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When computational pipelines go ‘clank’
‘Omics pipeline builders and users face options and tough decisions.

Vivien Marx

“I love the smell of fresh baked 
Snakefiles in the morning!” tweeted 
University of California, Davis, 

computational biologist C. Titus Brown 
earlier this year. Brown and his team, 
including postdoctoral fellow N. Tessa Pierce, 
are putting together a computational pipeline 
for decontaminating genome assemblies in 
metagenomics and are using the workflow 
manager Snakemake1 to do so. It’s one of 
over 100 workflow manager tools pipeline 
builders might use. Without data analysis 
pipelines, many ‘big data’ fields would move 
dramatically slower, says UCLA cancer 
researcher and computational biologist Paul 
Boutros. Pipelines and their infrastructure 
become joint workspaces for computational 
biologists and software engineers, he says. 
Not all pipelines are as standardized as, say, 
the Genome Analysis Tool Kit steps for 
mapping sequence to a reference. The choice 
of pipeline can lead to differing results on the 
same data, as a study in neuroimaging has 
revealed2. Using, building and maintaining 
pipelines presents researchers with a forked 
road. (You can read more on our blog.)

17,000 is a lot
Pipeline building means tool choice. The 
bio.tools registry of life science software 
tools3 includes over 17,000 entries from 
more than 1,000 contributors. The profusion 
of tools in bioinformatics is great but 
also an immense challenge for creating 
pipelines, says Boutros. “Each tool has its 
own idiosyncratic features around how 
it wants inputs and outputs.” Tools might 
require specific operating systems or have 
software dependencies; versions will differ 
or have specific directory structures. “A huge 
fraction of the pipeline-builder’s dilemma 
is to figure out how to handle all that 
variability,” he says. Some of the variability 
in tool formats, such as for outputs, is 
reasonable, he says, given how varied tools 
are. “The number of tools is both a blessing 
and a curse,” says Manfred Grabherr, 
a computational biologist at Uppsala 
University and chief technology officer 
at Methority, a company with algorithms 
and applications in machine learning and 
artificial intelligence. The choices slim down 
with standard tasks in genome assembly, 
gene expression or population genetics. 

When researchers pursue new ground, 
hundreds of tools might seem suited, “some 
of which promise to do what you want — 
except they don’t quite fit,” he says. Or they 
don’t run well. But resources such as bio.
tools can help. Juan Antonio Vizcaino, 
proteomics team leader at the European 
Molecular Biology Laboratory’s European 
Bioinformatics Institute (EBI), agrees on 
bio.tools, but users will always need “to talk 
to experts before doing anything serious,” 
he says. An analysis4 of the over 1,000 
proteomics tools in bio.tools noted difficulty 
in finding even “basic information” about 
tools sometimes, which points to a pressing 
need for better standards of information 
for life science software. With Galaxy 
and other open source platforms, users 
can set up workflows from the platform’s 
‘toolshed’ of nearly 8,000 tools and run a 
workflow in the cloud. “We definitely do 
not serve old tools, but we do keep them for 
reproducibility,” says Anton Nekrutenko, 
a Pennsylvania State University researcher 
and one of Galaxy’s cofounders. Users will 
want to investigate tools they might choose, 
says Irene Papatheodorou, EBI team leader 
on gene expression, and scour the literature 
to see how results compare. “Review 
papers benchmarking different tools are 

extremely helpful, but in many cases the 
pipeline builder will need to run their own 
comparisons,” she says.

It broke
“Broken pipelines have been a major 
issue from the beginning,” says Grabherr. 
Dependencies might be missing, which are 
additional software bits a tool needs to run 
well. A solution, says Boutros, chosen by the 
Dialogue on Reverse-Engineering Assessment 
and Methods (DREAM) challenges for 
genomics tools, is to predefine the input 
and output and to require containerized 

Not all data analysis pipelines are standardized. Labs face many decisions when using, building and 
maintaining pipelines.
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software solutions. It eases dependency issues 
when a pipeline workflow is packaged in a 
virtualized environment with executable tools. 
Containers might be Docker systems; there 
are also Singularity and rkt, among others. 
The issue of dependencies “is a problem 
everyone needs to solve before redistributing 
their software to the users,” says Jinghui 
Zhang, chair of computational biology at 
St. Jude Children’s Research Hospital. With 
containers, pipeline developers can configure 
an environment with all the required 
packages to ship it to users, says her St. Jude 
colleague Clay McLeod, a bioinformatician. 
To minimize issues with dependencies and 
pipeline breaking, says Papatheodorou,  
she and her team modularize pipelines  
into smaller, distinct micro-services with 
specific functions that can be updated 
separately as needed without breaking the 
surrounding ecosystem.

Small lab pipelines
It’s not too challenging for a lab to build 
small pipelines for its own purposes with 
existing tools and draw on colleagues 
with computing experience, says Zhang. 
Deploying tools for public use “is a different 
story.” A smaller lab, says McLeod, might 
want to first carefully craft a set of input 
examples and expected output and “let that 
truth set evolve over time as you check your 
pipeline’s performance.” Users need to know 
the context of a tool or pipeline. “There is 
no silver bullet tool or parameter set that 
works for all applications in bioinformatics,” 
he says. Pipeline authors need to reveal the 
assumptions that went into development and 

the implications for results. “Too often, you 
see bioinformatics tools picked up off the 
shelf and applied in a context which doesn’t 
make sense because of this communication 
breakdown.” “Developers regularly obviate 
important aspects of development such as 
error-handling, scalability or documentation, 
mostly because they develop for their 
own benefit,” says David Ochoa, platform 
coordinator for EBI’s Open Targets project, 
in which therapeutic targets are identified 
and assessed with genome-scale analyses. 
Distributing the code and building a 
community of developers and users around 
a pipeline is very often underestimated. 
“Reading code is hard and not deeply 
rewarding; writing it is,” says Boutros. 
Scientists thus prefer building to poring over 
others’ code, and the number of cloud-based 
pipelines keeps growing. “Many labs want 
to create their infrastructure, which leads 
to a lot of poorly maintained pipeline code.” 
Instead of building from the ground up 
each time, smaller teams might benefit from 
making their pipeline easier to embed into 
a larger one. The time saved can be used for 
optimizing it for their specific needs.

It costs
Pipelines advance ‘big data’ fields, which 
the life sciences are becoming. But to 
get this right, says Boutros, testing and 
benchmarking need to be almost daily 
activities. That’s work, and it’s costly. 
Standardization is common in routine 
clinical applications but less so in scientific 
discovery, where labs explore new study 
designs and research questions. “The more 

specific, detailed and complex a pipeline is, 
the less likely it is to be useful to anyone else,” 
says Björn Nystedt. To build and maintain 
broadly useful computational pipelines for 
research, “the developer therefore has to 
find a sweet spot,” he says, to address a task 
common enough to be relevant to many, 
yet complex enough to provide substantial 
added value for the user. Nystedt directs 
the National Bioinformatics Infrastructure 
Sweden for SciLifeLab, a research initiative 
started as joint effort between Karolinska 
Institute, KTH Royal Institute of Technology, 
Stockholm University and Uppsala 
University that now supports research 
activities all across Sweden in the life sciences 
and medicine. Rapid change makes pipeline 
maintenance ever more challenging, he says. 
In the life sciences over the last decade, data 
types, data volumes and analysis software 
have seen rapid development. Computational 
pipelines become outdated more quickly, and 
staying valid takes resources for updates and 
maintenance, he says. Several good initiatives 
related to pipelines have been launched with 
open-source code and contributions from 
a community of developers, says Nystedt, 
among them bcbio-nextgen, a community 
portal for automated high-throughput 
sequence analysis pipelines, and the Nf-core5 
framework, with community-based curated 
pipelines. Carole Goble of the University of 
Manchester and her team are putting final 
touches on a workflow registry that is in 
“pre-pre-beta,” she says. Scientists can test 
pipelines on OpenEBench and Life Monitor.

Go with the workflow
To ultimately calculate differential 
expression, says Brown, might involve, 
for example, RNA-seq data, downloading 
reference genes, and applying software. 
Within a platform — whether in one’s 
own lab, a Galaxy instance or other virtual 
environment — workflow managers help 
with assembling and executing a workflow. 
Tools can be hard to compose, says Brown, 
and much pipeline-building involves 
converting formats for passing information 
between tools. There’s a big difference 
between production workflows that can 
run at scale and almost never fail without a 
useful error message and research workflows 
run on a dozen samples where much can 
happen. Workflow managers help users 
set up a computational analysis pipeline 
and monitor its activity as it runs. “I used 
to spend a lot of my time worrying about 
intermediate errors in my automation, 
and workflow managers take care of that,” 
he says. With Snakemake, workflow steps 
phrased in a Python-like language are set 
up in a Snakefile. Snakemake can determine 
how the workflow can unfold, whether Credit: St. Jude Children’s Research Hospital
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over one or several cores, and can help with 
scaling a pipeline from a workstation with a 
single core to many-core systems. In Brown’s 
view, bioinformatics teams mainly use four 
workflow managers: Workflow description 
language (WDL), Common Workflow 
Language (CWL), Snakemake and Nextflow.

Even when workflows just cobble 
together software in a simple way, every 
computing decision is a choice and 
involves implicit assumptions, says Brown. 
Unintended consequences of joining 
different programs make it harder to 
track and evaluate bugs. Especially for 
production-grade pipeline development 
and operation, workflow managers are 
becoming an increasingly important part 
of the equation, says McLeod. “Investing 
in learning these workflow languages and 
rewriting pipelines to conform to them 
has to be balanced with the benefit you 
will receive in return, like scalability and 
platform portability,“ he says. A smaller lab 
working on a single workstation is likely 
to be fine with simple bash commands or 
Python scripts and no workflow language, 
says McLeod. Snakemake and Nextflow 
appear popular in medium-sized or larger 
individual labs with multiple people working 
on a project because they are relatively easy 
to pick up and can be well-integrated with 
typical local computing setups. Based on 
what he has seen of community projects and 
cloud providers, for larger operations, such 
as at St. Jude, open workflow standards like 
CWL and WDL appear to be the leading 
workflow languages.

Make it sustainable
Brown works with others in a new Common 
Fund Data Ecosystem project geared toward 
increasing uptake and reuse of Common 
Fund data and tools and for training. The 
project also addresses gnarly issues of 
sustainability and preservation of data and 
tools in cases of defunding — for example, 

of the Human Microbiome Project. In 
general, the US National Institutes of Health 
wants scientists to head to the cloud for 
data analysis, says Brown, but not all labs 
are well-versed in doing so. With the cloud, 
the main problem is upload and download, 
says Grabherr. Opening a virtual machine 
or several of them on different clouds is 
relatively easy, but the major bottleneck 
is getting the data there and downloading 
results. For permanent storage of all the 
input data, researchers need their local 
resources, and a laptop won’t hold terabytes 
of data. Unless data can be read through 
the network instead of from local disks, he 
says, people will continue to make copies 
of their large datasets. Scalability is another 
issue. “Especially for larger datasets, it might 
take many thousands of CPU hours before 
realizing that a tool or pipeline will never 
work for this data.”

Validating, troubleshooting
Validation has to be continuous, says Zhang, 
and benefits from use of a benchmark 
dataset. User feedback helps with fixing 
errors. At a minimum, says Grabherr, 
pipelines should, but don’t always, come 
with a small test data set for verifying that 
they generate correct results. “Next, there 
should be a clear versioning, not just a 
download date,” he says, along with notes 
about changes. Larger outfits, such as 
EBI, the Broad Institute or University of 
California, Santa Cruz, “are generally very 
good at transparency and support, others 
less so.” For validation, says McLeod, for 
starters it’s okay to manually run end-to-end 
checks for errors and consistency of 
results at regular intervals. “As a pipeline 
matures and scales, continuous integration 
is needed,” he says. Every incremental 
change to a pipeline kicks off the entire 
end-to-end pipeline check to find errors and 
assure consistent results. This way, pipeline 
developers can focus on development and 

let automation handle the rest, he says. 
Validation is challenging in research, not 
just with pipelines, says Nystedt. Assuring 
valid results is the responsibility of the 
individual research project and cannot be 
‘outsourced’ to the pipeline maker. “And 
exactly how this evaluation should be done 
is almost always project-specific, and might 
in fact amount to a substantial part of the 
entire research project.” Boutros agrees on 
the need to benchmark pipelines against 
standard datasets, such as Genome in a 
Bottle or DREAM. Pipeline changes should 
be accompanied by a test against that dataset 
to show how performance, both in terms of 
computing resources and results accuracy, 
has changed. Big improvements might 
hint at over-fitting, he says, so it’s good to 
have many, diverse benchmarking datasets. 
With his recent move to UCLA, he began 
daily testing of all pipeline aspects against 
standard datasets. Pipelines are notoriously 
difficult to debug, says Grabherr. Processes 
can fail for any number of reasons. When 
a pipeline runs for several days or weeks, 
“then fiddling with parameters becomes 

a major wastebasket for both time and 
compute resources.” He has seen, for 
example, that after many unsuccessful 
attempts, the one parameter that needed 
changing was hard-coded in the pipeline. 
Structural problems are easy to trace and 
debug, says Miguel Carmona, software 
developer with the Open Targets project. 
He and his colleagues use continuous 
integration and continuous development 
measures, along with tools such as the 
cloud-based application Travis, to leverage 
the compilation, packaging and execution 
that, for instance, Docker gives and to 
ensure that commands run without host 
dependencies. “Semantic problems are 
rather more intricate and difficult to spot 
as you need expert human intervention,” 
says Carmona. One example is assigning 
annotation to a gene that is computationally 
correct but biological nonsense. He and 

Credit: UCLA Jonsson Comprehensive Cancer Center
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his team developed checkomatic, a tool 
that checks expert-curated knowledge as 
a gold-standard ground truth. It helps to 
minimize the most common problems 
related to the lack of data or mis-typed data. 
Proteomics researcher Jürgen Cox from 
the Max Planck Institute of Biochemistry 
says his lab’s approach is unlike mainstream 
pipeline building in bioinformatics and 
“ours is probably a minority view.” The 
classic pipeline building approach in 
bioinformatics has many merits, he says. 
However, in developing MaxQuant, software 
for quantitative analysis of large mass 
spectrometry datasets, and its cousin Perseus 
for statistical workflows such as cross-omics 
analyses, his team took a different path. 
They built scientific software solutions 
from scratch with a local team of scientists 
and programmers, which is like industrial 
software development. Having thousands 
of independently developed pipeline 
components “available for algorithmic 
plumbing might seem like a paradise for 
some of the students who will be able to 
quickly solve a computational problem 
that they encounter in their data analysis,” 
says Cox. But all too frequently this leads 
to difficult-to-maintain solutions with a 
short life cycle. Reuse of such pipelines 
can be hard because of usability issues, 
and it can be tough to scale the pipeline to 
other hardware platforms. Maintenance 
keeps an approach updated so it can, for 
example, reflect data from a given field’s 
new technologies. “This is why we favor the 
complete system-building approach over 
the pipeline approach,” says Cox. This does 
not exclude users from contributing to the 
software. For instance, Perseus has a plug-in 
architecture through which users can add 

their own workflow commands in any of a 
number of programming languages, such as 
R, Python and C#.

Sharing at scale
Selecting the right tools for a particular 
analysis requires thorough evaluation, 
especially for analysis of a new data types, 
says Zhang. She and her team have built 
the St. Jude Cloud to share large-scale 
pediatric cancer data and tools, many of 
which were developed at St. Jude. It’s also 
a sandbox where tool developers and users 
can try analysis pipelines. Initially, the 
Zhang lab tools were on the lab’s research 
cluster and shared via the lab page or 
Github. People could download tools for 
installation wherever they chose. In 2014, 
Zhang began using the cloud, and most of 
her lab’s new methods are on St. Jude Cloud. 
In cancer research, scientists might look 
and find tools in many locations, such as 
the NCI Cloud or the International Cancer 
Genome Consortium portal. The St. Jude 
Cloud is specifically devoted to pediatric 
cancers. Users can browse the St. Jude 
Cloud data, but permission is required for 
access and analysis, says George Asimenos, 
chief technology officer at DNAnexus. His 
company built a layer that runs on top of 
the Microsoft Azure and Amazon Web 
Services clouds for data storage, analysis 
and computing nodes. Some organizations, 
including St. Jude, the Encyclopedia of DNA 
elements (ENCODE) consortium, the UK 
Biobank and the Vertebrate Genomes Project, 
involve DNAnexus to scale up pipelines. A 
regulatory environment can shape a pipeline’s 
scope, but research-focused consortia, such 
as one in population genetics, might control 
pipelines too. They might need to process all 

samples uniformly so researchers can later 
“compare apples to apples,” says Asimenos. 
During the ENCODE pilot project, a pipeline 
faced a versioning issue when, mid-analysis, 
the human reference genome changed. The 
Regeneron Genetics Center has processed 
exomes for the UK Biobank and had to 
tweak the pipeline version and communicate 
this widely. Especially in large endeavors, 
he says, scientists have “to assure whatever 
they do today is relevant years from today.” 
Bioinformatics is changing as fast as science 
is, says John Ellithorpe, DNAnexus executive 
vice president and chief product officer. 
On the pipeline engineering side, people 
might want to lock things down before 
release whereas on the science side, teams 
want to get a pipeline to the community as 
quickly as possible. “Those two worlds don’t 
mix particularly well,” he says. DNAnexus 
mediates by building different pacing into a 
project. They might, for example, let users or 
developers revert to a pipeline four versions 
ago. Many pipelines are for readying data to 
allow association studies across datasets. This 
brings issues of architecture, organization and 
how to avoid copying data from here to there, 
he says. Over time, more and more groups 
will work on structural aspects instead of 
relearning a new pipeline environment.

Classic software practices such as 
those for maintaining large bodies of 
code and pipelines are making inroads in 
bioinformatics, says Ellithorpe. “All of these 
things are going to end up feeding major 
data science environments.” Workers can 
use pipelines for simple association and 
correlation analyses with smaller sets of 
data or perform large-scale approaches with 
machine learning and artificial intelligence 
techniques. “Compute is getting more 
ubiquitous and less expensive, and the data 
are getting larger,” says Asimenos. Data, 
such as that from the UK Biobank, makes 
it increasingly possible for labs around 
the world to ask new kinds of biomedical 
questions. The days are vanishing quickly, 
notes Asimenos, in which a researcher says: 
“I’m using one tool and it’s running for a 
specific amount time, that’s all I can afford, 
and I’m using it on my dinky dataset.” ❐
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