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Although deep learning algorithms show increasing prom-
ise for disease diagnosis, their use with rapid diagnostic 
tests performed in the field has not been extensively tested. 
Here we use deep learning to classify images of rapid human 
immunodeficiency virus (HIV) tests acquired in rural South 
Africa. Using newly developed image capture protocols with 
the Samsung SM-P585 tablet, 60 fieldworkers routinely 
collected images of HIV lateral flow tests. From a library of 
11,374 images, deep learning algorithms were trained to clas-
sify tests as positive or negative. A pilot field study of the 
algorithms deployed as a mobile application demonstrated 
high levels of sensitivity (97.8%) and specificity (100%) 
compared with traditional visual interpretation by humans—
experienced nurses and newly trained community health 
worker staff—and reduced the number of false positives and 
false negatives. Our findings lay the foundations for a new 
paradigm of deep learning–enabled diagnostics in low- and 
middle-income countries, termed REASSURED diagnostics1, 
an acronym for real-time connectivity, ease of specimen col-
lection, affordable, sensitive, specific, user-friendly, rapid, 
equipment-free and deliverable. Such diagnostics have the 
potential to provide a platform for workforce training, quality 
assurance, decision support and mobile connectivity to inform 

disease control strategies, strengthen healthcare system effi-
ciency and improve patient outcomes and outbreak manage-
ment in emerging infections.

Rapid diagnostic tests (RDTs) save lives by informing case man-
agement, treatment, screening, disease control and elimination 
programs1. Lateral flow tests are among the most common RDTs, 
and hundreds of millions of these tests are performed worldwide 
each year. They have the potential to support near-person testing 
and decentralized management of a range of clinically important 
diseases (including malaria, HIV, syphilis, tuberculosis, influenza 
and noncommunicable diseases2), making it convenient for the 
end user and more affordable for health systems3. However, RDTs 
also present some issues, namely: errors in performing the test and 
interpreting the result4,5, quality control and lack of electronic data 
capture records of the test and results within health systems and 
surveillance. Many of these would be overcome with the real-time 
connectivity associated with REASSURED—the new criterion 
for an ideal test to reflect the importance of digital connectivity, 
coined by Peeling and coworkers1. Real-time connectivity involves 
the use of mobile-phone-connected RDTs. To date there have 
been few peer-reviewed studies or evaluations of the effectiveness 
of connected lateral flow tests at scale in populations in low- and 
middle-income countries.
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Fig. 1 | Infographic illustrating the benefits of data capture in supporting field decisions. Current workflow used by fieldworkers (blue); our proposed 
mHealth system of automated RDT classifier plus data capture and transmission to a secure mHealth database (orange); and the benefits arising from 
deploying the proposed system (green). Black rectangles represent tablets or smartphones.
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Recent studies comparing the human interpretation of a HIV 
RDT to various gold standards, such as immunoblot6–9, enzyme 
immunoassay7,9–11, standardized test panels12 or different HIV 

RDTs13–15, have highlighted the common issue of subjective interpre-
tation of the test result, which can lead to incorrect diagnosis. User 
error (especially in the case of weak reactive lines) and inadequate 
supervision of testers were identified as prime factors for misinter-
pretation16. In a study of differently experienced users interpreting 
results of HIV RDTs by looking at pictures of tests17, the accuracy 
of interpretation varied between 80 and 97%. This highlights the 
importance of experience in reading the test, as well as the subjec-
tivity involved in reading a weak test line. Evidence also suggests 
that some fieldworkers struggle to interpret RDTs because of color 
blindness or short-sightedness18. Another study used photographs 
of HIV RDTs to quantify the subtle difference in tests with faint 
lines declared as true positive (TP) or false positive (FP) by a panel 
of human users19. While these were small-scale studies (n = 148 and 
8, respectively), both highlighted the potential for photographs to 
improve quality control and decision making.

Deep learning algorithms, harnessing advances in large data-
sets and processing power, have recently shown the ability to 
exceed human performance in a plethora of visual tasks, including 
cell-based diagnostics20, interpretation of dermatologic21, ophthal-
mologic22 and radiographic images23, playing strategic games24 and 
in clinical medicine when used alongside appropriate guidelines25,26. 
While some emerging studies are looking at the application of deep 
learning to the interpretation of RDTs27,28, little is known about 
the ability of machine learning models to analyze field-acquired 
diagnostic test data, with concerns about the potential uniformity 
of images (for example, focus and tilt), harsh environmental fac-
tors such as lighting (for example, brightness and shadowing), and 
the variety of test types. In addition, there is a general lack of large 
real-world datasets available to successfully train deep learning clas-
sifiers, particularly from low- and middle-income countries. Recent 
advances in consumer electronic devices and deep learning have the 
potential to improve RDT quality assurance, staff training and con-
nectivity, eventually supporting self-testing such as for HIV, which 
has been shown to be cost effective29, to appeal to young people30 
and help reduce anxiety31.

Mobile health (mHealth) approaches, which marry RDTs with 
widely available mobile phones, take advantage of inbuilt sensors 
(for example, cameras) found in the phones, battery life, process-
ing power, screens to display results and connectivity to send results 
to health databases. A recent field study has shown high levels of 
acceptability for a device sending HIV RDT results to online data-
bases in real time32. An array of approaches have been piloted at 
small scales (n ≤ 283) and have shown good performance. However, 
most require a physical attachment such as a dongle (92–100% 
sensitivity, 97–100% specificity)33, a cradle34 or a portable reader  
(97–98% sensitivity)35, which increases cost and complexity, and 
these are typically reliant on simple image analysis software.

We explore the potential of deep learning algorithms to classify 
field-based RDT images as either positive or negative, focusing on 
HIV as an exemplar and piloting at scale in population ‘test beds’ 
in KwaZulu-Natal, typical of semi-rural settings in subSaharan 
Africa. Figure 1 shows the concept of our deep learning–enabled 
REASSURED diagnostic system to capture and interpret RDT 
results. Our approach first involved building a large image library 
of field-acquired test images as a training dataset, optimizing algo-
rithms for high sensitivity and specificity and then deploying our 
classifier in a pilot study to assess its performance compared to tra-
ditional visual interpretation with a range of end users having vary-
ing levels of training.

Our standard image collection protocol (Fig. 2a) and library 
are described in Methods. In brief, 11,374 photographs of HIV 
RDT were captured by >60 fieldworkers using Samsung tablets 
(SM-P585, 8-megapixel camera, f1/9 with autofocus capability). 
Embedding of routine image collection into staff workflows was 
acceptable and feasible, and participant consent rate was 96%.  
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Fig. 2 | Standardization of image capture, image preprocessing and training 
library. a, Fieldworker capturing a photograph of two HIV RDTs at the time 
of interpretation, in the field in rural South Africa (image credit: Africa 
Health Research Institute). The two HIV RDTs are fitted in a plastic tray 
designed to standardize image capture and facilitate image preprocessing. 
b, Interpretation process, starting from the original picture of HIV RDTs 
used during the study, preprocessing to select the ROI then interpretation 
of the test result. If two lines (control + test) are present on the paper strip 
at the time of interpretation, the test result is positive. Note: for the ABON 
HIV RDT, one or two different test lines can appear (T1 and T2) depending 
on the type of HIV infection (HIV-1 and HIV-2, respectively). The test result 
is positive regardless of which test line is present, or if both test lines are 
present on the paper strip at the time of interpretation. If only the top line 
(control) is present, the test is negative; if no control line can be seen, the 
test is deemed invalid. c, Snapshot of the image library of HIV RDTs collected 
in the field in rural South Africa (162 randomly selected images out of 
11,374), illustrating the diversity of color, background and brightness.
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We optimized our mHealth system for the two different HIV RDTs 
used in the study as part of routine household population surveil-
lance. At first glance these RDTs appear similar, but have different 
features and numbers of test lines. To reduce the number of vari-
ables, we cropped the images around the region of interest (ROI) 
(Fig. 2b). Figure 2c shows a snapshot of the very diverse real-world 
field conditions where the images were captured (indoors, outdoors, 
in the shade and in direct sunlight).

Each image was labeled (Methods) according to the test result. 
Figure 3a details the number of images used to train classifiers to 
automatically read the result of HIV RDT images. The training pro-
cess is described in Methods. To test the reproducibility of the process, 
we performed a tenfold cross-validation. As can be seen in Fig. 3b,  
the average sensitivity (95.9 ± 5.1% for type A, 98.7 ± 1.7% for  
type B) and specificity (99.0 ± 0.6% for type A, 99.8 ± 0.2% for  
type B) achieved across the ten folds was high and consistent for 
both types of HIV RDT. We therefore used all available data to train 
a final classifier for each type of test, which were then used in our 
field study. We investigated different common classification meth-
ods in use for clinical diagnostics (support vector machine36 (SVM) 
and convolutional neural networks (CNNs)), including three differ-
ent CNN architectures (ResNet50 (ref. 37), MobileNetV2 (refs. 38,39) 
and MobileNetV3 (ref. 40), and found MobileNetV2 the most appro-
priate for our task, as can be seen in Fig. 3c.

We then conducted a field pilot study in rural South Africa to 
assess the performance of our mHealth system compared to visual 
interpretation, with a range of end users having varying levels of 
training (Methods). Five participants (two nurses and three newly 
trained community health workers) were each asked to give their 
interpretation of 40 HIV RDTs and to acquire a photograph of the 

RDT via the application. The plastic trays used to collect the image 
library were not used in this pilot study. All five participants (100%) 
were able to use our mHealth system without training, demonstrat-
ing its feasibility and acceptability. The photographs were then eval-
uated by an expert RDT interpreter, followed by our deep learning 
algorithms on a secure server. The results were not fed back to the 
study participants, to avoid confirmation bias. The performance 
results can be seen in Fig. 4.

When comparing the traditional visual interpretation of RDTs 
we observed varied levels of agreement between participants (61–
100%) as can be seen in Fig. 4a. As expected, agreement between 
nurses (N1 and N2: 100 and 94.4% agreement for test types A and 
B, respectively) was greater than that between newly trained com-
munity health workers (C1, C2 and C3: 80–90 and 61.1–94.4% for 
test types A and B, respectively). Test type B showed the lower level 
of agreement. The low level of agreement between participants, 
and variability due to the type of HIV RDT, were of concern and 
highlighted the need for a more objective and consistent method 
to interpret HIV RDTs in the field. The confusion matrices in 
Fig. 4b demonstrate that our mHealth system reduced the num-
ber of errors in reading RDTs. The number of FP results from our 
mHealth system was found to be lower than that for traditional 
visual interpretation (0 compared to 11—the largest variation being 
observed for community health workers, 10), which translates as 
an improvement in specificity from 89 to 100% and an improve-
ment in positive predictive value from 88.7 to 100%. Similarly, the 
number of false-negative (FN) results was just two in our mHealth 
system compared to four for traditional visual interpretation, which 
translates as an improvement in sensitivity from 95.6 to 97.8% and 
an improvement in negative predictive value from 95.7 to 98%.  
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Fig. 3 | Algorithm training and performance. a, Table showing the number of images in the training library, divided into two label categories (positive 
and negative), as well as two subcategories corresponding to the test type. b, Table summarizing the training process using cross-validation, with a 
training set of n = 3,998 (type A) and n = 6,221 (type B). Sensitivity and specificity were obtained using a hold-out testing dataset of n = 445 (type A) 
and n = 693 (type B). c, Barplots showing the average performance (sensitivity and specificity) of four classification methods trained on our dataset, 
using cross-validation (error bars represent s.d. from the mean). The three CNNs pretrained on the ImageNet dataset (ResNet50, MobileNetV2 and 
MobileNetV3) were retrained and tested using our dataset. The SVM was trained using features extracted by the histogram of oriented gradients. All four 
classifiers were trained using the training set described in b. Sensitivity and specificity were obtained using the hold-out testing dataset described in b.
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We plotted the ratio of our mHealth system performance to par-
ticipant performance, for both sensitivity and specificity (Fig. 4c). 
All participants had a sensitivity index ≥1 for test type A; four out 
of five participants (N1, N2, C1 and C2) also had the same index 

for test type B, demonstrating that our mHealth system was more 
effective than those participants at reading positive test results. Our 
system was also more reliable at reading negative tests, because all 
participants had a specificity index ≥1 for both types of HIV RDT.
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We acknowledge the following limitations of our study. First, 
our pilot study involved a relatively small number of participants 
(five) although we note this is comparable to other similar pilot 
studies reported in the field. In future, larger evaluation studies and 
clinical trials will be needed to assess the performance of the sys-
tem, involving participants with a broader range of demographics 
including age, gender and different levels of digital literacy, as well 
as more expert readers. In addition, future studies would benefit 
from the inclusion of an invalid test classifier and different mobile 
phone types with varying camera specifications. Although images 
were analyzed on a secure server, future analysis could be on-device 
and thus overcome the need to upload images. We are also currently 
investigating an image segmentation approach using deep learning 
for the next iteration of the smartphone application.

To conclude, we have demonstrated the potential of deep learn-
ing for accurate classification of RDT images, with an overall per-
formance of 98.9% accuracy, notably higher than traditional visual 
interpretation of study partipants (92.1%), comparable to reports 
of 80–97% accuracy17. Given that >100 million HIV tests are per-
formed annually, even a small improvement in quality assurance 
could impact the lives of millions of people by reducing the risk of 
FP and FN. We believe our real-world image library is the first of 
its kind at this scale and we demonstrate that deep learning models 
can be deployed with mobile devices in the field, without the need 
for cradles, dongles or other attachments. It lays the foundation 
for deep learning–enabled REASSURED diagnostics, demonstrat-
ing that RDTs linked to a mobile device could standardize the cap-
ture and interpretation of test results for decision makers, reducing 
interpretation and transcription errors and workforce training. Our 
findings are based on HIV testing decision support for fieldworkers, 
nurses and community health workers, but in future could be appli-
cable to decision support for self-testing. We focused on HIV as an 
exemplar, but the capacity of the classifier for adaptation to two dif-
ferent test types suggests that it is amenable to a large range of RDTs 
spanning both communicable and noncommunicable diseases. This 
platform could be utilized for workforce training, quality assurance, 
decision support and mobile connectivity to inform disease con-
trol strategies, strengthen healthcare system efficiency and improve 
patient outcomes and outbreak management. The ideal connected 
system would link connected RDTs to laboratory systems, whereby 
remote monitoring of RDT functionality and utilization could also 
allow health programs to optimize testing deployment and supply 
management to deliver sustainable development goals and ensure 
that no one is left behind. The real-time alerting capability of con-
nected RDTs could also support public health outbreak manage-
ment by mapping ‘hotspots’ for epidemics, including COVID-19, 
to protect populations.
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Methods
Ethics. Ethical approval for the demographic surveillance study was granted by 
the Biomedical Research Ethics Committee of the University of KwaZulu-Natal, 
South Africa (no. BE435/17). Separate informed consent was required for the main 
household survey, the HIV sero-survey, the HIV point of care test and photographs 
of the HIV test.

Ethical approval for the collection of human blood samples used in the pilot 
study was granted by the Biomedical Research Ethics Committee of the University 
of KwaZulu-Natal, South Africa (no. BFCJ 11/18).

Recruitment of participants to the Africa Health Research Institute Population 
Implementation Platform for the image library. Eligible participants were all 
individuals aged 15 years and older and resident within the geographic boundaries 
of the Africa Health Research Institute (AHRI) population intervention program 
surveillance area (see ref. 41 for the cohort profile). Individuals who had died or 
outmigrated before the surveillance visit were no longer eligible. There were three 
contact attempts by the fieldworker team and a further three contact attempts by a 
tracking team before an individual was considered uncontactable. All individuals 
in the study gave informed consent. Specifically, all contacted eligible individuals 
who gave informed consent for this study were offered a rapid HIV test if they were 
not currently being administered antiretroviral therapy. For children under the age 
of 18 years, written consent for rapid HIV testing was obtained from the parent or 
guardian and assent from the participant.

HIV RDT image library collection. The original RDT images library was 
collected in rural South Africa by a team of 60 fieldworkers between 2017 and 2019. 
AHRI fieldworkers survey a population of 170,000 people in rural KwaZulu-Natal. 
Participants were visited at their home, those giving informed consent were tested 
for HIV using a combination of two HIV RDTs and, following further consent, 
a photograph of their two HIV RDTs was captured by the fieldworker on a 
tablet at the time of interpretation. Both HIV RDTs were used as part of routine 
demographic surveillance in AHRI. The test type continued to change during this 
study following recommendations by the South African government, exemplifying 
the need for robust systems in reading multiple test formats.

While the two HIV RDTs used in this study have their own instructions for 
use (see manufacturer’s instructions), they all generally follow the same principle 
of collecting a drop of blood from the participant’s fingertip, delivering that drop 
of blood to the sample pad and using a drop of chase buffer to facilitate sample 
flow through the length of the paper strip. The result (a combination of one or two 
lines appearing on the paper strip) is then read out after a period of 10–40 min, 
depending on the type of HIV RDT used.

For minimal disturbance of workflow, a plastic tray designed to hold both HIV 
RDTs was given to each fieldworker (Fig. 2a). This ensured that fieldworkers were 
required to capture only one image per participant. The tasks of separating the two 
HIV RDTs and isolating the ROI used to train the classifier were conducted further 
down the line as part of data preprocessing.

A standard operating procedure (SOP) on how to capture the image was 
cocreated and optimized with the team of fieldworkers; a copy of the SOP can be 
found in Extended Data Fig. 1. The SOP was designed to minimize the impact of 
environmental factors, as well as to ensure a standard means of capturing images. 
All fieldworkers attended a 2-day initial training program during which the 
objectives of data collection and design of the plastic tray were clearly explained, 
and each fieldworker was personally trained and given feedback on how to capture 
valid photographs. A training protocol was also established to ensure that newly 
enrolled fieldworkers who did not attend the initial training session could also 
be trained to capture images for the project. Finally, picture quality assessment 
sessions were conducted to give the fieldworkers team feedback, and to ensure that 
most images were of sufficient quality for use in training the classifier.

All images were captured using Samsung tablets (SM-P585, 8-megapixel 
camera, f1/9 with autofocus capability) using the native Android camera 
application and stored on the device until the end of the day, when they were 
transferred to a secure database at AHRI. Our mHealth system allows the saving 
of only one picture per test and per participant to the tablet and uploading to the 
AHRI database. After anonymization (including stripping of geocoordinates from 
the image EXIF data), batches of 2,000–3,000 images were securely transferred to 
University College London team members on a quarterly basis and stored securely 
in a ‘data-safe haven’ managed by the university.

Levels of both feasibility (93%) and acceptability (98%) of the system used to 
capture HIV RDT images were high, according to a survey taken by fieldworkers 
involved in the study.

For the purposes of this study, an initial batch of 11,374 images were used. 
Because only very few invalid results were obtained from the field, it was decided, 
for the purposes of this proof-of-concept study, to focus on training the classifier 
to distinguish between positive and negative results. To optimize this task, the ROI 
around each HIV RDT was isolated and used to train the classifier.

Image labeling. All preprocessed images were labeled by a group of three RDT 
experts (99.2% agreement with fieldworkers’ labeling). Labeling is the process 
of sorting images into categories, which are then used to train the classifier. The 

categories chosen here correspond to the possibilities for the HIV RDT result—that 
is, positive and negative. We recognize that a third outcome, ‘invalid’, is also possible 
and needs to be considered when using the system to provide a confident diagnosis. 
However, the absence of invalid test results in our library of images collected by 
fieldworkers did not allow us to train the classifier on this third category in the 
present study. We therefore focused training on the two main categories (positive 
and negative), and are exploring other ways to incorporate the invalid outcome in 
our mHealth system. This could mean either using data augmentation techniques 
on the low numbers of invalid test results images, or adding a preprocessing step to 
detect the presence of a control line on the image before deciding to feed it (or not, 
in the case where the control line is absent) to the classifier.

Training library. The labeled images were divided into two subcategories 
corresponding to the HIV RDT type. The two types of test in our library are:
•	 Type A: ABON HIV 1/2/O Tri-Line Human Immunodeficiency Virus Rapid 

Test Device (whole blood/serum/plasma) (ABON Biopharm (Hangzhou) Co., 
Ltd)

•	 Type B: ADVANCED QUALITY ONE STEP Anti-HIV (1&2) Test (InTec 
PRODUCTS, INC.).

While two tests were administered per patient, in this study we treat each test 
individually since the tests are from different manufacturers and therefore could 
respond differently to the same blood sample. The collection system design also 
guaranteed that there was never more than one image of a given test per participant.

Image normalization. Before being used for training, each image was resized to 
the dimensions of the input layer then standardized. Standardization of the data 
was performed using equation (1) below, where xs is the standardized pixel value, 
xo the original pixel value and μ and σ are the mean and s.d. of all pixels in the 
image, respectively.

xs =
xo − μ

σ
(1)

Cross-validation. Each dataset (one for each type of HIV RDT) was randomly 
divided into ten equal folds. Using the leave-one-out method, ten classifiers were 
trained using nine folds as the training set (further randomly divided into 80% 
training and 20% validation). To account for imbalanced datasets (roughly 13:1 
negative:positive ratio), we forced every batch during training to contain 50% 
positive images and 50% negative images using random sampling. Each model 
was then optimized by creating a receiver operating characteristic curve using the 
validation set. This yielded an optimal threshold which was used to evaluate the 
model performance on the testing set (the remaining tenth fold). The deployment 
models were obtained by retraining using all the available data, for each type of 
HIV RDT. All training and evaluation were conducted using the scikit-learn and 
Tensorflow libraries in Python.

Comparison with established classification methods. The SVM was trained 
using preprocessed features extracted using the histogram of oriented gradients, 
with principal component analysis used to filter out less important features. The 
three CNNs (ResNet50, MobileNetV2 and MobileNetV3) were pretrained using the 
ImageNet dataset then retrained using our dataset. For all four methods, training and 
evaluation were conducted using the scikit-learn and Tensorflow libraries in Python.

Android application. We developed a smartphone/tablet Android application 
designed for end users to capture a picture of their HIV RDT at the time of reading 
of the test result. Together with end users, we optimized the design to maximize 
the simplicity of the process to make our mHealth system accessible to end users 
with a broad range of digital literacy. All that is required from the end user is to 
roughly align a semitransparent template of the HIV RDT with their HIV RDT and 
press a button to capture an image. Cropping around the ROI is then performed 
automatically in the background (using the pixel coordinates of the template 
overlay), as is the process of sending the ROI to our classifier and receiving our 
mHealth system result. For the purpose of this pilot study, participants were not 
made aware of our mHealth system’s interpretation of the test results, to avoid 
bias for their own interpretation. Screenshots of the application can be found in 
Extended Data Fig. 2.

Field pilot study protocol. The Android application was deployed in a field pilot 
study in KwaZulu-Natal, South Africa. Five participants were randomly selected 
from the staff at AHRI—two experienced nurses and three community health 
workers. Forty HIV RDTs (20 type A, 20 type B) were performed following the 
manufacter’s guidelines using discarded, anonymized human blood samples 
(ten positive, ten negative according to enzyme-linked immunosorbent assay). 
For each of the 40 HIV RDTs, every participant was asked to record their visual 
interpretation of the test result, then to use our mHealth system on a tablet to 
capture a photograph of the HIV RDT. The system consisted of our Android 
application (described above) installed on a single Samsung SM-P585 tablet, 
identical to those used by fieldworkers for data collection. Participants were not 
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shown the automated interpretation of the test result provided by our mHealth 
system, to avoid confirmation bias. The field pilot study took place at the AHRI 
rural site in the heart of the community (Mtubatuba, KwaZulu-Natal) under 
lighting conditions identical to those under which the mHealth system is intended 
to be used. A short (10-min) demonstration on how to use the smartphone 
application was given to all participants, who were then left on their own to 
proceed with the task of reading the HIV RDTs and capturing images.

Field pilot study data analysis. The data analysis consisted of the comparison of 
three datasets:

	1.	 Traditional visual interpretation by study participants
	2.	 Independent expert interpretation of the images captured by study 

participants
	3.	 Automated machine learning interpretation by our classifier.

Traditional visual interpretaiton was recorded on the tablet by each study 
participant immediately after being shown the HIV RDTs. Only two of the 40 HIV 
RDTs (corresponding to ten images out of 200) had to be discarded from the analysis, 
because one participant took a photograph of the wrong HIV RDTs and it was 
therefore not possible to compare interpretation results across all five participants.

An independent RDT expert subsequently visually interpreted all 190 HIV 
RDT images; this expert had substantial experience conducting performance 
evaluations of lateral flow rapid tests for ocular and genital Chlamydia trachomatis 
in the Phillippines, the Gambia and Senegal. Visual interpretation was performed 
1–5 h after sample addition. The independent expert certified that none of the HIV 
RDT results had changed during this time frame.

The automated machine learning interpretation by our classifiers was 
processed on our secured server. The results were compared to traditional visual 
interpretation (shown in the confusion matrices in Fig. 4) while the independent 
expert then analyzed the results using the performance indicators described below.

Performance indicators. The four indicators of performance investigated were 
sensitivity, specificity, positive predictive value (PPV) and negative predicitve value 
(NPV). For each image, the classifier produces an outcome that belongs to one of 
the four categories TP, true negative (TN), FP or FN. Whether the outcome is true 
or false depends on comparison with the gold standard chosen.

Sensitivity is the ability of the classifier to correctly detect a positive result by 
measuring the ratio TP

TP+FN, while the specificity is the ratio TN
TN+FP and translates 

the ability of the classifier to correctly detect a negative result. PPV is the ratio 
TP

TP+FP and NPV is the ratio TN
TN+FN. These indicate the proportions of positive and 

negative results, as determined by a diagnostic test, that are true positves and true 
negatives, respectively.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study 
are available from the AHRI data repository https://doi.org/10.23664/
AHRI.M-AFRICA.2019.V1.

Code availability
Custom code used in this study is available at the public repository https://xip.uclb.
com/product/classify_ai.
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Extended Data Fig. 1 | Standard Operating Procedure for HIV RDT image collection. Document used for training and distributed to all AHRI fieldworkers 
involved in data collection. Left-hand side: example of valid and invalid photographs. Right-hand side: step-by-step guidelines for capturing pictures  
of HIV RDTs.
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Extended Data Fig. 2 | Screenshots of the Android application, to illustrate the capture of the HIV RDT image at the time of reading the test result. 
Images were captured sequentially from left to right. The end user is asked to align the test with the overlay on the screen, then continuously press 
the capture button for 3 seconds, after which the image is automatically captured and processed to extract the ROI. The 3 seconds press feature was 
implemented as a result of consultation with end users in the optimisation phase of the app development.
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