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Machine learning, practically speaking
To apply machine learning, labs needn’t have years of computational expertise, but they do need a cautious mind-set.

Vivien Marx

‘Artificial intelligence’ (AI) is hard 
to beat as an enigmatic term. 
Within the AI field, many projects 

involve machine learning (ML), in which 
a computer can learn iteratively from data 
and make predictions1. Basic ideas of ML 
architectures have been around for decades 
and have fallen in and out of favor, says 
Don Geman of Johns Hopkins University. 
What has changed of late is the availability 
of massive amounts of labeled data, such 
as faces, which can be used to train ML 
systems. Computing power has grown 
because of graphics-processing units. 
“Those two things allowed basically the 
same methodology to suddenly work far 
better than it had before and far better than 
anything else was working,” he says.

This year’s Association for Computing 
Machinery’s Turing Prize, nicknamed the 
‘Math Nobel’, went to three scientists who 
have been called “fathers of deep learning” 
and the “godfathers of AI”: Geoffrey Hinton 
of the University of Toronto, who is also part 
of the Google Brain team; Yann LeCun of 
New York University, who is chief artificial 
intelligence scientist at Facebook; and 
Yoshua Bengio of the University of Montreal.

ML-based systems can win games, even 
beat the world Go champion; they power 
many aspects of Facebook and Google’s 
operations. ML can discern faces in photos, 
translate text, target ads on the web, power 
autonomous driving on Earth and Mars.

These systems have various architectures 
and algorithms that all need training in 
which they are presented with the ‘correct’ 
answer, such as slides of breast cancer 
tissue of the luminal A molecular subtype. 
Algorithms extract features and tweak inner 
parameters to model the data and learn 
to generalize from them so they can, for 
example, assess whether tissue slides the 
system has not ‘seen’ before show features of 
luminal A breast cancer.

Deep learning can be used when, for 
example, linear regression algorithms do not 
suffice to model complex data. Algorithmic 
processing takes place in many nodes, and 
learning tunes each node’s parameters or 
‘weights’. The nodes are organized in layers: 
calculations from one layer become input to 
the next layer.

As learning progresses, a deep learning 
system adapts its internal parameters, 
sometimes millions of them, to accurately 
map input data to output predictions, says 
Stanford University computer scientist 
Jure Leskovec. Well-trained machines can 
generalize beyond training data to new data 
and find patterns humans miss or simply 
can’t see.

ML is arriving in biomedical research 
labs, and toolkits abound2–5. Excitement 
and enthusiasm about ML have drawn 
researchers in and are leading many 
beyond the piling of ever-higher data 
mountains to creative approaches that 
reliably “put those mountains to work,” says 
Casey Greene, a computational biologist at 
the University of Pennsylvania Perelman 
School of Medicine. In the past, says 
Leskovec, labs could ‘see’ all data, but now 
that instruments deliver such data piles, 
ML and data science “are the only ways we 
will be able to ‘see’ and ‘understand’ the 
data to reveal new discoveries.”

Excitement and caution
ML projects might involve training a system 
to find and classify patterns indicative or 
predictive of disease in images or gene 
expression data, to predict protein structures 
from genetic sequence or to design chemical 
scaffolds in drug discovery. MIT computer 
scientist Regina Barzilay likes seeing 
how popular and modular deep learning 
frameworks for building ML systems, 
such as PyTorch or Google’s TensorFlow, 
have become. “Now you have the big Lego 
blocks and you can put it together,” she says. 
Collaborating with computer scientists is 
still advisable to better understand what the 
system does, “but you can start using some 
of these methods even though you are not 
expert in them,” says Christos Davatzikos 
of the University of Pennsylvania Perelman 
School of Medicine.

But Barzilay sees some biomedical 
researchers try AI, make big claims that 
don’t materialize and then turn their backs 
on these methods. Perhaps, she says, they  
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forget that ML is unlike electricity, which  
“I can just plug it in and it works.” Geman 
and Barzilay say they see too many published 
papers in which labs describe training on small 
datasets and claim high prediction accuracies.

Libraries such as Selene from the 
Troyanskaya lab at Princeton University6 
help to overcome some technical hurdles 
of deploying deep learning models with 
massive sequence datasets, says Marinka 
Zitnik, postdoctoral fellow in the Leskovec 
lab. The library offers “a unified interface” to 
a number of sequence-based deep models, 
she says, which lets labs compare models 
for the same prediction task, standardizes 
their use to interpret functions of genetic 
variation and can speed up the development 
of new models.

Greene initiated a crowdsourced 
Deep Review7 as his lab tinkered with a 
type of neural network architecture that 
had not yet been applied to biology but 
seemed to offer useful properties for the 
team’s transcriptomic data. “I wanted 
some colleagues to help read the literature 
with me because there were a bunch of 
examples of what felt like hype and fewer 
examples that felt truly transformative,” he 
says. The project has made him feel more 
positive about ML methods. Generally, 
he would prefer to see fewer published 
benchmarking tests that characterize many 
ML methods across a “modest” number of 
datasets, and more emphasis on methods 
that learn different types of signals but still 
provide “reasonable performance,” which is 
problem-specific.

The optimization of complex models and 
their many parameters requires training 
with large datasets, says Barzilay. Labs 
should know where they are driving their 
ML system for a given question. The tools 
will always tell you something, she says, but 
it can be a meaningless something. For some 
questions, classic statistical methods might 
prove more efficient. She advises a cautious 
mind-set when applying ML.

When ML sees
ML is good at processing images, says 
Geman, and such systems can learn to 
distinguish malignant and nonmalignant 
skin spots, for example. “There are many 
problems where deep learning could have 
a nice impact,” he says. Combining the 
genomic correlates of an image is also  
“really exciting,” he says.

Imaging reveals morphology and 
physiology, which are used in basic  
research and patient treatment, says 
Davatzikos, who organized an ML  
session at this year’s annual meeting  
of the American Association for Cancer 
Research (AACR). Radiology meets genomics 
in the emerging field of radiogenomics, 
in which labs explore how ML techniques 
help with finding subtle signatures such as 
important phenotypic indications of a tumor’s 
genome. In glioblastoma, that can be a 
mutation in the IDH1 gene or methylation of 
the MGMT promoter. “It’s a bit of a surprise 
how much information is hiding in those 
images,” he says. Such “subvisual” molecular 
composition patterns still must be confirmed 
in assays, but they indicate what a machine 
can ‘see’ that scientists and clinicians cannot. 
Ideally, one would want to tag every image 
voxel, but “we’re not there yet.”

To help scientists extract potentially 
thousands of features from images of brain, 
breast and lung cancer samples, Davatzikos 
and colleagues developed the Cancer 
Imaging Phenomics Toolkit (CaPTk), 
through which users can tap into some 
commonly used ML-tool libraries. It’s one of 
several toolkits the National Cancer Institute 
(NCI) has funded.

To find training datasets, labs can mine 
The Cancer Genome Atlas or The Cancer 
Imaging Archive, but they might not always 
find what they need, says Davatzikos. Along 
with 12 institutions around the world, he is 
building a glioblastoma dataset. They have 
500 glioblastoma cases; “hopefully we’ll get 
around 3,000 datasets or so.”

Large-scale datasets such as ImageNet 
help those hunting for training data, but 
in biomedicine, such datasets are just 
emerging. “Big data—the power and 
potential it has to change practice has 
been a focus of mine at the NCI,” said 

Ned Sharpless in his keynote at the annual 
AACR meeting. He is leaving his post as 
NCI director to lead the Food and Drug 
Administration. The Cancer Genome Atlas, 
an NCI ‘big data’ foray, has become the NCI 
Genomic Data Commons, which by the 
end of 2019 will hold data from over 70,000 
patients. Other data types to be added 
include proteomics data and radiology, 
pathology and clinical annotations so that it 
is a “multimodal dataset,” Sharpless said.

Barzilay looks forward to computer 
scientists, biologists and clinicians 
collaborating to build biomedical datasets 
at scale to enable better ML models. 
In her presentations, she speaks about 
how her breast cancer was missed in her 
mammogram. (She has been successfully 
treated.) Along with the radiology 
department at Massachusetts General 
Hospital, she has developed, validated and 
deployed an ML system to help radiologists 
detect patterns indicative of cancer. She 
engineered existing ML approaches to 
account for common variance between 
images and draw conclusions about 
malignancy. Next, the team wants to 
integrate genomic with radiology data.

Separately with colleagues in several 
MIT departments, she co-leads Machine 
Learning for Pharmaceutical Discovery 
and Synthesis, which involves over a dozen 
biopharmaceutical companies and is about 
using ML to automate chemical syntheses. 
ML tools work well when a lab knows there 
is a strong pattern in the data and when 
training data are plentiful, says Barzilay. She 
has met frustrated researchers who design 
ML systems trained on one set of structures 
but then do not generalize to a different 
“chemical space.” It’s possible, she says, but 
one needs diversity in the training dataset.

ML needs
When choosing training data, “you need 
to make sure that the distribution of your 

With the radiology department at Massachusetts 
General Hospital, MIT computer scientist Regina 
Barzilay has set up an ML system to help detect 
patterns indicative of cancer. Credit: Barzilay lab, 
MIT & MGH
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training data is similar to the scenario on 
which you are going to be testing,” says 
Barzilay. Labs can assess their data with a 
“learning curve.” To see how “data-hungry” 
a method is, they can divide training data in 
half and ‘feed’ the network iteratively. “Look 
at how the increase in data increases your 
accuracy,” she says.

Labs need to be sure about data quality. 
Some datasets might have been collected 
with exclusions of sorts. A dataset can be 
biased in many ways, and that can make the 
ML system biased.

When using ML with small datasets 
or when a lab wants to apply ML on quite 
different data than the training data, “you 
really need to tread carefully,” says Barzilay, 
and work on the “mathematical machinery.” 
Labs can try transfer learning, says Greene, 
in which training data from one domain are 
used for predictions in another. But the path 
between the two domains needs to be solid.

In some situations, it can be advisable to 
steer clear of ML, says Greene, such as when 
a lab has insufficient data or not enough 
similar data for training, or if there is no way 
to augment data. Labs can use tools such 
as PyTorch and others when they have the 
right type of data on hand, the amount of 
which will be problem-dependent, and when 
it’s obvious what a suitable neural network 
architecture might be. Even with enough 
data, it can be unclear what ML approach is 
suitable, which is when it’s prudent to reach 
out to a computer scientist.

When constructed, trained and used 
properly, ML is not a “black box,” says 
Davatzikos. To train and debug, says 
Leskovec, labs using TensorFlow can apply 
TensorBoard to visualize their network’s 
architecture, plot quantitative metrics and 
see the data passing through the network. 
Parameters can be observed in real time as 
they change, and one can see the predictions 
getting better. Barzilay also sees no ‘black 
box’ risk, given that labs can query a deep 
learning system so that it reveals the data 
applied to a prediction.

Overfitting happens when an ML system 
cannot generalize beyond a training  

dataset, says Geman. It’s a common  
issue when ML is applied to molecular 
data, such as exome sequencing, RNA 
sequencing or transcriptional profiles, 
says Luigi Marchionni, who is also on the 
Hopkins faculty and who collaborates 
with Geman. The data have many features 
and, he says, “what’s going to happen with 
these algorithms, they’re going to overfit.” 
Noise will look like signal, the model 
won’t generalize and predictions won’t 
hold up to scrutiny.

Researchers should maintain a special 
level of suspicion about ML when a system 
performs extremely well, says Greene. “It 
can be helpful to analyze real data side-
by-side with permuted data,” he says. “If 
the model is starting to look ‘good’ on the 
permuted data, something is wrong.” He 
and his team explored whether there is an 
ideal algorithm or ideal dimensionality 
to solve specific problems when feature 
construction is decoupled from the 
supervised learning, which might be when 
a lab seeks “universal” features that could 
be reused across many tasks. But, in his 
view, “there is no method that completely 
dominates other methods,” he says. “There’s 
also no single dimensionality that was the 
optimal for all problems.”

Watch out for the curse
To make predictions more robust, says 
Marchionni, one can use biological 
information to select features for the 
training data. In cancer, that might be the 
topology of gene regulatory networks or 
metabolic data. He and Geman are working 
on algorithms that can capture general 
biological mechanisms, which they call 
“mechanism-driven classifiers.” Biologists 
would predetermine where, in the dark 
room of their data, they want the ML system 
to “shine a light,” says Geman. This is, he 
says, a more promising way to use ML with 
molecular data and with an eye toward uses 
such as predicting drug response on the 
basis of molecular signatures and other data.

The high-dimensional data in 
biomedicine—genomics, therapeutics, 
environmental data and others—can lead 
to more complex diagnostic and prognostic 
categories than currently in use, says 
Leskovec. New tools are needed to analyze 
such complex and diverse data. He, Zitnik 
and colleagues have developed SNAP, an 
algorithm toolbox for handling complex 
and multimodal network data. The tools can 
scale to networks with billions of interactions 
and thousands of modalities. Their 
BioSNAP is a public repository of high-
quality, rich biomedical interaction datasets. 
The resources can be used for algorithm 
development and benchmarking, he says.

One haunting issue with ML and 
molecular data is the so-called curse of 
dimensionality. Geman says he is often 
approached by biologists and clinician-
scientists. Can the proficiency of ML for 
discerning cats from dogs in photos transfer 
to predicting cancer prognosis on the basis 
of gene expression data? “Shouldn’t the same 
methods work?” they ask. No, says Geman, 
the challenges are “radically different.” The 
cat-versus-dog scenario requires 1 million 
images for training. A cancer research lab 
might have data from only 50 patients, 
not 1 million patients. And they’re high-
dimensional, heterogeneous data.

Omics data in basic research and 
medicine can contain 1 million dimensions, 
such as gene species, splice variants, 
different RNAs. But perhaps only around 
100 of them might have bearing on a 
phenotype of interest that a lab is making 
predictions about. “We don’t know which 
ones are informative for the task at hand,” 
says Geman, and the signal is likely to  
be weak.

Classic statistics is powerful, he says, 
when n, the sample size, is much larger 
than the number of dimensions, d. When 
n is closer to d, perhaps within an order 
of magnitude, standard ML can come into 
play. But with cancer prediction and omics, 
n is much smaller than d: n is in the tens or 
hundreds, and d can be 10,000 or  
1 million. It’s kind of a “worst-case scenario 
for machine learning,” says Geman. “It’s so 
difficult to find the signal,” he says, and there 
are no off-the-shelf solutions.

Dogs and wolves
Hinton, LeCun and Bengio have pointed out 
that when an ML system processes images 
or language, input is often complex1. Photos 
of the same object shot at different angles or 
against different backgrounds need to not 
throw off a system. And subtle differences 
need to be detected, such as those between 
a type of dog called a Samoyed and a white 
wolf, which, in photos, can look similar. 
When they apply ML to molecular data and 
‘personalized medicine’, says Marchionni, 

Nature Methods | VOL 16 | JUNE 2019 | 463–467 | www.nature.com/naturemethods

http://snap.stanford.edu/
http://snap.stanford.edu/biodata/
http://www.nature.com/naturemethods


466

technology feature

labs are trying to tell individual dogs and 
wolves apart and make decisions about 
how to act with each. Instead of 1 million 
images, they have a handful of blurry 
images, including ones of unknown animals, 
and they need to discern a particular, well-
behaved Samoyed from a rowdy one that 
runs off for days at a time to raid a barn, and 
from a specific white wolf near a barn in 
Yakutsk, Siberia.

With small sample size and large 
dimensionality, says Geman, complexity 
reduction can help, but it must be done 
with care, given that this step risks the 
loss of important information. Because of 
these fundamental issues, he worries that 
toolkits used by those less experienced 
in ML might not yield valid results. He is 
concerned that the field “may be trending 
in the wrong direction.” He advocates 
working in cross-disciplinary groups. “I 
think of each discipline as exposing the 
fantasies of the other,” he says. At Hopkins, 
his collaborators include cancer researchers 
such as the Vogelstein lab, computational 
biologists including Marchionni, applied 
mathematicians and others.

With ML, labs can find that their 
“real problem” is the weak signal in their 
data, says Geman. To avoid swamping 
their millions of measurements with false 
positives, “you’re going to have to bring 
mechanism into the story, biological 
knowledge.” To apply ML in biomedicine, 
one needs a problem-driven methodology. 
“There’s no off-the-shelf solution,” he 
says. Packages certainly help, but he 
sees too many papers reporting high 
prediction accuracies, and few stand up 
to rigorous follow-up, which is needed 
for reproducibility and for these tools to 
eventually affect clinical practice.

Machines hunt drugs
ML techniques are being put to work across 
the biopharmaceutical industry8. “AI can be 
incredibly useful to us, but there are certain 
caveats,” says Saurabh Saha, who directs 
global strategy in translational medicine as a 
senior vice president at Bristol-Myers Squibb 
(BMS). But applying ML involves focused, 
well-defined questions, large labeled datasets 
and cross-disciplinary collaborators. “There’s 
a lot of hope, there’s a lot of hype,” says Joe 
Szustakowski, who oversees translational 
bioinformatics as an executive director at 
BMS and was interviewed jointly with Saha. 
The Turing Prize is “very well deserved” 
and he is excited about ML prospects. But 
no matter how solid the algorithm, if the 
data input into an ML system are not high 
quality and structured, its output “is not 
going to matter,” says Szustakowski. “We’re 
not believers that you can just take a whole 

bunch of data, pour it into a black box and 
a target or a drug is going to fall out on the 
other side.”

In recent months, the company has been 
applying ML to integrate digital pathology 
and genomics information with clinical trial 
data. “We’re trying to extract more signal 
through the integration of those datasets 
than we get from either one of them on their 
own,” says Szustakowski. Although many 
platforms measure hundreds or thousands of 
features, with sequencing data, there can be 
millions of data points per patient, but the 
data are from hundreds, perhaps thousands, 
of patients, which is not large. To build a 
deep learning model that predicts response 
or non-response to a drug, one would 
need many thousands, possibly millions, of 
patients who have responded one way or the 
other. “We may have millions of variables, 
but we don’t necessarily have millions of 
observations,” he says.

ML is helping the team extract 
information from pathology slides so they 
can, for example, train a system to detect 
the gene expression signatures indicative 
of a tumor’s inflammation status. The BMS 
scientists are integrating these data with 
a range of other information about each 
patient, which is done in-house and with 
external companies such as PathAI, among 
others, says Szustakowski.

In cancer and immunotherapy, human 
pathologists do well at quantifying the 
expression of programmed death ligand  

1 (PD-L1), which matters in immuno
therapy-based cancer treatment and 
research, says Szustakowski. To apply deep 
learning for identifying tumor cells and 
immune cells in slides, they are manually 
cataloging, for example, where an immune 
cell is—in the tumor, at the boundary to 
healthy tissue or in healthy tissue, they 
look at the proximity of PD-L1-expressing 
cells. Such annotation of the tumor cells 
and immune cells, even when collected 
on a small number of patients, leads to a 
large library, he says, that might include 
a catalog of tumor cells and immune cells 
in melanoma that helps to train deep 
learning approaches for discerning cell 
types that will then allow the researchers 
to query the data in more complex ways, 
he says.

Drug developers are now collecting much 
more data about patients than previously, 
says Arshad Ahmed, who directs a new 
digital initiative at Avantor, a supplier to the 
pharma industry. That might be imaging 
data, single-cell RNA-sequencing data, 
tumor-microenvironment-based data or 
proteomics data. Companies want to use ML 
to learn from hundreds or even hundreds 
of thousands of patients. AI is one of 
several methods being applied that include 
statistical methods, “but machine learning, 
certainly, this is where things are going to 
go, to find the next level of biomarkers.”  
He expects new, multimodal biomarkers  
to emerge.

Source: D. Geman, Johns Hopkins Univ. Credit: Right: PHOTODISC. Left: zhao hui/500px Prime/Getty; 
E. Dewalt/Springer Nature
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Previously, Ahmed co-developed data-
integration platforms at Novartis Oncology 
and at Philips. Finding patterns with 
“predictive power” helps to identify the 
patients most likely to benefit from a given 
treatment. “Right now the field is mostly 
focused on gene expression, the DNA- and 
RNA-level markers,” he says, but it’s moving 
to more protein-level and cellular data such 
as tumor-infiltrating lymphocytes. Adding 
imaging data is “still very new,” he says, 
and much validation needs to happen, but 
there’s promise.

The industry’s “data silo problem” 
is a hindrance for implementing ML, 
says Ahmed. Data batches have to be 
harmonized, normalized, QC’d. Companies 
also need algorithms to work across  
all data types such as genomic and 
proteomic data, T-cell activation data,  
flow cytometry data and imaging data,  
so they can build a “single data lake” to 
which ML applications can be applied.

Given the needs for large amounts 
of training data, many want to merge 
datasets, but without normalization, it’s 
“comparing apples and oranges,” says Fiona 
Nielsen, founder and CEO of Repositive 
of Cambridge, UK. The company helps 
contract research organizations and pharma 
companies as a data scout to find cancer 
models and, for ML-based companies, find 
datasets in order to train their model, which 
can be data on a specific type of metastatic 
cancer. Nielsen trained in computer science, 
and launched the UK charity DNAdigest a 
few years after her mother was diagnosed 
with cancer (she is now well). Repositive is a 
social enterprise spun out of DNAdigest.

As the team discovers datasets, they 
assess the metadata characteristics and 
highlight missing information that would 
preclude certain ML uses. “You need to  

make sure that the data represents those 
particular aspects of evidence that you 
need to test that particular hypothesis,” 
says Nielsen. Data are often captured in 
a standardized way, but combining data 
from different sources can be challenging. 
“Yes, they’re systematic about it, but they’re 
each systematic in their own way,” she 
says. They might use different types of 
annotation, for example. “Real-life data is 
so messy,” she says, which adds to biology’s 
general messiness.

There are many celebrated technological 
successes with ML, but he would like the 
balance to tip toward assuring eventual 
clinical benefit through robust validation of 
these methods, says Gerrit Meijer, who heads 
the pathology department at the Netherlands 
Cancer Institute. When he reads slides, he 
says, “I’m using a biomarker that is based 
on formaldehyde, candle wax, water color 
stain and an instrument that was invented 
in the 17th century, the microscope.” Having 
more data and computing power helps, but 
what’s also needed is to annotate clinical 
phenotypes to the same depths as genomic 
data. In the end, “value comes from the 
integration of both,” he says.

Meijer looks forward to datasets helpful 
for standardized training of ML-based 
systems. “Wouldn’t it be great to have some 
kind of Spotify for research data?” If it exists 
for music and MP3s, “why wouldn’t we 
have that for cancer research?” To enable 
sharing of large standardized datasets, 
the Netherlands is building Health-RI, 
a nationwide research infrastructure for 
personalized medicine and health.

Engineers or scientists?
Applications of ML in biomedicine lead to a 
fundamental question: “are we engineers or 
scientists?” says Greene.

“If we’re scientists, I want to understand 
the mechanisms,” he says. “Why does a 
method work?” As a scientist, he wants 
to know why a system makes certain 
predictions, not why it works or doesn’t in a 
specific case. He wants it to be able to make 
predictions about living systems in ways that 
reach beyond the model. It might lead to, 
for example, the discovery of a new motif or 
co-regulated group of genes. “As scientists, 
we want that motif or co-regulated group of 
genes to be related to a process that matters 
elsewhere, too.”

“If we’re engineers, we want things to 
work,” says Greene, which highlights the 
importance of prediction accuracy. “We 
care a lot less about causality as long as 
something is predictive,” he says. This 
approach faces issues, especially around 
biased models that perpetuate unfairness, 
“but perhaps we don’t need to understand 
causality if we can build in adjustments 
that address them.” Imaginably, the optimal 
endpoint for an engineer, as one of many 
possible endpoints, he says, is a clinical 
trial that uses an ML model and shows it 
improves outcomes for those “treated” by 
the deep learning method.

Greene feels he is more of a scientist 
than an engineer. “I can see an argument 
for both, but I really worry about the 
hazards of an entirely engineering-based 
approach in this domain,” he says. He is 
concerned that the field is “tilting” more 
toward that side of late, “so perhaps my 
choice is also a bit of a counterbalance  
to that perspective.” ❐

Vivien Marx
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