
659

technology feature

When computational pipelines go ‘clank’
‘Omics pipeline builders and users face options and tough decisions.

Vivien Marx

“I love the smell of fresh baked
Snakefiles in the morning!” tweeted
University of California, Davis,

computational biologist C. Titus Brown
earlier this year. Brown and his team,
including postdoctoral fellow N. Tessa Pierce,
are putting together a computational pipeline
for decontaminating genome assemblies in
metagenomics and are using the workflow
manager Snakemake1 to do so. It’s one of
over 100 workflow manager tools pipeline
builders might use. Without data analysis
pipelines, many ‘big data’ fields would move
dramatically slower, says UCLA cancer
researcher and computational biologist Paul
Boutros. Pipelines and their infrastructure
become joint workspaces for computational
biologists and software engineers, he says.
Not all pipelines are as standardized as, say,
the Genome Analysis Tool Kit steps for
mapping sequence to a reference. The choice
of pipeline can lead to differing results on the
same data, as a study in neuroimaging has
revealed2. Using, building and maintaining
pipelines presents researchers with a forked
road. (You can read more on our blog.)

17,000 is a lot
Pipeline building means tool choice. The
bio.tools registry of life science software
tools3 includes over 17,000 entries from
more than 1,000 contributors. The profusion
of tools in bioinformatics is great but
also an immense challenge for creating
pipelines, says Boutros. “Each tool has its
own idiosyncratic features around how
it wants inputs and outputs.” Tools might
require specific operating systems or have
software dependencies; versions will differ
or have specific directory structures. “A huge
fraction of the pipeline-builder’s dilemma
is to figure out how to handle all that
variability,” he says. Some of the variability
in tool formats, such as for outputs, is
reasonable, he says, given how varied tools
are. “The number of tools is both a blessing
and a curse,” says Manfred Grabherr,
a computational biologist at Uppsala
University and chief technology officer
at Methority, a company with algorithms
and applications in machine learning and
artificial intelligence. The choices slim down
with standard tasks in genome assembly,
gene expression or population genetics.

When researchers pursue new ground,
hundreds of tools might seem suited, “some
of which promise to do what you want —
except they don’t quite fit,” he says. Or they
don’t run well. But resources such as bio.
tools can help. Juan Antonio Vizcaino,
proteomics team leader at the European
Molecular Biology Laboratory’s European
Bioinformatics Institute (EBI), agrees on
bio.tools, but users will always need “to talk
to experts before doing anything serious,”
he says. An analysis4 of the over 1,000
proteomics tools in bio.tools noted difficulty
in finding even “basic information” about
tools sometimes, which points to a pressing
need for better standards of information
for life science software. With Galaxy
and other open source platforms, users
can set up workflows from the platform’s
‘toolshed’ of nearly 8,000 tools and run a
workflow in the cloud. “We definitely do
not serve old tools, but we do keep them for
reproducibility,” says Anton Nekrutenko,
a Pennsylvania State University researcher
and one of Galaxy’s cofounders. Users will
want to investigate tools they might choose,
says Irene Papatheodorou, EBI team leader
on gene expression, and scour the literature
to see how results compare. “Review
papers benchmarking different tools are

extremely helpful, but in many cases the
pipeline builder will need to run their own
comparisons,” she says.

It broke
“Broken pipelines have been a major
issue from the beginning,” says Grabherr.
Dependencies might be missing, which are
additional software bits a tool needs to run
well. A solution, says Boutros, chosen by the
Dialogue on Reverse-Engineering Assessment
and Methods (DREAM) challenges for
genomics tools, is to predefine the input
and output and to require containerized

Not all data analysis pipelines are standardized. Labs face many decisions when using, building and
maintaining pipelines.

Nature Methods | VOL 17 | July 2020 | 659–662 | www.nature.com/naturemethods

http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-020-0886-9&domain=pdf
https://protocolsmethods.springernature.com/channels/1916
https://bio.tools/
https://usegalaxy.org/
https://toolshed.g2.bx.psu.edu/
http://www.nature.com/naturemethods

660

technology feature

software solutions. It eases dependency issues
when a pipeline workflow is packaged in a
virtualized environment with executable tools.
Containers might be Docker systems; there
are also Singularity and rkt, among others.
The issue of dependencies “is a problem
everyone needs to solve before redistributing
their software to the users,” says Jinghui
Zhang, chair of computational biology at
St. Jude Children’s Research Hospital. With
containers, pipeline developers can configure
an environment with all the required
packages to ship it to users, says her St. Jude
colleague Clay McLeod, a bioinformatician.
To minimize issues with dependencies and
pipeline breaking, says Papatheodorou,
she and her team modularize pipelines
into smaller, distinct micro-services with
specific functions that can be updated
separately as needed without breaking the
surrounding ecosystem.

Small lab pipelines
It’s not too challenging for a lab to build
small pipelines for its own purposes with
existing tools and draw on colleagues
with computing experience, says Zhang.
Deploying tools for public use “is a different
story.” A smaller lab, says McLeod, might
want to first carefully craft a set of input
examples and expected output and “let that
truth set evolve over time as you check your
pipeline’s performance.” Users need to know
the context of a tool or pipeline. “There is
no silver bullet tool or parameter set that
works for all applications in bioinformatics,”
he says. Pipeline authors need to reveal the
assumptions that went into development and

the implications for results. “Too often, you
see bioinformatics tools picked up off the
shelf and applied in a context which doesn’t
make sense because of this communication
breakdown.” “Developers regularly obviate
important aspects of development such as
error-handling, scalability or documentation,
mostly because they develop for their
own benefit,” says David Ochoa, platform
coordinator for EBI’s Open Targets project,
in which therapeutic targets are identified
and assessed with genome-scale analyses.
Distributing the code and building a
community of developers and users around
a pipeline is very often underestimated.
“Reading code is hard and not deeply
rewarding; writing it is,” says Boutros.
Scientists thus prefer building to poring over
others’ code, and the number of cloud-based
pipelines keeps growing. “Many labs want
to create their infrastructure, which leads
to a lot of poorly maintained pipeline code.”
Instead of building from the ground up
each time, smaller teams might benefit from
making their pipeline easier to embed into
a larger one. The time saved can be used for
optimizing it for their specific needs.

It costs
Pipelines advance ‘big data’ fields, which
the life sciences are becoming. But to
get this right, says Boutros, testing and
benchmarking need to be almost daily
activities. That’s work, and it’s costly.
Standardization is common in routine
clinical applications but less so in scientific
discovery, where labs explore new study
designs and research questions. “The more

specific, detailed and complex a pipeline is,
the less likely it is to be useful to anyone else,”
says Björn Nystedt. To build and maintain
broadly useful computational pipelines for
research, “the developer therefore has to
find a sweet spot,” he says, to address a task
common enough to be relevant to many,
yet complex enough to provide substantial
added value for the user. Nystedt directs
the National Bioinformatics Infrastructure
Sweden for SciLifeLab, a research initiative
started as joint effort between Karolinska
Institute, KTH Royal Institute of Technology,
Stockholm University and Uppsala
University that now supports research
activities all across Sweden in the life sciences
and medicine. Rapid change makes pipeline
maintenance ever more challenging, he says.
In the life sciences over the last decade, data
types, data volumes and analysis software
have seen rapid development. Computational
pipelines become outdated more quickly, and
staying valid takes resources for updates and
maintenance, he says. Several good initiatives
related to pipelines have been launched with
open-source code and contributions from
a community of developers, says Nystedt,
among them bcbio-nextgen, a community
portal for automated high-throughput
sequence analysis pipelines, and the Nf-core5
framework, with community-based curated
pipelines. Carole Goble of the University of
Manchester and her team are putting final
touches on a workflow registry that is in
“pre-pre-beta,” she says. Scientists can test
pipelines on OpenEBench and Life Monitor.

Go with the workflow
To ultimately calculate differential
expression, says Brown, might involve,
for example, RNA-seq data, downloading
reference genes, and applying software.
Within a platform — whether in one’s
own lab, a Galaxy instance or other virtual
environment — workflow managers help
with assembling and executing a workflow.
Tools can be hard to compose, says Brown,
and much pipeline-building involves
converting formats for passing information
between tools. There’s a big difference
between production workflows that can
run at scale and almost never fail without a
useful error message and research workflows
run on a dozen samples where much can
happen. Workflow managers help users
set up a computational analysis pipeline
and monitor its activity as it runs. “I used
to spend a lot of my time worrying about
intermediate errors in my automation,
and workflow managers take care of that,”
he says. With Snakemake, workflow steps
phrased in a Python-like language are set
up in a Snakefile. Snakemake can determine
how the workflow can unfold, whether Credit: St. Jude Children’s Research Hospital

Nature Methods | VOL 17 | July 2020 | 659–662 | www.nature.com/naturemethods

https://www.docker.com/101-tutorial
https://sylabs.io/docs/
https://coreos.com/rkt/
https://bcbio-nextgen.readthedocs.io/en/latest/
https://nf-co.re/
http://workflowhub.eu
https://openebench.bsc.es/dashboard
https://github.com/crs4/life_monitor
http://www.nature.com/naturemethods

661

technology feature

over one or several cores, and can help with
scaling a pipeline from a workstation with a
single core to many-core systems. In Brown’s
view, bioinformatics teams mainly use four
workflow managers: Workflow description
language (WDL), Common Workflow
Language (CWL), Snakemake and Nextflow.

Even when workflows just cobble
together software in a simple way, every
computing decision is a choice and
involves implicit assumptions, says Brown.
Unintended consequences of joining
different programs make it harder to
track and evaluate bugs. Especially for
production-grade pipeline development
and operation, workflow managers are
becoming an increasingly important part
of the equation, says McLeod. “Investing
in learning these workflow languages and
rewriting pipelines to conform to them
has to be balanced with the benefit you
will receive in return, like scalability and
platform portability,“ he says. A smaller lab
working on a single workstation is likely
to be fine with simple bash commands or
Python scripts and no workflow language,
says McLeod. Snakemake and Nextflow
appear popular in medium-sized or larger
individual labs with multiple people working
on a project because they are relatively easy
to pick up and can be well-integrated with
typical local computing setups. Based on
what he has seen of community projects and
cloud providers, for larger operations, such
as at St. Jude, open workflow standards like
CWL and WDL appear to be the leading
workflow languages.

Make it sustainable
Brown works with others in a new Common
Fund Data Ecosystem project geared toward
increasing uptake and reuse of Common
Fund data and tools and for training. The
project also addresses gnarly issues of
sustainability and preservation of data and
tools in cases of defunding — for example,

of the Human Microbiome Project. In
general, the US National Institutes of Health
wants scientists to head to the cloud for
data analysis, says Brown, but not all labs
are well-versed in doing so. With the cloud,
the main problem is upload and download,
says Grabherr. Opening a virtual machine
or several of them on different clouds is
relatively easy, but the major bottleneck
is getting the data there and downloading
results. For permanent storage of all the
input data, researchers need their local
resources, and a laptop won’t hold terabytes
of data. Unless data can be read through
the network instead of from local disks, he
says, people will continue to make copies
of their large datasets. Scalability is another
issue. “Especially for larger datasets, it might
take many thousands of CPU hours before
realizing that a tool or pipeline will never
work for this data.”

Validating, troubleshooting
Validation has to be continuous, says Zhang,
and benefits from use of a benchmark
dataset. User feedback helps with fixing
errors. At a minimum, says Grabherr,
pipelines should, but don’t always, come
with a small test data set for verifying that
they generate correct results. “Next, there
should be a clear versioning, not just a
download date,” he says, along with notes
about changes. Larger outfits, such as
EBI, the Broad Institute or University of
California, Santa Cruz, “are generally very
good at transparency and support, others
less so.” For validation, says McLeod, for
starters it’s okay to manually run end-to-end
checks for errors and consistency of
results at regular intervals. “As a pipeline
matures and scales, continuous integration
is needed,” he says. Every incremental
change to a pipeline kicks off the entire
end-to-end pipeline check to find errors and
assure consistent results. This way, pipeline
developers can focus on development and

let automation handle the rest, he says.
Validation is challenging in research, not
just with pipelines, says Nystedt. Assuring
valid results is the responsibility of the
individual research project and cannot be
‘outsourced’ to the pipeline maker. “And
exactly how this evaluation should be done
is almost always project-specific, and might
in fact amount to a substantial part of the
entire research project.” Boutros agrees on
the need to benchmark pipelines against
standard datasets, such as Genome in a
Bottle or DREAM. Pipeline changes should
be accompanied by a test against that dataset
to show how performance, both in terms of
computing resources and results accuracy,
has changed. Big improvements might
hint at over-fitting, he says, so it’s good to
have many, diverse benchmarking datasets.
With his recent move to UCLA, he began
daily testing of all pipeline aspects against
standard datasets. Pipelines are notoriously
difficult to debug, says Grabherr. Processes
can fail for any number of reasons. When
a pipeline runs for several days or weeks,
“then fiddling with parameters becomes

a major wastebasket for both time and
compute resources.” He has seen, for
example, that after many unsuccessful
attempts, the one parameter that needed
changing was hard-coded in the pipeline.
Structural problems are easy to trace and
debug, says Miguel Carmona, software
developer with the Open Targets project.
He and his colleagues use continuous
integration and continuous development
measures, along with tools such as the
cloud-based application Travis, to leverage
the compilation, packaging and execution
that, for instance, Docker gives and to
ensure that commands run without host
dependencies. “Semantic problems are
rather more intricate and difficult to spot
as you need expert human intervention,”
says Carmona. One example is assigning
annotation to a gene that is computationally
correct but biological nonsense. He and

Credit: UCLA Jonsson Comprehensive Cancer Center

Nature Methods | VOL 17 | July 2020 | 659–662 | www.nature.com/naturemethods

https://openwdl.org/
https://openwdl.org/
https://www.commonwl.org/
https://www.commonwl.org/
https://snakemake.readthedocs.io/
https://www.nextflow.io/
https://nih-cfde.org/
https://nih-cfde.org/
http://www.nature.com/naturemethods

662

technology feature

his team developed checkomatic, a tool
that checks expert-curated knowledge as
a gold-standard ground truth. It helps to
minimize the most common problems
related to the lack of data or mis-typed data.
Proteomics researcher Jürgen Cox from
the Max Planck Institute of Biochemistry
says his lab’s approach is unlike mainstream
pipeline building in bioinformatics and
“ours is probably a minority view.” The
classic pipeline building approach in
bioinformatics has many merits, he says.
However, in developing MaxQuant, software
for quantitative analysis of large mass
spectrometry datasets, and its cousin Perseus
for statistical workflows such as cross-omics
analyses, his team took a different path.
They built scientific software solutions
from scratch with a local team of scientists
and programmers, which is like industrial
software development. Having thousands
of independently developed pipeline
components “available for algorithmic
plumbing might seem like a paradise for
some of the students who will be able to
quickly solve a computational problem
that they encounter in their data analysis,”
says Cox. But all too frequently this leads
to difficult-to-maintain solutions with a
short life cycle. Reuse of such pipelines
can be hard because of usability issues,
and it can be tough to scale the pipeline to
other hardware platforms. Maintenance
keeps an approach updated so it can, for
example, reflect data from a given field’s
new technologies. “This is why we favor the
complete system-building approach over
the pipeline approach,” says Cox. This does
not exclude users from contributing to the
software. For instance, Perseus has a plug-in
architecture through which users can add

their own workflow commands in any of a
number of programming languages, such as
R, Python and C#.

Sharing at scale
Selecting the right tools for a particular
analysis requires thorough evaluation,
especially for analysis of a new data types,
says Zhang. She and her team have built
the St. Jude Cloud to share large-scale
pediatric cancer data and tools, many of
which were developed at St. Jude. It’s also
a sandbox where tool developers and users
can try analysis pipelines. Initially, the
Zhang lab tools were on the lab’s research
cluster and shared via the lab page or
Github. People could download tools for
installation wherever they chose. In 2014,
Zhang began using the cloud, and most of
her lab’s new methods are on St. Jude Cloud.
In cancer research, scientists might look
and find tools in many locations, such as
the NCI Cloud or the International Cancer
Genome Consortium portal. The St. Jude
Cloud is specifically devoted to pediatric
cancers. Users can browse the St. Jude
Cloud data, but permission is required for
access and analysis, says George Asimenos,
chief technology officer at DNAnexus. His
company built a layer that runs on top of
the Microsoft Azure and Amazon Web
Services clouds for data storage, analysis
and computing nodes. Some organizations,
including St. Jude, the Encyclopedia of DNA
elements (ENCODE) consortium, the UK
Biobank and the Vertebrate Genomes Project,
involve DNAnexus to scale up pipelines. A
regulatory environment can shape a pipeline’s
scope, but research-focused consortia, such
as one in population genetics, might control
pipelines too. They might need to process all

samples uniformly so researchers can later
“compare apples to apples,” says Asimenos.
During the ENCODE pilot project, a pipeline
faced a versioning issue when, mid-analysis,
the human reference genome changed. The
Regeneron Genetics Center has processed
exomes for the UK Biobank and had to
tweak the pipeline version and communicate
this widely. Especially in large endeavors,
he says, scientists have “to assure whatever
they do today is relevant years from today.”
Bioinformatics is changing as fast as science
is, says John Ellithorpe, DNAnexus executive
vice president and chief product officer.
On the pipeline engineering side, people
might want to lock things down before
release whereas on the science side, teams
want to get a pipeline to the community as
quickly as possible. “Those two worlds don’t
mix particularly well,” he says. DNAnexus
mediates by building different pacing into a
project. They might, for example, let users or
developers revert to a pipeline four versions
ago. Many pipelines are for readying data to
allow association studies across datasets. This
brings issues of architecture, organization and
how to avoid copying data from here to there,
he says. Over time, more and more groups
will work on structural aspects instead of
relearning a new pipeline environment.

Classic software practices such as
those for maintaining large bodies of
code and pipelines are making inroads in
bioinformatics, says Ellithorpe. “All of these
things are going to end up feeding major
data science environments.” Workers can
use pipelines for simple association and
correlation analyses with smaller sets of
data or perform large-scale approaches with
machine learning and artificial intelligence
techniques. “Compute is getting more
ubiquitous and less expensive, and the data
are getting larger,” says Asimenos. Data,
such as that from the UK Biobank, makes
it increasingly possible for labs around
the world to ask new kinds of biomedical
questions. The days are vanishing quickly,
notes Asimenos, in which a researcher says:
“I’m using one tool and it’s running for a
specific amount time, that’s all I can afford,
and I’m using it on my dinky dataset.” ❐

Vivien Marx ✉
Nature Methods.
✉e-mail: v.marx@us.nature.com

Published online: 29 June 2020
https://doi.org/10.1038/s41592-020-0886-9

References
	1.	 Köster, J. & Rahmann, S. Bioinformatics 28, 2520–2522 (2012).
	2.	 Bovotnik-Nezer, R. et al. Nature 582, 84–88 (2020).
	3.	 Ison, J. et al. Nucleic Acids Res. 44(D1), D38–D47 (2016).
	4.	 Tsiamis, V. et al. J. Proteome Res. 18, 3580–3585 (2019).
	5.	 Ewels, P. A. et al. Nat. Biotechnol. 38, 276–278 (2020).

Nature Methods | VOL 17 | July 2020 | 659–662 | www.nature.com/naturemethods

https://github.com/opentargets/checkomatic
https://github.com/opentargets/platform-checks
https://www.maxquant.org/
https://www.maxquant.org/perseus/
https://datascience.cancer.gov/data-commons/cloud-resources
https://dcc.icgc.org/icgc-in-the-cloud
https://dcc.icgc.org/icgc-in-the-cloud
https://platform.stjude.cloud/data/diseases
mailto:v.marx@us.nature.com
https://doi.org/10.1038/s41592-020-0886-9
http://www.nature.com/naturemethods

	When computational pipelines go ‘clank’

	17,000 is a lot

	It broke

	Small lab pipelines

	It costs

	Go with the workflow

	Make it sustainable

	Validating, troubleshooting

	Sharing at scale

