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scRNA-seq: oh, the joys

To those who seek transcriptomic information at high resolution, scale and throughput, single- 
cell RNA sequencing brings the data. Scientists share tips and future plans as they reflect on the 
method’s rise to stardom. 
By Vivien Marx

“I
t has been incredible to watch 
the growth of this field over the 
last decade,” says Rahul Satija, 
a researcher at the New York 
Genome Center. Thousands of 

labs are using single-cell sequencing to pro-
file cells across a wide variety of organs and 
organisms, he says. It’s now a routine method 
to measure what cells are doing. scRNA-seq 
experiments pose “a whole bunch of really 
exciting, conceptually new problems,” says 
University of Washington researcher Cole 
Trapnell, who is also part of the Brotman Baty 
Institute, a collaboration between the Univer-
sity of Washington, Seattle Children’s Hospital 
and the Fred Hutchinson Cancer Center.

The rapid rise of single-cell RNA sequenc-
ing (scRNA-seq) means researchers can 

find reviews1–3 and evolving resources such 
as Single-Cell Best Practices. The book, 
co-authored by members of the Single-Cell 
Best Practices Consortium, addresses new-
comers and advanced professionals alike. 
Book contributors can join through a Jupyter 
Notebook.

Satija, a Duke University alumnus and bas-
ketball fan, thinks back to a moment almost 
exactly 13 years ago. “I had the game playing 
on one monitor while mapping our very first 
sequencing results,” he says. Duke was play-
ing its Sweet Sixteen basketball game in the 
annual March Madness National Collegiate 
Athletic Association tournament. At the time, 
Satija was working with Alex Shalek and Joshua 
Levin in Aviv Regev’s lab at the Broad Institute 
of MIT and Harvard. Duke lost the game, and 

it may be best to not linger on that upsetting 
memory, but that day Satija stayed in the lab to 
analyze his first scRNA-seq results. “I remem-
ber the thrill for the first time of realizing that 
the data we were looking at really came from a 
single cell,” he says. The readout was from just 
18 individual cells, but it felt like a beginning, 
especially in light of work from labs he calls 
the early scRNA-seq pioneers: those of Sten 
Linnarsson at Karolinska Institute and Fuchou 
Tang, then at the University of Cambridge.

His transformative moment concerning 
scRNA-seq, says Trapnell, happened as he 
watched transformation under the micro-
scope. He was mid-postdoctoral fellowship 
and working with stem cells, which showed 
varied developmental trajectories. It was 2012 
or 2013 when he and another postdoc did one 

 Check for updates
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of the first scRNA-seq experiments to study 
how muscle cells change during develop-
ment. These cells transform into just one cell 
type, but what surprised him was to see them 
change at tremendously different rates. “It was 
so obvious that we could even build a whole 
algorithm that could put them in developmen-
tal order, just based on looking at how they 
were changing their genes up and down,” he 
says. He sensed that soon researchers would 
have a pressing need for new software tools 
and new algorithms. Fast-forward to today 
and one finds more than 1,400 software tools 
from many labs, including the Trapnell team.

Many tools, sparse data
Indeed, the number of computational 
scRNA-seq tools is huge, say Sarah Teichmann, 
a researcher at the Wellcome Sanger Institute 
who co-founded and co-directs the Human 
Cell Atlas, and who responded jointly with 
colleagues Kerstin Meyer and Nick england. 
Given the rapid advance of technologies in 
this space, with sequencing instruments and 
barcoding techniques for spatial, proteomic 
and metabolic data, “there is still a great need 
for new tools,” they note. Users want to analyze 
and combine results that are from different 
information modalities.

The previous software stack for gene 
expression analysis “just wasn’t going to 
cut it,” says Trapnell; tools need to address 
scRNA-seq data structures. For ideas, one can 
port methods from other fields. scRNA-seq 
experimenters face similar statistics issues to 
ones ecologists face when they count organ-
isms at different locations. To resolve gene 
expression spatially, one can look at the way 
geology tools address an inference problem 
well-known in statistics to assess at what layer 

of rock an oil field begins and ends. “People are 
doing that, which is pretty cool,” he says. It’s 
not a conceptually new method, but “but it’s 
conceptually new to biology in a lot of ways.”

The sparseness of scRNA-seq data contin-
ues to be challenging, say Teichmann and her 
colleagues. Often, too few transcripts are cap-
tured. Imputing the missing values is a way to 
handle this4 with methods that apply statistical 
models or deep learning, among others. While 
imputation can increase sensitivity for detect-
ing differential expression, “it can also intro-
duce false positives,” they say, noting this is a 
point that colleagues make in a paper5. In that 
paper, Tallulah Andrews and Martin Hemberg,  
who are also at Wellcome Sanger Institute, 
evaluate different imputation methods for 
their risk of generating “false positive or 
irreproducible differential expression when 
imputing data.” Those authors, the Teichmann 
team indicates, recommend that imputation 
can be useful in some instances, such as to 
visualize data, but for statistical tests, such 
as for differential expression analysis, unim-
puted data should be used.

“Imputation is widely used in human genet-
ics where there are good known reference 
datasets,” such as from the 1000 Genomes 
Project, say Teichmann and colleagues. As 
more scRNA-seq reference atlases become 
available, new methods could leverage them 
for more accurate imputation.

“Imputation, particularly at the level of the 
individual measurements, is kind of a fraught 
thing to do,” says Trapnell. It’s a way to express 
doubts about a value that, according to the 
assay, is zero but might be small. The doubts 
and the guessing have to be carried through 
the statistical analysis, and “you have to kind 
of propagate the uncertainty.”

The alternative, he says, is measuring 
many more cells to “fill in the zeroes.” To do 
so takes time and money, but with technol-
ogy advances, he hopes this will become 
easier. The ‘get more cells’ strategy is better 
than spending time to develop an algorithm 
that can quickly become obsolete. His lab 
developed Census, a scRNA-seq imputation 
tool. Once barcoding techniques with unique 
molecular identifiers (UMIs) came into wide 
use, the algorithm was no longer needed.

Better now
Amplification bias was an issue, but UMIs 
“have solved this conundrum,” say the  
Teichmann lab team. The method lends each 
gene a unique barcode. “After amplification, 
reads with the same UMI are collapsed into a sin-
gle read, thus removing any amplification bias.”

Karolinska Institute researcher Rickard 
Sandberg and colleagues note that errors 
within barcodes can occur, which must be cor-
rected. Given the lack of experimental ground 
truths to help with that correction, they 
developed mRNA spike-ins that have highly 
diverse random sequences. They note6 that 
UMIs shorter than eight nucleotides should 
be avoided except for shallow scRNA-seq 
experiments.

Some labs previously excluded the effect 
of cell cycle state on scRNA-seq data, as a con-
founder, but no longer do so, says applied stat-
istician Kasper Hansen. He and colleagues at 
the Johns Hopkins Bloomberg School of Public 
Health developed Tricycle: Transferable Rep-
resentation and Inference of Cell Cycle. It’s a 
tool with which one can infer cell cycle state 
from scRNA-seq data.

During the cell cycle, many genes are dif-
ferentially expressed, especially as the cell 
grows and increases its RNA content before 
cell division. Not only the genes regulating 
the cell cycle change. The team, says Hansen, 
amassed much evidence that Tricycle works 
well in mammalian cells. “If you use a more 
distant organism, we would love to hear your 
experience,” he says.

Currently, users apply Tricycle to estimate 
cell cycle length, but it could reveal more 
about the interplay between cell cycle length, 
differentiation and cell fate. “We are actively 
working on this question,” he says. In their 
method development work, the team con-
firmed Tricycle’s results by comparing them 
to gold-standard cell cycle measurements. For 
technical reasons such datasets profile only 
a single proliferating cell type, but “what we 
need are methods which work on mixtures of 
cell types,” he says.

At the Wellcome Sanger Institute, the Teichmann lab focuses on single-cell techniques and 
the insight they deliver. 
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As scRNA seq emerged, some labs used 
highly sensitive methods such as RNA fluo-
rescence in situ hybridization (FISH) to probe 
and localize RNAs in cells or tissue sections. 
They counted individual mRNA molecules and 
came across “the bursty nature of gene expres-
sion regulation,” says Trapnell, which was and 
is intriguing. FISH remains a great way to study 
the mechanics of transcription.

Over time, says Trapnell, scientists have 
learned that the cells contain much RNA, yet 
not many molecules are needed to “get a pretty 
clear idea of at least what kind of a cell a cell 
is, and maybe even where it is.” Genes are cor-
related, and from an information theory or 
statistical perspective, a fraction of a cell’s 
RNA content is telling. This has been a techni-
cal surprise to the scientific community, he 
says. scRNA-seq has enabled an era of cell atlas 
making.

Paths to scale-up
When prepping samples for scRNA-seq, tis-
sue dissociation can bias the proportion of 
retrieved cell types, says the Teichmann lab 
team. But scRNA-seq delivers, in their view, 
the highest quality data, and experimenters 
can find subtle gene expression differences 
and characterize small subpopulations. 
Single-nucleus sequencing “is much less 
prone to bias,” the researchers note, and the 
technique more faithfully represents the intact 
tissue’s cell populations, “albeit with a slightly 
lower gene count,” the team says.

Because every assay in biology has bias, 
says Trapnell, one needs internally consist-
ent controls. Cells and nuclei are different 
beasts. And a cell has more RNA than just the 
nucleus alone. If a researcher wants to count 
how many cells of each type a sample contains, 
“nuclei are just fine for that,” says Trapnell. 
Both scRNA-seq and single-nucleus RNA-seq 
have their place and limitations. To know 
which genes were expressed an hour ago, as 
opposed to yesterday, “nuclei are maybe even 
better for that.”

The Teichmann lab and colleagues have 
combined scRNA-seq with recently improved 
spatial technologies that now offer “true 
single-cell resolution.” They mention the 
10x Genomics Xenium and Visium HD sys-
tems as examples. For many experiments7, 
the Teichmann lab integrates data from 
scRNA-seq, single-nucleus RNA-seq and 
spatially resolved transcriptomics. They 
combined scRNA-seq and 10X Genomics 
Visium data in their work on limb develop-
ment, for which they built a spatially resolved 
single-cell atlas.

Together with colleagues in the UK,  
Germany and Australia, the team developed 
the WebAtlas pipeline8 for sharing integrated 
single-cell datasets. One can query cell types 
and genes across single-cell data, as well as 
sequencing and imaging-based data. The data-
sets they applied their approach to include 
scRNA-seq data and datasets acquired with 
spatial technologies: 10x Genomics Visium 
CytAssist and Xenium, Vizgen’s MeRSCOPe 
and a mouse embryonic dataset generated 
with seqFISH developed in the Cai lab at Cali-
fornia Institute of Technology.

In scRNA-seq, rapid scale-up is underway, 
say the Teichmann team. Companies such 
as 10x Genomics provide chips for loading 
100,000 cells per inlet. Some companies use 
combinatorial indexing, which allows analysis 
of large numbers of cells at reasonable cost. 
Combinatorial indexing involves numerous 
rounds of barcoding of cells and analytes, 
and that scales up scRNA-seq experiments. 
One company the Teichman team mentions 
is Parse Biosciences. Another company in this 
space is Scale Biosciences, which Trapnell 
co-founded with University of Washington 
colleague Jay Shendure, Stanford University’s 
Garry Nolan and Frank Steemers, who was pre-
viously at Illumina.

Integration in action
Says Satija, it’s exciting how possible it is now 
to get different types of molecular information 
from individual cells — gene expression as well 
as protein abundance, chromatin accessibility 
and DNA methylation levels. “Measuring these 
other modalities provides a very different view 
of what the cell is doing, and can even be used 

to infer its past behavior or to predict its future 
state,” he says.

The Satija lab has developed a bridge inte-
gration approach9 to integrate single-cell 
datasets across modalities. In their paper, 
they consider two datasets generated from 
immune cells in people with COVID: RNA lev-
els, which are cellular gene expression, and cel-
lular protein level measurements. each cell in 
a multiomic set of data is an ‘element’ in a dic-
tionary. Dictionary learning is how translation 
between RNA and protein data is handled so 
the two sets can be integrated, says Satija. The 
method is implemented in the Seurat package, 
a widely used single-cell data analysis suite of 
tools from the lab.

The method focuses intensive processing 
and integration on a select group of represent-
ative cells, says Yuhan Hao, who heads data 
science at the biotech Neptune Bio and co-led 
this method’s development as a PhD student 
in the Satija lab. These results are extended 
to represent the entire dataset. This shortens 
the otherwise extensive analysis time needed 
when integrating ten large scRNA-seq data-
sets with millions of cells that require much 
computational memory. “This process effec-
tively brings datasets of different types into a 
common feature space, making integration 
straightforward,” he says.

This method sits at the heart of the lab’s Azi-
muth portal. It emerged as part of their activi-
ties in the Human Biomolecular Atlas Program 
(HuBMAP), which aims to map the human body 
at single-cell level. Azimuth offers annotated 
reference datasets that help with automated 
processing and analysis. There are refer-
ence scRNA-seq datasets of various types of 
human cells and scATAC-seq data. The method 
scATAC-seq, or transposase-accessible chro-
matin through sequencing, is a way to assess 
where transcription factors bind or where DNA 
methylation occurs.

New vistas
especially because of plummeting sequenc-
ing costs, the overall costs of scRNA-seq 
experiments have dropped, says Trapnell. 
And whereas what used to be a typical experi-
ment involved a few hundred cells from tissue 
from which cells could be readily disassoci-
ated, these days, experiments can be run with 
millions of cells from many specimens. Most 
early applications focused on regulation of 
individual genes. Such work continues, but 
scRNA-seq scale-up and throughput have 
opened up new experimental possibilities.

Instead of perturbing cells and asking 
“how does my favorite gene change?” or how 

Yuhan Hao, while a PhD student in the Satija 
lab, co-developed a bridge integration 
strategy for multimodal single-cell data 
analysis. 
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individual genes are regulated, one can per-
turb model organism embryos and ask how 
a favorite cell type changes in proportion to 
other cell types. One gets a sense of the overall 
program because one can study how cell types 
depend on one another. One might be study-
ing cancer cells to study residual disease. “It’s 
like using single-cell RNA-seq like one would 
use flow cytometry,” he says. “But on a much 
larger scale.” These changes make it easier to 
design experiments.

The Trapnell and the Shendure lab have 
been applying scRNA-seq to developmental 
biology questions10,11. This work will be scaled 
up in their work at SeaHub, the new Seattle 
Hub for Synthetic Biology. Shendure is Sea-
Hub’s scientific director and Trapnell will 
co-lead.

When you can sequence millions of cells 
from different specimens — in their cases, 
embryos of model organisms that have been 
perturbed in various ways — one can study 
how a change affects all cell types across the 
development of the embryo, says Trapnell, 
and begin addressing problems in genetics 
and developmental genetics one could not 
address with more conventional tools. Along 
with new tools to address computational and 
statistical problems, such as for inferring 
which genes are required for which cell types, 
how the cell types depend on one another, or 
how the genes regulate one another, “I think 
it’s going to provide us with a means of dis-
secting the genetic program that controls 
development.”

Plenty of technical issues remain to be 
solved in scRNA-seq measurement and analy-
sis, says Hao. “We need the scRNA data at the 
population level with genetic and curated 
clinical information,” he says. Last year, the 
Chan Zuckerberg Initiative consolidated 
publicly available scRNA-seq data to build 
CZ CellxGene Discover Census, with which 
one can access, query and analyze scRNA-seq 
data. These data are invaluable for training AI 
models to learn the unified representation of 
all those cells. It would be useful, he says, to 
have data about the donors of these cells while 
also maintaining privacy.

Much exciting work is ongoing with 
scRNA-seq, says Hansen. Sequencing assays 
are tough to validate since measuring cells 
destroys them. He is glad to see methods that 
record the history of the cell before measure-
ment, such as Phylotime, a retrospective line-
age barcoding and analysis tool developed 
by his Hopkins colleagues Reza Kalhor and 
Hongkai Ji and their groups.

It’s particularly useful to see the increase 
in spatial resolution that technologies are 
bringing, say Teichmann and her colleagues. 
This, along with new tools, will let scientists 
precisely map gene expression to individual 
cells at their exact location. For instance, 
understanding the exact cellular interactions 
between immune cells and their targets in can-
cer and autoimmune diseases holds much 
promise for treatment and drug discovery.

The research community, says Hao, has used 
scRNA-seq to identify and describe novel, rare 
and previously overlooked cell types. This 
opens a way to understand cell types and gene 
programs that lead to complex diseases and 
thus power therapeutics development. But 
one needs scRNA data not just from from tens 
to hundreds of individuals but thousands of 
individuals, says Hao. Lowering costs of scRNA 
increases its accessibility, and among the next 
technical challenges is determining how to 
collect information about the individuals who 
donated their cells and maintain privacy.

The next frontier, in Satija’s view, is to move 
beyond observation and leverage these tech-
nologies “to understand not just what cells 
are doing, but why they are doing it.” This is 
a new direction his lab is taking. One tech-
nique from this new direction is the team’s 
Phospho-seq, to simultaneously profile pro-
teins, quantify intracellular protein dynam-
ics, use scATAC-seq in whole cells, and then 
integrate these data with scRNA-seq datasets 
using the bridge integration method.

One can track cell signaling during devel-
opment and reconstruct gene-regulatory 
relationships this way. The lab has also 
begun large-scale experiments12 to identify 
the regulators and targets of diverse cellular 
responses. This work involves pooled genetic 
screens, single-cell sequencing such as use 
of Perturb-seq combined with combinatorial 
indexing, and high-throughput sequencing 
to find targets of signaling regulators in dif-
ferent biological contexts. More than 1,500 
individual perturbations are performed across 
six cell lines and five different biological sign-
aling contexts.

With CaRPool-seq, the lab has combined use 
of CRISPR and single-cell genomics technolo-
gies to massively parallelize the measurement 
of cellular responses under high-throughput 
genetic perturbations, and those perturba-
tions can involve either single genes or mul-
tiple genes.

Scale will keep rising and cost is likely to 
keep dropping. It helps that scRNA-seq can be 
performed with much less material than used 
to be needed and on a wider range of tissues, 
says Trapnell. One can do things, he says, that 
were “off limits before.”

What trips people up the most in scRNA-seq 
work, says Trapnell, is study design. It has been 
too expensive for scientists to do the study 
they want, so they do a different experiment. 
“I think that what’s really going to change in 
the next couple years is that now people will 
be able to do the study they want,” he says. 
“And that’s going to be really enabling for a 
lot of labs.”

Vivien Marx 
Nature Methods.  

 e-mail: v.marx@us.nature.com
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scRNA-seq experiments pose “a whole 
bunch of really exciting, conceptually new 
problems,” says University of Washington 
researcher Cole Trapnell. 

C
R

eD
IT

: B
R

O
T

M
A

N
 B

A
T

Y
 IN

ST

http://www.nature.com/naturemethods
https://chanzuckerberg.github.io/cellxgene-census/
https://phospho-seq.com/
mailto:v.marx@us.nature.com
https://doi.org/10.1101/2023.05.19.541329
https://doi.org/10.1101/2023.05.19.541329
https://doi.org/10.1101/2024.01.29.576933
https://doi.org/10.1101/2024.01.29.576933

	scRNA-seq: oh, the joys
	Many tools, sparse data
	Better now
	Paths to scale-up
	Integration in action
	New vistas




