that tumor killing by enzalutamide is necessary to drive the tumor 
immunity cycle37. At the same time, high CX3CR1 expression on 
some expanded clones may suggest poor response in other patients. 
Functional assays of infiltrating cytotoxic cells in heavily treated 
mCRPC are needed to decipher the effects of previous therapy and 
metastatic site on tumor reactivity and potential response to immu-
nomodulatory therapies.

To explore the significance of cell populations other than cancer 
cells and T cells, we applied approaches leveraging genome-wide 
association studies (GWAS) of inherited prostate cancer risk. We 
began by examining cell type specificity of 109 genes implicated 
in an analysis of a GWAS of over 100,000 men (Methods)38,39. 
Genes with cell type-specific expression were dominated by can-
cer cell-specific genes (Extended Data Fig. 5a). Using linkage dis-
equilibrium score regression applied to specifically expressed genes 
(LDSC-SEG) to directly integrate GWAS summary statistics with 
scRNA-seq expression patterns, we likewise found germline heri-
tability enriched only in genomic intervals near genes specifically 
expressed in cancer cells (Extended Data Fig. 5b; Methods)40. These 
results suggest that any inherited risk for prostate cancer still oper-
ant during advanced disease is primarily mediated through cancer 
cell–intrinsic mechanisms.

In summary, we used single-cell transcriptomics and validation 
in external cohorts to characterize mCRPC expression programs in 
the context of therapy. In adenocarcinomas, our findings suggest 
therapeutic targeting of specific AR isoforms may be insufficient 
but support clinical inhibition of TGF-β and further character-
ization of cytotoxic cells. HOXB5, HOXB6 and NR1D2 warrant 
functional study and potential therapeutic development in NEPC. 
Longitudinal studies integrating multi-omics and spatially resolved 

expression in larger cohorts may inform additional mediators of 
clinical resistance.
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Methods
Statistical computing. Except where otherwise specified, analysis and data 
visualization were performed with Python 3.7, SciPy v.1.3.2, Matplotlib v.3.1.1, 
seaborn v.0.9.0 and R v.3.5.1.

Reference versions. We used human genome reference b37 and the GENCODE 
release 30 gene annotation lifted over to GRCh37.

Whole exome analyses. For biopsies with paired tumor and normal samples 
available, we performed whole exome sequencing with a customized version  
of a previously described protocol41. After DNA shearing, hybridization and  
exome capture were performed using Illumina’s Rapid Capture Exome kit 
(except for the normal sample for 01115149 and the tumor sample for biopsy 
01115149-TA, which used the Agilent SureSelect Human All Exon 44 Mb v.2.0 
bait set). Libraries were sequenced with 76 bp paired-end reads on an Illumina 
instrument.

Reads were aligned using BWA v.0.5.9 (ref. 42). Somatic mutations were called 
using a customized version of the Getz Lab CGA WES Characterization pipeline 
(https://portal.firecloud.org/#methods/getzlab/CGA_WES_Characterization_
Pipeline_v0.1_Dec2018/2) developed at the Broad Institute. Copy number 
alterations, purity, ploidy and whole genome doubling status were called using 
FACETS v.0.5.14 (ref. 43; Supplementary Table 2). Copy number alterations were 
evaluated with respect to whole genome doubling status. Summary visualization of 
mutation and copy number status integrated with clinical variables was performed 
with a beta version of CoMut44.

For biopsies where whole exome sequencing failed, somatic mutation calls, 
copy number alterations and ETS fusion status were taken where available from 
OncoPanel, a clinical panel sequencing test available at Dana-Farber Cancer 
Institute.

Sample collection and dissociation for single-cell RNA-seq. Samples were 
collected with informed consent and ethics approval by the Dana-Farber/Harvard 
Cancer Center Institutional Review Board under protocol nos. 09-171, 11-104, 
13-301 and 01-045. Tumor samples were collected and transported in Dulbecco’s 
modified Eagle medium, high glucose, pyruvate (DMEM; Thermo Fisher 
Scientific, 11995073) on ice. Single-cell suspensions for scRNA-seq were obtained 
from tumor core needle biopsies through mechanical and enzymatic dissociation. 
Samples were first cut into pieces <1 mm3 using a scalpel. For bone biopsies, soft 
tissue was also scraped from the hard bone surface using a scalpel blade. Samples 
were then dissociated using one of two protocols, chiefly to optimize for yield of 
viable cells from different metastatic sites. Cells obtained from the two protocols 
were comparable and findings were consistent in subanalyses of cells processed 
with the same protocol (Supplementary Fig. 7).

For biopsies 01115655-TC, 01115666-TA, 01115680, 01115681, 09171111, 
09171135, 09171136 and 09171139, resulting tissue fragments were incubated 
in 3 ml Accumax (Innovative Cell Technologies, AM105) for 10 min at room 
temperature on a rocking shaker (ACC protocol). Cell suspensions were then 
filtered with a 100-μm cell strainer (Thermo Fisher Scientific, 08-771-19) and spun 
at 580g for 5 min at 4 °C. In cases where cell pellets appeared bloody, red blood cells 
were lysed with ACK Lysing Buffer (Thermo Fisher Scientific, A1049201) on ice 
for 1 min, followed by quenching with PBS and an additional centrifugation. The 
final cell pellet was resuspended in PBS (Thermo Fisher Scientific, MT21040CV) 
with 2% FBS (Gemini Bio-Products, 100-106).

For biopsies 01115655-TA, 01115665, 01115149-TC, 01115578-TA, 09171123, 
09171144 and 09171146, tissue fragments were incubated in 2–3 ml Medium 
199, Earle’s Salts (M199, Thermo Fisher Scientific, 11150059) with 1 mg ml−1 
Collagenase 4 (Thermo Fisher Scientific, NC9836075) and 10–20 μg ml−1 DNase I 
(StemCell Technologies, 7900) for 5–10 min in a 37 °C water bath with intermittent 
mixing, followed by additional mixing and pipetting (CD protocol). Cell 
suspensions were then filtered with a 100-μm cell strainer, spun at 580g for  
5 min at 4 °C and the resulting pellet resuspended in PBS with 2% FBS. The  
blood clot from biopsy 09171144 was processed in a similar manner, with the 
exception that red blood cells were lysed with ACK Lysing Buffer on ice at 5-min 
increments for a total of 15 min. For the bone marrow aspirate from biopsy 
09171144, mechanical and enzymatic dissociation were not performed and red 
blood cells were lysed with ACK Lysing Buffer on ice at 5-min increments for a 
total of 10 min.

Single-cell sorting. Dissociated single cells were enriched for cancer cells, CD45+ 
immune cells and, for 09171144, other populations. Single-cell suspensions in PBS 
with 2% FBS were stained by incubating for 15 min at room temperature protected 
from light with anti-human PTPRC (CD45) monoclonal antibody conjugated to 
FITC (1:200 dilution, VWR ABNOMAB12230), anti-human EPCAM antibody 
conjugated to PE (1:50 dilution, Miltenyi Biotec, 130-091-253) and either 
Calcein-AM (1:200 dilution, Thermo Fisher Scientific, C3100MP; biopsies 
01115655-TA and 01115665), 7-aminoactinomycin D (7-AAD) (1:200 dilution, 
Thermo Fisher Scientific, A1310; all other biopsies except sample 01115149-TC) 
or both (sample 01115149-TC). We first sorted cells with biological dimensions 
(high FSC-A and high SSC-A), selected single cells and excluded doublets or 

triplets (low FSC-W). Next, we sorted live cells (low 7AAD/ high Calcein-AM) 
that were CD45+ (high FITC, enriching for immune cells), EPCAM+ (high PE, 
enriching for cancer cells) or double negative (low FITC/low PE, only in biopsy 
09171144) (Supplementary Fig. 8 shows example gating). When possible, we 
collected at least one full plate of each gating, but as we did not collect all live cells, 
the representation of immune versus cancer cells in our dataset do not reflect 
composition within tumors. Cell sorting was performed using a BD Biosciences 
FACSAria cell sorter (IIu or UV) with FACSDiva software. Individual cells were 
sorted into the wells of 96-well plates with 10 μl TCL buffer (QIAGEN, 1070498) 
with 1% β-mercaptoethanol (Sigma, 63689) per well. Plates were then sealed, 
vortexed for 10 s, spun at 3,700 r.p.m. for 2 min at 4 °C and frozen on dry ice.

Transcriptome sequencing, alignment and quantification. Library preparation 
for bulk RNA-seq was performed using the Illumina TruSeq Stranded mRNA 
Sample Preparation kit (except for biopsy 01115149-TA, which was prepared using 
the unstranded Illumina TruSeq RNA Sample Preparation protocol (Revision A, 
2010)). Libraries were sequenced with 101 bp paired-end reads (except biopsy 
01115149-TA, which was sequenced with 76 bp paired-end reads) on an Illumina 
instrument.

For scRNA-seq, RNA was captured from single-cell lysates with 2.2× 
RNAClean SPRI beads (Beckman Coulter Genomics) without the final elution. 
After air drying and secondary structure denaturation at 72 °C for 3 min, library 
construction was performed using a slightly customized Smart-seq2 protocol12 
with 21 cycles of PCR for preamplification. Complementary DNA (cDNA) was 
purified with 0.8× Ampure SPRI beads (Beckman Coulter Genomics) and eluted 
in 21 μl TE buffer. During tagmentation and PCR amplification, we used 0.2 ng of 
cDNA per cell and one-eighth of the Illumina NexteraXT (Illumina FC-131-1096) 
reaction volume. Individual cells were sequenced to a mean depth of ~1.5 million 
38 bp paired-end reads on an Illumina NextSeq 500 instrument with 75 cycle high 
output kits (Illumina TG-160-2005).

After adaptor trimming, reads were aligned using STAR aligner v.2.7.2b45  
with parameters: --outFilterMultimapNmax 20 --outFilter 
MismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04  
--alignIntronMin 20 --alignMatesGapMax 1250000  
--alignIntronMax 1250000 --chimSegmentMin 12  
--chimJunctionOverhangMin 12 --alignSJstitchMismatch 
Nmax 5 -1 5 5 --chimMultimapScoreRange 3 --chimScore 
JunctionNonGTAG -4 --chimMultimapNmax 20 --chimNonchim 
ScoreDropMin 10 --peOverlapNbasesMin 12 --peOverlapMMp 
0.1 --chimOutJunctionFormat 1. sjdbOverhang was set to 1 less 
than the untrimmed read length. We used multi-sample two-pass mapping for 
all samples from each patient, first mapping all samples (bulk and single-cell 
transcriptomes), merging the SJ.out.tab files, then running the second 
pass with the jointly called splice junctions. For samples with germline and/or 
somatic variant information available from bulk exome sequencing, we supplied 
a VCF specifying single-nucleotide variants for STAR’s variant-aware mapping 
via the --varVCFfile parameter. STAR BAMs were passed into Salmon 
v.0.14.1 (ref. 46) to generate gene-level TPM quantifications with parameters: 
--incompatPrior 0.0 --seqBias --gcBias --reduceGCMemory 
--posBias. STAR chimeric junctions were supplied to STAR-Fusion47 v.1.7.0 in 
kickstart mode to call ETS family fusions.

Single-cell quality control and clustering. After removing low quality cells (<500 
or >10,000 detected genes, <50,000 reads or >25% expression from mitochondrial 
genes), we used Seurat v.3.1.0 (ref. 48) to perform first-pass clustering using the 
TPM matrix rescaled to exclude mitochondrial genes. We manually identified 
and removed a small number of cells with anomalous expression patterns (chiefly 
coexpression of high levels of hemoglobin with marker genes for nonerythroid 
cells). Additionally, some cells that did not cluster with erythroid cells (easily 
identified with dominant hemoglobin expression) nonetheless had low levels of 
hemoglobin detected, suggestive of contamination from ambient RNA released 
from lysed erythroid cells. To account for this, we identified genes whose 
expression was correlated (Pearson correlation > 0.2) with total hemoglobin 
expression levels in nonerythroid cells with detectable hemoglobin. This consisted 
of a small set of genes with known function in erythroid cell development and 
function: AHSP, GATA1, CA1, EPB42, KLF1, SLC4A1, CA2, GYPA, TFR2, RHAG, 
FAXDC2, RHD, ALAS2, SPTA1 and BLVRB. To mitigate batch effects driven by 
different degrees of contaminating ambient erythroid transcripts, we removed 
these genes, along with the genes encoding hemoglobin subunits, from the 
expression matrix for all nonerythroid cells. Following this, we did not observe 
strong batch effects, as evidenced by co-mingling of nonmalignant cells from 
different biopsies (Extended Data Fig. 1d).

We repeated the clustering and conducted all downstream analyses with the 
filtered expression matrix. After joint clustering of all cells (Extended Data Fig. 1c),  
we performed subclustering on three cell subsets: (1) NK and T cells, (2) B-lineage 
cells and (3) myeloid cells. We manually labeled clusters by dominant cell identity, 
as assessed by marker gene expression patterns (Extended Data Fig. 2 and 
Supplementary Table 4). Briefly, cancer cell clusters (n = 836, from 12 biopsies) 
were identified by expression of AR and KLK3 (adenocarcinoma markers) or 
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CHGA (NEPC marker); T cell populations by CD3D and CD3G; regulatory 
T cells by CD4, FOXP3 and CTLA4; NK cells by absence of CD3D and CD3G and 
expression of FCGR3A, FCGR3B and GZMB; erythroid cells by HBA and HBB; 
neutrophils by ELANE, CEACAM8, AZU1 and DEFA1; macrophages by APOE, 
C1QA and C1QB; monocytes by ITGAX, CD14, FCGR3A and FCGR3B; B cells 
by CD19 and MS4A1; plasmablasts by CD19 and absence of MS4A1; and plasma 
cells by SDC1 and high expression of immunoglobulin genes. Additionally, we 
confirmed the identity of cancer cell clusters by matching transcriptome-inferred 
copy number alteration profiles generated from inferCNV v.0.99.7 (https://github.
com/broadinstitute/inferCNV) with those obtained from corresponding bulk 
whole exome sequencing.

AR isoform-specific reads. Our scRNA-seq dataset had relatively even 
sequencing coverage along transcripts as is characteristic of Smart-seq2. To 
identify reads that uniquely map to an AR isoform, we generated a FASTA 
transcriptome annotation of spliced sequences from isoforms described in 
literature (Supplementary Fig. 1)2,49–55. This allowed us to use a mapping-based 
approach to quantify reads mapping to specific AR isoform transcripts. 
This approach is more comprehensive than approaches considering only 
junction reads and it yields estimates of AR-V7 abundance that are highly 
correlated with published estimates in existing cohorts (Supplementary Fig. 
2a,b). We extracted all reads initially mapped by STAR (using the GENCODE 
transcriptome annotation) to the AR genomic interval (and flanking intergenic 
region) X:66753830-67011796 and then remapped them to our AR isoform 
transcriptome, disallowing clipping, multimapping or chimeric reads and requiring 
end-to-end mapping (STAR parameters: --outFilterMultimapNmax 1 
--alignEndsType EndToEnd --alignSoftClipAtReferenceEnds 
No --outFilterMismatchNmax 999 --outFilterMismatch 
NoverReadLmax 0.04 --peOverlapNbasesMin 10 --scoreGap 
-1000000). As our AR isoform annotation corresponded to transcript sequences 
after splicing, we set scoreGap to prohibitively penalize gaps introducing additional 
inferred splice events. For patients with germline or somatic AR single-nucleotide 
variants detected either via whole exome sequencing or OncoPanel, we 
transformed single-nucleotide variants to transcript coordinates and supplied this 
as a VCF to STAR using the --varVCFfile parameter for STAR’s variant-aware 
mapping. We reported all reads that mapped uniquely to an isoform with at most 
one mismatch in Fig. 1a.

Alignment to specific isoforms requires detection of identifying transcript 
features (for example a unique exon–exon boundary, a portion of an exon not in 
other isoforms or a unique combination of exons). Illumina reads are not long 
enough to cover full transcripts in a single read, so not all isoforms are equivalently 
detectable. For example, reads cannot be attributed to AR-FL, as inclusion of all 
its component exons is impossible in Illumina reads and it has no unique splice 
junctions or exons. Thus, we avoid comparing frequencies of isoform-specific reads 
from different isoforms in the same sample/cell. We can, however, compare levels 
of the same isoform across samples/cells.

Validation in the three bulk cohorts proceeded in the same fashion, except 
that for the 4 healthy prostate samples, the initial STAR genomic alignment 
step was run with --twopassMode Basic. Reads were downloaded as 
FASTQs for healthy prostate (ArrayExpress accession E-MTAB-1733) and TCGA 
(ISB-CGC, https://isb-cgc.appspot.com/). CRAMs for the Abida et al. cohort8 
were downloaded from Amazon S3 (dbGaP accession code, phs000915.v2.p2) 
and converted to FASTQs with samtools fastq. Survival analyses incorporating AR 
variant expression were performed using the Python package lifelines v.0.23.9.

To test for AR-45 and AR-V7 mutual exclusivity, we permuted assignments of 
AR region reads to single cells for all cells with any isoform-specific reads, while 
keeping fixed the AR read depth for each cell. This represents a null distribution 
under which all cells from a biopsy have identical AR isoform expression patterns 
while preserving the per-cell AR expression levels observed in our data. We 
performed 10,000 random permutations and compared the number of cells in 
which there was AR-45 and AR-V7 coexpression (at least one isoform-specific read 
for each) under the null to that observed in our data.

Gene set scoring. For both bulk samples and single cells, we scored the activity 
of gene sets with VISION v.2.0.0 (ref. 27). Curated gene sets are shown in 
Supplementary Table 5. The hallmark gene sets were obtained from v.7.0 of the 
Molecular Signatures Database (MSigDB)16.

Analyzing cancer cell scRNA-seq data collected from patient biopsies poses 
statistical challenges. Cancer cells generally show patient-specific expression 
patterns that cause two cancer cells from a given patient to resemble each other 
more than any two cancer cells from different patients. This is driven substantially 
by patient-specific patterns of large somatic copy number alterations, which cause 
changes in expression of the affected genes to a degree that the copy number 
events can be inferred from scRNA-seq and used to cluster patient cancer cells. 
We aimed to uncover common, generalizable changes in patterns of expression 
related to enzalutamide exposure and sought to downweigh phenomena unique to 
individual patients. Patient-specific mechanisms can be detected with high power 
when cancer cells from a biopsy are particularly unusual or when they represent a 
larger than typical fraction of the total cohort of cells. To counter these effects, we 

developed a subsampling procedure detailed next and visualized in Supplementary 
Fig. 3. By considering subsets of the data more balanced for representation from 
different biopsies, we traded reduced power for more robustness.

When comparing VISION scores in cells from biopsies exposed and naive to 
treatment with enzalutamide, we included only cells inferred to be in G1 by Seurat 
to reduce discovery of signals introduced by different proportions of cycling cells 
between tumors48. We restricted our initial analyses to biopsies with at least ten G1 
cancer cells. From either class (enzalutamide-naive versus exposed), we sampled 
up to 20 cells per biopsy to prevent results from being dominated by tumors with 
many recovered cells. Additionally, across repeated sampling iterations, we took 
a leave-one-out sampling procedure across biopsies. We omitted each biopsy in 
turn, instead sampling cells from other biopsies within its class, keeping the total 
number of cells the same. We performed 501 iterations of sampling for each biopsy 
being excluded. For each gene set being scored with VISION, we used the sampling 
with the median effect size as the summary of all iterations. When measuring effect 
size, we consistently compared one class versus the other (that is always exposed 
relative to naive) to ensure consistency in comparisons of direction of effect. We 
used the corresponding two-sided Mann–Whitney U-test P value as the nominal  
P value for the given gene set.

We additionally took the following steps to filter results that seemed to be 
driven by a single biopsy: for any given biopsy, we compared samplings when cells 
from the biopsy were held out versus when cells from the biopsy were included. If 
the proportion of nominally significant results (P < 0.05, same direction of effect as 
the overall median outcome for the given signature) when the biopsy was excluded 
was <80% of the proportion of nominally significant results when the biopsy was 
included, we considered any overall finding of differential gene set expression as 
nonrobust. This step was performed after computing Benjamini–Hochberg false 
discovery rate (FDR)56. Note that P values shown in Fig. 2b,c are based on all G1 
cells and confirmed the findings from this sampling approach.

Regulon activity. As only a single biopsy had a small cell carcinoma histology, 
we opted against gene-level differential expression analysis to avoid discoveries 
unique to one patient. Instead, we inferred transcriptional regulatory factor activity 
using all cancer cells from our cohort using SCENIC v.1.1.2.229. This approach 
integrates information from patterns of gene expression covariation within our 
single-cell data with transcription factor binding site information to infer the 
sets of genes (regulons) upregulated by particular transcription factors and the 
activity of regulons within individual cells29. By focusing on inferred transcription 
factor activity as opposed to comparing individual genes, this approach has been 
previously shown to identify more generalizable patterns in expression programs 
in cancer29. In Fig. 3, for single cells, we used SCENIC AUC directly as a measure 
of regulon activity. For Fig. 3c,e, to infer regulon activity in bulk samples, we 
extracted gene sets corresponding to regulons from SCENIC and scored bulk 
samples for activity of the genes sets using VISION8,18,27.

We compared inferred regulon activities between small cell carcinoma and 
adenocarcinoma cells within our cohort using a similar subsampling approach as 
detailed previously for comparisons of gene set scores, except that in comparing 
SCENIC AUC scores, we did not restrict to only G1 cells, as the regulons had 
been inferred with all cancer cells together. As there was one small cell carcinoma 
biopsy, cells from that biopsy were never selected for omission across samplings.

Signature scoring in bulk RNA-seq from Abida et al. cohort. Clinical 
annotations and expression quantifications were obtained from the published 
supplementary materials and from the authors directly8. We converted gene 
expression values from fragments per kilobase of transcript per million mapped 
reads (FPKM) (as supplied by the authors) to TPM for consistency with the 
rest of our study. As this cohort included samples sequenced at different centers 
and from different metastatic sites, we further restricted our analyses to avoid 
batch effects. For Fig. 2d, we analyzed only samples sequenced via transcriptome 
capture at the University of Michigan, as this was the largest identifiably uniformly 
sequenced subset. We could not analyze bone biopsies in this cohort due to 
paucity of post-enzalutamide samples. For Fig. 3c, as the largest number of small 
cell carcinoma samples were sequenced at Cornell, we included only small cell 
carcinoma and adenocarcinoma cases from Cornell in our analyses.

Cell culture and western blots. The enzalutamide-resistant cell line VCaP-16 
was maintained in DMEM with 10% FBS and 16 μM enzalutamide (SelleckChem, 
S1250), while parental VCaP-D was maintained in DMEM with 10% FBS.  
VCaP-16 and VCaP-D cells were plated into six-well plates in maintenance 
medium at a density of 50% and allowed to attach for 48 h. VCaP-16 cells are 
available from S.P.B. upon request. Cells in assay wells were then washed twice  
with PBS and switched into basal maintenance medium with 0.5% FBS for 48 h 
(VCaP-16 basal medium still contains 16 μM enzalutamide). Select samples  
were pretreated with the TGF-β receptor inhibitor SB-431542 (SelleckChem, 
S1067) for the last 24 of the 48 h. Following the 48-h incubation period, cells were 
treated for 2 h with fresh 0.5% FBS maintenance medium containing SB-431542, 
recombinant TGF-β-1 protein (R&D Systems, 240-B-002), or a combination of 
both. After 2 h, medium was aspirated from all samples and each well was rinsed 
briefly in PBS.
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Cells were lysed in RIPA buffer with protease and phosphatase inhibitor 
cocktail (Thermo Fisher Scientific, P178440) on a vortex shaker for 30 mins at 4 °C. 
Lysates were spun at 16,000g for 15 mins at 4 °C and supernatant containing the 
soluble protein fraction was transferred to a new tube. Protein lysates were added 
to loading buffer (2× Laemmli Sample Buffer, Bio-Rad, 1610737) and the samples 
were boiled at 90 °C for 7 mins. Samples were electrophoresed at 200 V using a 
4–20% denaturing PAGE gel (Bio-Rad). Relative protein levels of phospho-SMAD2 
(Ser465/467), SMAD2/3 and vinculin were determined via immunoblotting 
using the following antibodies/dilutions: phospho-SMAD2 (Ser465/467) (138D4) 
antibody (Cell Signaling Technologies, 3108T) at 1:1,000 dilution, SMAD2/3 
antibody (Cell Signaling Technologies, 3102) at 1:1,000 dilution and vinculin 
antibody (7F9) (Santa Cruz Biotechnology, sc-73614) at 1:10,000 dilution. The 
experiment and blotting was performed once.

To assess response to short-term enzalutamide exposure, wild-type VCaP cells 
were seeded in DMEM with 10% FBS in 24-well plates and allowed to attach for 
24 h. The cells were treated with 10 μM enzalutamide for 24, 48 or 72 h or DMSO 
for 72 h. Recombinant TGF-β-1 protein was added 1 h before collecting cells for 
lysis and western blot. Antibodies are as previously stated, with the addition of 
anti-PSA antibody (rabbit polyclonal, Biodesign, K9211DR) at 1:10,000 dilution 
and β-actin HRP-conjugate antibody (Abcam, ab20272) at 1:20,000 dilution.

pSMAD2 immunohistochemistry. Samples frozen in OCT were cryosectioned 
at 5-μm thickness, fixed in 10% neutral buffered formalin for 12 h and washed 
in 1× PBS. For each biopsy, slides were cut from multiple tissue blocks 
(n = 2–6, depending on available tissue) and evaluated for tumor content, with 
representative images shown from regions with sufficient tumor cellularity. 
Immunohistochemical staining of phospho-SMAD2 was performed on the 
automated Leica Bond RX system, using the Bond Polymer Refine kit with 
anti-phospho-SMAD2 (Ser465/467) antibody (E8F3R, rabbit monoclonal, Cell 
Signaling Technology) at a dilution of 1:100 overnight at 4 °C.

HOXB5, HOXB6, NR1D2 immunohistochemistry. Patient-derived organoids of 
NEPC were developed from metastatic biopsies as previously described57. NEPC 
organoids (OWCM154, OWCM155, OWCM1078 and OWCM1262) and prostate 
adenocarcinoma (LNCaP and VCaP) xenograft models were formalin-fixed, 
paraffin embedded and serial sectioned at 4 μm thickness. Formalin-fixed, 
paraffin embedded slides were immersed in xylene and ethanol solutions for 
deparaffinization and dehydration. Antigens were retrieved in boiled 10 mM 
sodium citrate buffer (Sigma-Aldrich). Slides were blocked using horse serum 
and incubated with primary antibodies at 4 °C overnight. Slides were washed and 
developed using the ABC kit (Vector Laboratories), followed by hematoxylin 
counterstaining. Each stain was performed twice independently on the same batch 
of freshly sectioned slides and at least three images were taken from each in low 
and high magnification, with representative images shown in Fig. 3f. Dilutions for 
primary antibodies were anti-NR1D2 (1:50, NOVUS, NBP2-56141), anti-HOXB5 
(1:10, Sigma, HPA043851) and anti-HOXB6 (1:200, Abcam, ab219499).

TCR reconstruction. We performed TCR reconstruction and clonotype inference 
from scRNA-seq with TraCeR v.0.6.0 (ref. 58). We performed TCR reconstruction 
and estimation of clonal fraction from bulk RNA-seq using MiXCR v.3.0.12 (ref. 59). 
TCRs were inferred as detected in both bulk and scRNA-seq if the CDR3 nucleic 
acid (and therefore amino acid) sequence matched.

Expression of prostate cancer risk genes. For Extended Data Fig. 5a, we examined 
expression of a published set of prostate cancer risk genes38. For each cluster of 
cells, we computed the fraction of cells expressing each gene at TPM ≥ 1. For 
nonmalignant cells, we combined cells from different biopsies in each cluster. For 
cancer cells, we considered each biopsy separately as its own cluster. We further 
grouped cell clusters into ‘superclusters’ of related cell types (Supplementary Table 
4 and Extended Data Fig. 5). We deemed a gene to be cell type-specific if, in the 
cluster where it was most frequently expressed, it was expressed in at least a quarter 
of the cells and if the proportion expressing was at least 2.5-times that of every 
cluster in any other supercluster. This allows the identification of, for example, 
PIK3C2B, which is highly expressed in both B cells and plasmablasts but only 
sparsely in unrelated cell types.

Cluster-specific genes and LDSC-SEG. LDSC-SEG considers genome-wide 
signals of disease association, including mostly weak, nonsignificant signals and 
determines whether they are significantly concentrated in subsets of the genome. 
More specifically, LDSC-SEG examines heritability in regions of the genome 
surrounding genes specifically expressed in different cell populations to nominate 
cell types relevant to disease biology40. We grouped cell clusters into ‘superclusters’ 
of related cell types as before and performed differential expression to identify 
markers for each cell cluster, omitting cells in the same supercluster. To mitigate 
uneven representation of cell types, when comparing against any cluster, we 
subsampled the same number of cells from each other supercluster and used as 
even a representation as possible of the contained clusters. In determining cancer 
cell markers, we used as even a representation as possible of cells from each biopsy 
while sampling 200 cancer cells total per iteration. For each cluster, we repeated 

sampling 500 times. In each sampling, we performed a one-sided Mann–Whitney 
U-test for differential expression on all genes with at least one TPM expression in 
at least 10% of the cluster’s cells. We then selected the top 10% most-upregulated 
genes (lowest median P value across samplings) as cluster specifically expressed 
genes. We used a 100 kb interval around genes for heritability partitioning with 
LDSC-SEG v.1.0.1, additionally including an annotation corresponding to all genes 
and the baseline v.1.1 model40.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
scRNA-seq expression and clustering data generated in this study are available at  
https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional- 
mediators-of-treatment-resistance-in-lethal-prostate-cancer. Raw sequence data 
generated in this study are being deposited in dbGaP (accession phs001988.v1.p1). 
FASTQs for healthy prostate RNA-seq are from ArrayExpress under accession 
E-MTAB-1733. TCGA data are available at dbGaP accession phs000178.v11.p8. 
Abida et al. data are available at dbGaP accession phs000915.v2.p2. The hallmark 
gene sets from MSigDB can be accessed at https://www.gsea-msigdb.org/gsea/
msigdb/collections.jsp#H. Source data are provided with this paper.
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Extended Data Fig. 1 | Cellular atlas of mCRPC. a, Summary of clinical and select genomics features of patients and biopsies forming the study cohort. 
Each column represents a single biopsy. Where available, multiple biopsies from the same patient are displayed in adjacent columns. Patients are 
identified by numerical prefix, while suffixes after a dash, when present, identify biopsies from the same patient. Copy number calls based on whole 
exome sequencing (WES), but not OncoPanel, are allelic, with calls for the two alleles indicated by two triangles. In cases with whole genome doubling, it 
is possible for one allele to be amplified and one or both copies of the other allele to be lost. AR and KDM6A are on the X chromosome and so have only a 
single copy in these patients; they are represented with solid boxes for copy number status. Boxes with diagonal slashes indicate missing data, for example 
for genes not included in OncoPanel or for low tumor purity samples for which FACETS does not produce a purity estimate. Putative loss of function 
(LoF) missense mutations were annotated as LoF or likely LoF in OncoKB or mutated the same amino acid as a LoF mutation60. b, Study design overview. 
Dissociated single cells were sorted to enrich for tumor (CD45- EPCAM+), immune (CD45+ EPCAM-), or other populations (CD45- EPCAM-). c, Projection 
of single-cell expression onto the first two dimensions of UMAP space. Each dot represents a single cell, and colors correspond to clusters identified by 
the Louvain algorithm. Clusters are manually labelled with dominant cell type(s) inferred from cluster-specific expression of marker genes. Cells colored 
corresponding to (d) biopsy of origin or (e) metastatic site. Non-malignant cells from different patients jointly cluster by cell type, while cancer cells from 
different patients largely form distinct clusters.
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Extended Data Fig. 2 | Marker gene expression used for cluster labeling. Expression of select cell type marker genes for (a) prostate cancer cells (AR is 
expressed in adenocarcinoma, and CHGA is expressed in small cell carcinoma) (b) erythroid cells (c) T and NK cells (see also Extended Data Fig. 4) (d) 
neutrophils (e) macrophages (f) monocyte subsets, and (g) B lineage cells (see Methods for details on using combinations of markers to distinguish B 
cells, plasmablasts, and plasma cells). UMAP projections as in Extended Data Fig. 1c.
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Extended Data Fig. 3 | Association of AR variant expression with clinical features in advanced prostate cancer. Analysis of isoform-specific read 
frequency in poly-A-sequenced samples with an adenocarcinoma histology from Abida et al. cohort8. a, Summary of multivariate Cox proportional hazards 
analysis of time on first-line androgen receptor signaling inhibitor (ARSI; abiraterone or enzalutamide) using AR variant frequency (isoform-specific reads /  
million total reads) in pre-treatment ARSI-naïve samples (n = 46). AR variants detected in at least 20% of samples were included. 95% confidence 
intervals and p- values are unadjusted for multiple hypotheses. q values correspond to Benjamini-Hochberg FDR. Comparison of expression levels of AR 
variants measured as a proportion of (b) all reads or (c) AR reads in ARSI-naïve (n = 98) vs. enzalutamide-exposed patients (n = 29). In stripplots, each 
dot corresponds to a single tumor. Bar plots show q values from Benjamini-Hochberg adjustment of p values from two-sided Mann Whitney U tests. 
Dashed lines indicate q = 0.05. Boxplots: center line: median; box limits: upper and lower quartiles; whiskers extend at most 1.5x interquartile range past 
upper and lower quartiles.
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Extended Data Fig. 4 | Marker gene expression in NK and T cells. Expression of (a) cell type markers, (b) dysfunction and activation markers, (c) markers 
of tumor-reactive cytotoxic cells31, (d) genes expressed in a GNLY-expressing cytotoxic subset, and (e) genes reported to mark a progenitor population 
necessary for response after anti-PD-1 therapy in melanoma32. Cells are projected onto UMAP space as in Fig. 4a. f, Scatterplots showing pairwise 
co-expression of HAVCR2, SLAMF6, and TCF7 in CD8+ T cells. Points are colored according to cluster membership as in Fig. 4a.
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Extended Data Fig. 5 | Germline heritability for prostate cancer is enriched near genes specifically expressed in prostate cancer cells. a, Expression of 
a subset of a published set of prostate cancer risk genes that show cell type specificity (Methods)38 (b) LDSC-SEG enrichment of heritability for prostate 
cancer near genes specifically expressed in each cell type (compared to cell types in other cell type groups) (Methods). *: Benjamini-Hochberg FDR < 0.05.
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scRNA-seq expression and clustering data generated in this study are available at https://singlecell.broadinstitute.org/single_cell/study/SCP1244/transcriptional-
mediators-of-treatment-resistance-in-lethal-prostate-cancer. Raw sequence data generated in this study are being deposited in dbGaP (accession 
phs001988.v1.p1). FASTQs for healthy prostate RNA-seq are from ArrayExpress accession E-MTAB-1733. TCGA data are available at dbGaP accession 
phs000178.v11.p8. Abida et al. data are available at dbGaP accession phs000915.v2.p2. The Hallmark gene sets from the Molecular Signatures Database (MSigDB) 
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Sample size 2,170 post-QC cells from 14 patients and 15 biopsies. No sample-size calculation was performed a priori, as this is a descriptive study. We 
accrued biopsies from all available patients who consented to the study, and patient numbers are consistent with cancer scRNA-seq studies in 
literature.

Data exclusions To arrive at 2,170 post-QC cells, sequenced cells were excluded from downstream analyses based on gene count (<500 or >10,000), read 
depth (< 50,000 reads), and expression patterns suggestive of ambient RNA contamination (see Methods for details). QC metric thresholds 
were not fixed before data analysis, but the QC procedure is consistent with current practices in field.

Replication scRNA-seq data to replicate our findings are not directly available. While the comparisons are limited due to the mismatch in data type, we 
attempted to identify patterns of expression differences identified in our scRNA-seq data in bulk RNA-seq cohorts. Additionally, we used cell 
lines, patient biopsy tissues, and organoid models to test expression programs identified from sequencing analyses. VCaP-16 and VCaP-D TGF-
β stimulation was tested at multiple concentrations and showed a clear dose-response relationship in both. pSMAD2 IHC was performed in 
pairs of pre/post-enzalutamide tissues from two separate patients. For each biopsy, slides were cut from multiple tissue blocks (n = 2-6, 
depending on available tissue) and evaluated for tumor content, with representative images shown from regions with sufficient tumor 
cellularity. HOXB5, HOXB6, NR1D2 immunohistochemistry was performed twice independently on the same batch of fresh sectioned slides 
and at least three images were taken from each in low and high magnification.

Randomization This study did not involve allocation of patients/samples to interventions/experimental perturbations, so randomization did not apply.

Blinding This study did not include experimental perturbations of biopsies. Comparisons of nuclear pSMAD2 staining in Fig. 2f were performed by a 
pathologist who was blinded to the timepoint label for each biopsy. There was no additional blinding, as this study did not involve prospective 
allocation of patients into arms/groups.
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-human PTPRC (CD45) monoclonal antibody conjugated to FITC (VWR #ABNOMAB12230) 

anti-human EPCAM antibody conjugated to PE (Miltenyi Biotec #130-091-253) 
anti-phospho-SMAD2 (Ser465/467) (138D4) antibody (Cell Signaling Technologies #3108T) 
anti-SMAD2/3 antibody (Cell Signaling Technologies #3102) 
anti-vinculin antibody (7F9) (Santa Cruz Biotechnology, #sc-73614)  
anti-β-actin HRP-conjugate antibody (Abcam #ab20272) 
anti-PSA antibody (rabbit polyclonal, Biodesign, Kennebunk, ME, #K9211DR) 
anti-phospho-SMAD2 (Ser465/467) antibody (E8F3R, rabbit monoclonal, Cell Signaling Technology #18338) 
anti-NR1D2 (NOVUS #NBP2-56141) 
anti-HOXB5 (Sigma #HPA043851 ) 
anti-HOXB6 (Abcam #ab219499)

Validation For FACS, anti-human PTPRC (CD45) and anti-human EPCAM antibodies were validated by the manufacturers as specific for 
human and for use in flow cytometry. 
Per manufacturer, anti-phospho-SMAD2 (Ser465/467) (138D4) detects endogenous levels of Smad2 only when dually 
phosphorylated at serines 465 and 467, and may detect Smad3 phosphorylated at the equivalent sites. This antibody does not 
cross-react with other Smad-related proteins. Species reactivity: human, mouse, rat, and mink. Validated for use in Western blot. 
Per manufacturer, anti-SMAD2/3 antibody is recommended for use in Western blot and immunoprecipitation, with reactivity to 
human, mouse, rat, and monkey total Smad2/3 protein. 
Per manufacturer, anti-vinculin antibody is recommended for use in Western blot, immunofluorescence, immunoprecipitation, 
and immunohistochemistry, with reactivity to vinculin of human, mouse, rat and avian origin. 
Per manufacturer, anti-β-actin antibody is validated for use in Western blot and has specificity to mouse, rat, rabbit, chicken, 
cow, dog, human, pig, Drosophila melanogaster, African green monkey, and Chinese hamster. 
anti-PSA antibody: specificity and sensitivity is supported by repeated results showing the detection of a protein band at the 
expected size. Protein detection was increased by androgen stimulation in prostate cancer cells and reduced by androgen 
receptor downregulation with siRNA or degrader or AR antagonist (e.g. enzalutamide). 
anti-phospho-SMAD2 (Ser465/467) antibody (E8F3R): per manufacturer, antibody has specificity to human, mouse, and rat and 
is suitable for use in Western blot, immunoprecipitation, immunocytochemistry, flow cytometry, and ChIP. We performed 
titration experiments using 22Rv1 cells with and without TGF-β stimulation to determine antibody concentration. 
anti-NR1D2, anti-HOXB5, anti-HOXB6: Antibodies for immunohistochemistry experiments were validated by the Human Protein 
Atlas (HPA) project according to manufacturer’s website. We confirmed by serial dilution to determine specificity and expression 
location using manufacturer datasheet as reference. In addition, these antibodies are specific to human antigens but not mouse. 
We validated in patient derived xenografts showing no expression in mouse tissues.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) VCaP-16 cells were derived from long term culture of VCaP cells in enzalutamide (see Methods). VCaP cells were purchased 
from ATCC.

Authentication VCaP cells were authenticated via DNA typing.

Mycoplasma contamination VCaP cells tested negative for Mycoplasma via a DNA-based PCR test.

Commonly misidentified lines
(See ICLAC register)

None

Human research participants
Policy information about studies involving human research participants

Population characteristics Patients were men who had metastatic castration resistant prostate cancer. No genomic features were used for participant 
selection. 13/14 patients had prostate adenocarcinoma, and 1/14 had small cell carcinoma. Biopsies were collected from 
metastases to bone (8/18), lymph node (9/18), and liver (1/18). All patients had received androgen deprivation therapy. Patients 
ranged in age from 57-79.
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Recruitment Patients were recruited as part of the research program at Dana-Farber Cancer Institute. The consenting patient population at 

this site may not necessarily be representative (e.g. potentially more urban) of all advanced prostate cancer patients; however, 
the genomic and clinical characteristics of our cohort are consistent with those of participants from large-scale bulk sequencing 
studies of mCRPC conducted in the US.

Ethics oversight This study was approved by the Dana-Farber/Harvard Cancer Center Institutional Review Board under protocols # 09-171, 
11-104, 13-301, and 01-045.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Tumor samples were collected and transported in Dulbecco's Modified Eagle Medium, on ice. Single-cell suspensions for single-
cell RNA-seq were obtained from tumor core needle biopsies through mechanical and enzymatic dissociation. Samples were first 
cut into pieces smaller than 1 mm3 using a scalpel. For bone biopsies, soft tissue was also scraped from the hard bone surface 
using a scalpel blade. Samples were then dissociated using one of two protocols, chiefly to optimize for yield of viable cells from 
different metastatic sites (Methods). Single cell suspensions in PBS with 2% FBS were stained by incubating for 15 minutes at 
room temperature protected from light with anti-human PTPRC (CD45) monoclonal antibody conjugated to FITC (1:200 dilution), 
anti-human EPCAM antibody conjugated to PE (1:50 dilution), and either Calcein-AM (1:200 dilution), 7-Aminoactinomycin D (7-
AAD) (1:200 dilution), or both. 

Instrument BD Biosciences FACSAria cell sorter (IIu or UV)

Software FACSDiva

Cell population abundance Post-sort fractions included 45.5% viable cells (low 7AAD), 0.1% immune cells (high CD45-FITC), and 0.3% epithelial/tumor cells 
(high EPCAM-PE) as demonstrated by sample 09171136.

Gating strategy We first sorted cells with biological dimensions (high FSC-A and high SSC-A), selected single cells, and excluded doublets or 
triplets (low FSC-W). Next, we selected live cells (low 7AAD/ high Calcein-AM) that were CD45+ (high FITC, enriching for immune 
cells), EPCAM+ (high PE, enriching for tumour cells), or double negative (low FITC/low PE).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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