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Local origin of excitatory–inhibitory tuning 
equivalence in a cortical network

Adrian J. Duszkiewicz1,2,3  , Pierre Orhan    1,4, Sofia Skromne Carrasco1, 
Eleanor H. Brown    1, Eliott Owczarek1, Gilberto R. Vite1, Emma R. Wood2,5 & 
Adrien Peyrache    1 

The interplay between excitation and inhibition determines the fidelity of 
cortical representations. The receptive fields of excitatory neurons are often 
finely tuned to encoded features, but the principles governing the tuning of 
inhibitory neurons remain elusive. In this study, we recorded populations 
of neurons in the mouse postsubiculum (PoSub), where the majority of 
excitatory neurons are head-direction (HD) cells. We show that the tuning 
of fast-spiking (FS) cells, the largest class of cortical inhibitory neurons, was 
broad and frequently radially symmetrical. By decomposing tuning curves 
using the Fourier transform, we identified an equivalence in tuning between 
PoSub-FS and PoSub-HD cell populations. Furthermore, recordings, 
optogenetic manipulations of upstream thalamic populations and 
computational modeling provide evidence that the tuning of PoSub-FS cells 
has a local origin. These findings support the notion that the equivalence 
of neuronal tuning between excitatory and inhibitory cell populations is an 
intrinsic property of local cortical networks.

The nature of neural computation is traditionally investigated by 
determining how external and internal signals are represented at the 
neuronal level1–4. Although neurons in many sensory and other cortical 
systems encode high-dimensional features5–8, their tuning can only be 
measured for a limited fraction of the possible feature space. In com-
parison, the feature space of the head-direction (HD) system is relatively 
simple, with excitatory neurons firing for specific directions of the 
head in the horizontal plane4,9,10. Importantly, this simplicity allows for 
a full characterization of neuronal tuning during natural behaviors11,12.

Cortical inhibition has a critical role in shaping the tuning of 
neuronal responses13–21. Yet, the tuning of inhibitory neurons, espe-
cially fast-spiking (FS) cells, is often considered to be broad22–28 or 
irregular29–33, begging the question of the origin of such tuning and, 
specifically, the structure of the underlying circuits. The HD signal is 
transmitted from the anterodorsal nucleus (ADN) of the thalamus to 
the cortical recipient neurons in the postsubiculum (PoSub)9,10,34,35. 
Here we recorded the activity of neuronal ensembles in PoSub and ADN 
and we show that the tuning of PoSub-FS cells is inherited from local 

but not upstream excitatory cells—an observation further supported 
by selective optogenetic disinhibition of ADN-HD cells, which modu-
lated PoSub-FS cell activity irrespective of HD. Finally, computational 
modeling suggests that the distribution of PoSub-FS cell tuning shapes 
can be accounted for by random and strongly skewed inputs from local 
PoSub-HD cells.

Results
High-density recordings in the PoSub of freely moving mice
We first established the functional border between PoSub and posterior 
retrosplenial cortex (pRSC) using a Neuropixel linear electrode array 
(Fig. 1a–c). Based on these observations, a similar step-like increase 
in average HD tuning along this axis was used to define this border 
for a larger cohort of mice implanted with a microdrive-mounted 64 
channel linear electrode array and record single-unit activity in PoSub. 
The probe was implanted either vertically (n = 931 units from 14 mice, 
range: 46–101 units per recording; Extended Data Fig. 1a–c) or parallel 
to PoSub cell layers (n = 1,999 units from 18 mice, range: 42–185 units 
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Equivalence of PoSub-HD and FS cell tuning in Fourier space
We next aimed to establish whether the tuning of PoSub-FS cells was 
related to the tuning of local HD cells. To address this question, we 
compared the HD tuning of PoSub-FS cells with that of PoSub-HD 
cells as well as with that of the HD cells in the upstream ADN (ADN-HD 
cells; n = 97 cells from eight mice; Fig. 3a,b). In mice, ADN-HD cells tend 
to have broader HD tuning curves than PoSub-HD cells (Fig. 3c and 
Extended Data Fig. 3a,b), a property independent of their tendency to 
fire in anticipation of future HD38 (Extended Data Fig. 3c,d). We used 
these differences in tuning curve shape between the two populations 
to characterize their relative influence on the tuning of PoSub-FS cells. 
Notably, HD tuning of PoSub-FS cells cannot be directly compared 
with that of canonical HD cells due to its irregular, often multipeaked 
shape. To overcome this, we transformed the HD tuning curves from 
the spatial domain (HD space) to the spatial frequency domain (Fourier 
space; Fig. 3d,e; Methods). Each tuning curve was thus represented as 
a sum of sine waves (Fourier components) whose frequencies are equal 
to the harmonics of the unit circle, corresponding to periods from 360° 
(fundamental frequency) to 2° (highest possible harmonic, equal to 
twice the tuning curve sampling bin). In turn, each Fourier component 
could be described in terms of its amplitude (or ‘power’) and phase, 
which reflects the relative orientation of that component. Each tun-
ing curve was thus associated with an individual ‘Fourier signature’, 
consisting of the relative powers of its Fourier components. Across 
the cell population, the Fourier power decayed rapidly as a function 
of frequency. Hence, for clarity, we focused our analysis on the relative 
power of the first ten Fourier components that contained, on average, 
98% of the total power.

Canonical HD cells, sharply tuned in HD space, showed broad  
and stereotyped tuning in Fourier space, with power distributed 
across several Fourier components and each successive component  
having progressively less power. We found that Fourier signatures of 
PoSub-HD and ADN-HD cells often differed between the two regions 
(Fig. 3d, top)—ADN-HD Fourier signatures tended to be skewed  

per recording; Fig. 1d,e and Extended Data Fig. 1d,e) and probe posi-
tions were later confirmed histologically (Extended Data Fig. 1d). The 
two datasets were pooled for further analysis. All recording sessions 
consisted of square open-field exploration and sleep epochs, with a 
subset of sessions extended to include a triangular open field or a cue 
rotation task. PoSub units were subdivided into putative excitatory 
cells (n = 1,835) and putative PoSub-FS cells (n = 427) based on mean 
firing rate and waveform shape (Extended Data Fig. 2a). A subset of 
excitatory cells whose HD information exceeded the 99th percentile 
of the time-reversed control distribution (Methods) were classified as 
PoSub-HD cells (>0.2 bits per spike, n = 1602, 87% of excitatory cells; 
Extended Data Fig. 2b,c).

Tuning of PoSub-FS cells is stable and anchored to landmarks
We observed that PoSub-FS cells were considerably modulated by HD 
(Extended Data Fig. 2d) and, at the population level, the quantity of HD 
information conveyed by PoSub-FS cells was significantly higher than 
that of the time-reversed control (Fig. 2a). The information contained 
in PoSub-FS cell tuning curves was sufficient to accurately decode the 
animal’s HD from PoSub-FS cell spiking activity (Fig. 2b and Extended 
Data Fig. 2e). However, in contrast to canonical HD cells, individual 
PoSub-FS cells had complex, often multipeaked tuning curves not con-
fined to a narrow range of HD values. Still, we hypothesized that because 
PoSub-FS cells receive inputs from local PoSub-HD cells (Extended 
Data Fig. 2f,g), they should share each other’s functional properties.

Indeed, the tuning of PoSub-FS cells was stable within a single 
exploration epoch (Extended Data Fig. 2h) and independent of the 
enclosure geometry (Fig. 2c), reflecting the properties of canonical 
PoSub-HD cells (Extended Data Fig. 2i,j). Notably, in a cue rotation para-
digm36,37 (Fig. 2d and Extended Data Fig. 2k), PoSub-FS cell tuning curves 
followed the rotated distal landmark in concert with PoSub-HD cells 
(Fig. 2e,f). Thus, although PoSub-FS cells, in contrast to canonical HD 
cells, exhibit irregular HD tuning curves, their HD tuning is stable and 
anchored to the landmarks, irrespective of environmental geometry.
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Fig. 1 | Large-scale recording of neurons in PoSub. a, Brain diagram showing 
the Neuropixel probe implanted along pRSC and PoSub. b, Scatterplot depicting 
HD information of all putative excitatory cells in a single Neuropixel recording as 
well as the running average (continuous line). Representative HD tuning curves 
correspond to filled circles. Dashed line shows the putative boundary between 
pRSC and PoSub. c, Normalized tuning curves of all cells in b, sorted according to 
the position on the probe. Arrowhead shows the putative pRSC/PoSub boundary. 

d, Brain diagram showing the 64 channel linear probe implanted parallel to 
PoSub layers in a subset of animals. e,f, HD information of all PoSub-HD cells (e) 
and PoSub-FS cells (f) in a single recording with a 64 channel probe positioned 
parallel to cell layers. Solid lines show the running average. Representative  
HD tuning curves and waveforms (left to right) correspond to filled circles  
(top to bottom).
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toward lower components compared to PoSub-HD cells, reflecting their 
broader tuning curves.

In contrast, PoSub-FS cells exhibited highly heterogenous Fourier 
signatures, with many cells broadly tuned in HD space but narrowly 
tuned in the Fourier space, that is showing high power for only one 
Fourier component (Fig. 3d, bottom). We hypothesized that although 
Fourier signatures of individual PoSub-FS cells reflect their heterogene-
ous tuning shapes, overall, they ought to be constrained by the tuning 
properties of their main HD inputs. Indeed, we found that the average 
Fourier signature of the PoSub-FS cell population was often indistin-
guishable from the Fourier signatures of individual PoSub-HD cells. In 
contrast, the Fourier signature of ADN-HD cells was different from both 
PoSub-HD and PoSub-FS cells, with higher power at low frequencies and 
lower power at higher frequencies (Fig. 3e,f and Extended Data Fig. 3f). 
This observation indicates that the tuning of ADN-HD cells is composed 
of fewer Fourier components than PoSub neurons, irrespective of the 
exact shape of their tuning curves. Notably, the mean Fourier signature 
of PoSub-FS cells was stable across different environmental manipula-
tions (Extended Data Fig. 3h), reflecting the stability of their tuning in 
the HD space. Like hippocampal place cells, HD cells can sometimes 
have multiple receptive fields32 (Extended Data Fig. 3i–j) that could 
affect the average Fourier signature of an HD cell population. However, 
the similarity between PoSub-HD and PoSub-FS cell Fourier signatures 
on a population level was preserved when the analysis was limited to HD 
cells with a single receptive field. Additionally, it was preserved when 
a threshold was applied to keep only the best isolated unit clusters or 
when a higher velocity threshold was used to compute tuning curves 
(Extended Data Fig. 3k). Thus, although HD tuning curves of individual 

PoSub-HD and PoSub-FS cells appear strikingly different, on a popula-
tion level they share the same underlying Fourier power spectrum.

The Fourier components did not equally contribute to the tuning 
of PoSub-FS cells. Compared to controls, the spectrum of PoSub-FS 
cells showed higher power for the first three Fourier components only 
(Fig. 3g), suggesting that these three components form the basis of 
directional tuning in the PoSub. We classified neurons based on their 
dominant Fourier components, which reflect the primary symmetries 
in their tuning curves when represented in polar coordinates. Specifi-
cally, neurons were categorized according to the Fourier component 
that exhibited the maximum power. For instance, a prominent second 
Fourier component signifies neurons firing in response to two opposite 
directions, indicative of bilateral symmetry in their tuning. The propor-
tions of recorded PoSub-FS cells with the highest relative power in each 
of the first three Fourier components were similar to the relative mean 
power for the population (Fig. 3h).

Although they shared the same average spectrum, PoSub-HD and 
PoSub-FS cell populations differed in two main aspects. First, while the 
shape of Fourier signatures was largely uniform among HD cells from 
the same brain region, it was highly variable among PoSub-FS cells 
(Extended Data Fig. 3g), indicating narrow tuning of PoSub-FS cells in 
the Fourier space (Fig. 3d). Hence, the Fourier spectrum of the local 
HD signal was distributed across the PoSub-FS cell population rather 
than being homogeneously reflected within each individual cell, often 
resulting in radially symmetrical tuning curves. Second, in individual 
HD cells, the phases of Fourier components were correlated with each 
other, as expected for any symmetrical function with a single maxi-
mum (Extended Data Fig. 3l, left and middle). In contrast, the Fourier 
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Fig. 2 | PoSub-FS cells share functional properties with canonical HD cells. 
a, HD information carried by tuning curves of PoSub-FS cells (n = 427; Wilcoxon 
signed-rank test, z = 17.9). Dotted lines show medians; dashed lines show the 
median of PoSub-HD cell distribution. b, Bayesian decoding of HD from the 
activity of PoSub-FS cells. Left, an example period of exploration showing the 
animal’s true HD and HD decoded from the activity of PoSub-HD cells or PoSub-
FS cells. Right, comparison of HD decoding error distributions across all animals 
(n = 32). Shaded area shows s.e.m. c, PoSub-FS cell tuning curve correlations 
across square and triangle arenas. Left, representative tuning curves of a single 
PoSub-FS cell and their cross-correlation. Dotted lines show the maximum 
correlation. Right, population histograms (n = 264, Wilcoxon signed-rank test 
versus time-reversed control, z = 14.0). Dotted lines show medians; dashed 
line shows the median of the PoSub-HD cell distribution. d, Cue rotation task. 
Top, diagram of the cue rotation apparatus. Bottom, timeline of the epochs 

corresponding to different cue positions. e, Representative cue rotation session. 
Left, rotation of PoSub-HD and PoSub-FS tuning curves over 16 consecutive 
cue rotation epochs (blue lines). Each point denotes the tuning curve rotation 
of a single cell relative to the previous epoch. Right, representative PoSub-HD 
and PoSub-FS tuning curves from the same session computed across all CW 
and CCW epochs and their cross-correlation. Dotted line shows the maximum 
correlation. f, Population data from six cue rotation sessions. Top, distribution of 
average tuning rotations of PoSub-HD cells (n = 411) and PoSub-FS cells (n = 99) 
across all CW and CCW epochs (light and dark shades, respectively). Bottom, 
histogram of mean absolute rotation differences between individual PoSub-FS 
cells and the average of PoSub-HD cells (n = 99, Wilcoxon signed-rank test versus 
time-reversed control, z = 8.25). Dotted lines show medians. CW, clockwise; CCW, 
counterclockwise.
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Fig. 3 | HD tuning of PoSub-HD and PoSub-FS cell populations is equivalent in 
the Fourier space. a, Simplified diagram of connections in the thalamocortical 
HD system. Arrows and bars show excitatory and inhibitory connections, 
respectively. b, Brain diagrams showing probes in PoSub and the anterior 
thalamus. c, Distributions of tuning curve widths of PoSub-HD and ADN-HD 
cells (n = (1,602, 97), Mann–Whitney U test, z = 11.4). Dotted lines show medians. 
d, Fourier decomposition of representative PoSub-HD, ADN-HD and PoSub-FS 
tuning curves. Each example depicts the tuning curve (top-left), normalized 
power of the first ten Fourier components (top-right) and linearized tuning 
curve along with the first three Fourier components represented as sine waves 
(bottom). Black curves show the average PoSub-FS spectrum. e, Average Fourier 
signatures of PoSub-FS, PoSub-HD and ADN-HD cell populations (two-way 
ANOVA, Fourier component by cell type interaction: F(9,19116) = 2.76, P = 0.003). 
Inset, cumulative distribution. Shaded lines show s.e.m. f, Statistical distance 
between individual PoSub-HD cell or ADN-HD cell Fourier spectra and the 
average Fourier signature of the PoSub-FS cell population (n = (1,602, 97),  

Mann–Whitney U test, P < 10−9). Dotted lines show medians. g, Average Fourier 
signature of PoSub-FS cells compared with time-reversed control (n = 427 cells, 
two-way ANOVA, Fourier component by cell type interaction: F(9,3834) = 64.1, 
P = 4 × 10−110). Gray background indicates the components for which PoSub-FS 
group is significantly higher than the control group (Wilcoxon signed-rank 
test with Bonferroni correction, first: z = 0.65, P = 8 × 10−10; second: z = 0.85, 
P = 3 × 10−16; third: z = 0.46, P = 4 × 10−5). Shaded lines show s.e.m. h, Left, 
relative mean power of the first three Fourier components for PoSub-FS cells 
(n = 427 cells). Boxes, median and IQR; whiskers, minimum/maximum values 
that are not outliers. Outliers (>1.5× IQR away from IQR) are not shown. Right, 
proportions of PoSub-FS cells with the highest power in each of the first three 
Fourier components. i, Isomap projection of PoSub-FS cell tuning curve auto-
correlograms, colored using the RGB color model mapped to the relative power 
of the first three Fourier components. Perimeter, representative PoSub-FS cell 
tuning curves and the relative power of the first three Fourier components. DKL, 
Kullback–Leibler divergence; IQR, interquartile range; RGB, red–green–blue.
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components of individual PoSub-FS cells had random phases relative 
to each other (Extended Data Fig. 3l, right), explaining the apparent 
irregularity in the HD tuning of PoSub-FS cells showing power in more 
than one Fourier component.

To gain further insights into the shape of PoSub-FS cell tuning 
curves independently of their relative orientation, we computed an 
auto-correlation function for each cell by correlating its tuning curve 
with itself at different angular offsets. As expected, cells with maximum 
power in the first Fourier component showed only one local maxi-
mum in the auto-correlograms, at 0° offset (Extended Data Fig. 4a). 
Auto-correlograms of tuning curves for cells with maximum power for 
the second component showed a second maximum at 180°, reflecting 
their twofold radial symmetry. For cells with maximum power in the 
third component, auto-correlograms peaked at 120° and 240°.

To analyze the shape of PoSub-FS cell tuning curves indepen-
dently of their Fourier spectrum, we then projected PoSub-FS cell 
auto-correlograms onto a two-dimensional space using the Isomap 
dimensionality reduction algorithm39 (Fig. 3i and Extended Data  
Fig. 4b). The resulting projection reflected the heterogeneity of 
PoSub-FS cell tuning curve shapes across the population (compared 
to control data; Extended Data Fig. 4b). Notably, the triangular shape 
of this unsupervised embedding confirmed that a large portion of 
the power was concentrated in the first three Fourier components. 
PoSub-FS cells located at each vertex of the triangle showed pure one-
fold, twofold or threefold symmetrical HD tuning, reflecting their nar-
row tuning in the Fourier space. Still, this distribution was a continuum 
as many PoSub-FS cell tuning curves were associated with substantial 
power in more than one Fourier component (Extended Data Fig. 4e). We 
then projected the data again into the same two-dimensional space, this 
time adding the auto-correlograms of PoSub-HD and ADN-HD cells. We 
found that PoSub-HD and ADN-HD cell tuning curve auto-correlograms 
occupied compact subspaces within the broader distribution, reflect-
ing their relative homogeneity (Extended Data Fig. 4c). The distribution 
of PoSub-HD cells occupied the center of the PoSub-FS cell distribu-
tion while that of ADN-HD cells was closer to the periphery (Extended 
Data Fig. 4d), confirming the observations of differences in average 
Fourier signatures (Fig. 3e,f). In conclusion, the shapes of PoSub-FS 
cell tuning curves were broadly distributed and each was unique. Yet, 
the granularity of their tuning was shared with PoSub-HD cells, but 
not ADN-HD cells.

PoSub-FS cell tuning reveals key circuit properties
To account for the origin of PoSub-FS cell tuning, we turned to numeric 
simulations and theory. First, we computed the tuning of output units 
in a fully connected network receiving HD-tuned inputs (Fig. 4a–c). Out-
put neurons linearly integrated their inputs, as it is the case for cortical 
FS cells40. The spectrum of input tuning curves directly depended on 
the tuning curve width (Fig. 4a). Output neurons often showed radial 
symmetries similar to those observed in PoSub-FS neurons (Fig. 4b). 
Notably, although the input and output tuning curves were strikingly 
different, random connectivity preserved the Fourier spectrum of the 
input population (Fig. 4c).

To reveal the conditions under which random connectivity results 
in output tuning curves with radial symmetries reflecting those of the 
real PoSub-FS cells, we varied two features of the network: the disper-
sion of input weights and the number of input units. In simulation, we 
observed that for low dispersion of the weight distribution, and quite 
intuitively, all output neurons in the network had similar tuning curves 
(Fig. 4d). When dispersion of the input weights was increased, individual 
output tuning curves progressively showed differences in tuning. This 
was independent of the specific shape of the distribution of weights 
(Extended Data Fig. 5a). As a result, the proportion of output units 
showing maximal power in one of the first three Fourier components 
progressively converged to the proportions observed in PoSub-FS cells 
(Fig. 4g and Extended Data Fig. 5b–d). This convergence emerged for 

weight distributions in which the standard deviation (s.d.) exceeded 
the mean of the weights. To test whether this predicted how PoSub-HD 
cells were connected to PoSub-FS cells, we quantified the strength of 
putative synaptic connections from spike train cross-correlations of 
PoSub-HD:PoSub-FS cell pairs41 (Fig. 4e,f; Methods). The distribution 
was heavy-tailed (Fig. 4f), with the ratio of s.d. and mean input weight 
(i.e. coefficient of variation), in the range where in silico simulation 
predicted the emergence of radial symmetries (Fig. 4g).

Varying the parameters of weight distribution did not account for 
the observed amount of HD information conveyed by PoSub-FS cells 
(Fig. 2a). Rather, we found that the number of inputs received by each 
output unit was a key factor influencing the amount of HD informa-
tion (Extended Data Fig. 5e). Varying both weight distribution and the 
number of input units, we obtained a distribution of HD information 
in output tuning curves that matched the real data (Extended Data  
Fig. 5f), revealing that the tuning of PoSub-FS cells can be used to 
estimate both the distribution of weights and the number of input neu-
rons. Notably, under optimal network conditions, Isomap projection 
of output tuning curve auto-correlograms has a similar geometry to 
that of real PoSub-FS cells (Extended Data Fig. 5g), confirming similar 
distribution of tuning shapes.

To further quantify the relative contributions of ADN and local 
PoSub inputs to PoSub-FS cell tuning, we expanded the simulation 
to include the following two inputs: one with tuning curve widths 
corresponding to ADN-HD cells and one with tuning curve widths 
corresponding to PoSub-HD cells (Fig. 4h, left). We then trained the 
model using gradient descent to find the variances and means of input 
weights that result in the best fit between the simulated output and real 
data. The combination of parameters that best described the real data 
resulted in ADN inputs distributed in a near Gaussian-like manner but a 
heavy-tailed distribution of PoSub-HD inputs (Fig. 4h, middle). Using 
these distribution parameters, we performed simulations to deter-
mine the contribution of ADN-HD and PoSub-HD inputs to the output 
tuning curves and established that PoSub-FS cell-like outputs are best 
explained by flat, high firing rate inputs from ADN-HD cells and low 
firing rate, HD-modulated inputs from PoSub-HD cells (Fig. 4h, right).

Our simulations, complemented by direct analytical deriva-
tion (detailed in the Supplementary Methods), not only support the 
hypothesis that the symmetries observed in PoSub-FS cell tuning 
curves originate from local cortical circuits but also demonstrate 
that these symmetries emerge from strongly skewed distributions of 
synaptic weights.

PoSub-FS cells receive directionally uniform thalamic input
Thalamocortical neurons exert a strong excitatory drive onto FS cells 
in many cortical areas42,43, including in the ADN-PoSub circuit44. To 
determine whether upstream thalamic inputs shape PoSub-FS cell tun-
ing, we selectively manipulated the strength (or ‘gain’) of the thalamic 
input from ADN to PoSub and quantified the effect of this manipulation 
on the tuning of PoSub-FS cells. We reasoned that if each PoSub-FS cell 
receives nonuniform thalamic HD input, increasing input gain should 
result in nonuniform (multiplicative) modulation of their HD tuning. In 
contrast, if the thalamic input is uniform, PoSub-FS cell tuning should 
be uniformly (additively) modulated45.

The ADN is strongly innervated by inhibitory afferents from the 
thalamic reticular nucleus (TRN; Extended Data Fig. 6)46,47. We leveraged 
this specific inhibitory pathway to selectively increase the activity of 
ADN-HD cells. To that end, we injected a Cre-dependent AAV-ArchT into 
TRN of VGAT-Cre mice and recorded ensembles of anterior thalamic 
neurons (Extended Data Fig. 7a; n = 127 thalamic cells, including 52 
HD cells, from three mice). Targeted illumination of ADN (inactivating 
the inhibitory presynaptic terminals of the TRN neurons) resulted in 
a net increase of the firing rates of ADN-HD cells but not of untuned 
neurons (non-HD cells) recorded in the same sessions (Extended Data 
Fig. 7b,c), further confirming preferential TRN innervation of ADN over 
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other anterior thalamic nuclei (Extended Data Fig. 6a,b). Contrary to 
long-term disinhibition47, short-term disinhibition of ADN-HD cells was 
not associated with broadening of their tuning curves (Extended Data 

Fig. 7d). This manipulation therefore selectively increased the gain of 
the thalamic HD signal without affecting its granularity. We thus used 
this method to characterize the effects of thalamic gain modulation 
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on the HD tuning of PoSub neurons. We recorded ensembles of PoSub 
neurons in VGAT-Cre mice injected with AAV-ArchT (n = 83 PoSub-HD 
cells, 47 PoSub-FS cells from five mice) or a control viral vector (n = 89 
PoSub-HD cells, 38 PoSub-FS cells from three mice; Fig. 5a) bilater-
ally into TRN. Similarly to the upstream ADN-HD cells, PoSub-HD and 
PoSub-FS cells increased their firing rates (Fig. 5b and Extended Data 
Fig. 7e,f) while preserving their HD tuning (Extended Data Fig. 7g–j).

We then computed, for each cell, linear regression between HD tun-
ing curves in the baseline condition and under high thalamic gain (that 
is ADN disinhibition). The slope of the linear fit denotes multiplicative 
modulation of tuning by thalamic gain, whereas the intercept denotes 
additive modulation45 (Fig. 5c). Thus, a slope above 1 indicates the pres-
ence of multiplicative gain and a positive intercept indicates the pres-
ence of additive gain. We then assessed the contribution of these additive 
and multiplicative factors to the tuning modulation of PoSub-HD and 
PoSub-FS cells. The modulation of PoSub-HD cells was purely multipli-
cative (Fig. 5d,e and Extended Data Fig. 8a), indicating that they receive 
HD-specific thalamic inputs. Indeed, this high degree of multiplicative 
modulation largely reflected the modulation of the upstream ADN-HD 
cells (Extended Data Fig. 8e,f). In contrast, modulation of PoSub-FS 
cell tuning was exclusively additive (Fig. 5d,e and Extended Data  
Fig. 8b). Notably, while uncertainty in tuning curve estimation affects 
the ability to detect multiplicative gain via linear regression, simulations 
of gain modulation in the presence of noise point to sufficient detection 
threshold in our paradigm (Extended Data Fig. 8c,d). Thus, our results 
indicate that the thalamic inputs received by individual PoSub-FS cells 
are uniform across all directions (Extended Data Fig. 8g).

PoSub-FS cells are coupled to the PoSub-HD ring manifold
Finally, to exclude the possibility that the tuning of PoSub-FS cells 
is determined by external factors, we sought to establish whether  

their activity is coupled to the internal attractor dynamics in PoSub in 
the absence of sensory input. The HD signal in the ADN-PoSub path-
way is coherently organized into a one-dimensional (1D) ring attrac-
tor even during sleep, when sensory inputs are virtually absent34,48. 
We thus tested whether the tuning of PoSub-FS cells relies on the 
intrinsic dynamics of the HD cell attractor network during sleep. To 
address this question, we analyzed ensemble activity during rapid 
eye movement (REM) sleep, the sleep stage in which coordination 
of PoSub-HD cells is virtually indistinguishable from wakefulness34 
(Extended Data Fig. 9a,b).

We first sought to establish whether the temporal coupling 
between individual PoSub-FS and PoSub-HD cells was preserved dur-
ing REM sleep. To account for the coupling to the population firing rate 
irrespective of any specific tuning, we quantified the pairwise coupling 
between PoSub cells using a general linear model (GLM)49. Although 
both PoSub-HD and PoSub-FS cells showed strong coupling to the 
population activity (Extended Data Fig. 9c), we found that the polarity 
of the GLM cross-coupling coefficient between PoSub-HD cell pairs was 
preserved across wakefulness (WAKE) and REM sleep (Fig. 6a–c, top). 
For example, PoSub-HD cell pairs co-active during wakefulness showed 
a high degree of co-activity during REM sleep, while those that were 
negatively coupled during WAKE were also negatively coupled during 
REM. Similarly, PoSub-FS cell pairs also preserved their coupling across 
WAKE and REM, albeit to a smaller degree than PoSub-HD cell pairs  
(Fig. 6a–c, middle). Notably, the coupling of the two cell populations 
to each other was also preserved across WAKE and REM (Fig. 6a–c, 
bottom). Predictably, the polarity of the cross-coupling coefficient 
depended on the HD tuning relationship within each cell pair during 
both WAKE and REM (Extended Data Fig. 9d). Overall, these results 
indicate that the activity of PoSub-FS cells is coupled to the internal 
attractor dynamics of the HD system.
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While stable correlation structures among cell pairs constitute 
strong evidence for coupling of PoSub-FS cells to the HD attractor 
network, large-scale population recordings enable a more direct visu-
alization and analysis of the 1D ring attractor manifold that constrains 
the activity of individual HD cells. We thus asked whether the activity 
of PoSub-FS cells is constrained by the same ring attractor manifold 
as that of PoSub-HD cells. To that end, we applied Isomap39 to HD cell 
population vectors to visualize the 1D ring manifold of PoSub-HD 
cell population activity during WAKE48,50 (Fig. 7a and Extended Data 
Fig. 10a,b). We first confirmed that the internal representation of the 
animal’s current HD during WAKE can be decoded in an unsupervised 
manner from the manifold as the angular coordinate (virtual HD) of 
each HD cell population vector on the ring. The HD tuning curves of 
both PoSub-HD and PoSub-FS cells computed using virtual HD values 
during WAKE were equivalent to those computed using real HD values 
(Fig. 7b and Extended Data Fig. 10e). During REM sleep, the HD system 
disengages from the outside world while at the same time representing 
an internally generated, drifting virtual HD34,48. We thus applied Isomap 
to REM PoSub-HD population vectors and computed the correspond-
ing virtual HD (Fig. 7c and Extended Data Fig. 10c,d). As expected, HD 
tuning curves of PoSub-HD cells generated internally from the animal’s 

virtual HD during REM were similar to their WAKE counterparts (Fig. 7d 
and Extended Data Fig. 10f). Notably, HD tuning of PoSub-FS cells could 
also be accurately estimated during REM based solely on the virtual HD 
obtained from the HD ring attractor manifold (Fig. 7d). Taken together, 
these results indicate that the tuning of PoSub-FS cells is restricted by 
the topology of the HD ring attractor and is largely independent of 
external inputs.

Discussion
In summary, our results establish that PoSub-FS cells share many encod-
ing properties with canonical HD cells—their tuning is stable over time 
and across environments and is anchored to distal landmarks. Remark-
ably, they often show peaks in their HD tuning curves at intervals cor-
responding to various radial symmetries, either onefold, twofold or 
threefold. We further demonstrate the equivalence in the granularity 
of PoSub-FS and HD cell tuning curves, reflected in virtually identi-
cal tuning Fourier spectra of the respective populations. Finally, we 
found that this relationship is a local property of the network as the 
tuning of PoSub-FS cells does not depend on the upstream thalamic 
input from the ADN and is tightly coupled to the intrinsic dynamics of 
PoSub-HD cells. We predict that this functional relationship between 
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excitatory and inhibitory cell populations is a general feature of corti-
cal neuronal systems.

FS cells integrate and reflect the activity of anatomically proximal 
excitatory neurons22,25,33,51,52. This raises the possibility that despite 
apparently random connectivity, some PoSub-HD neurons may be 
organized in local assemblies representing radial symmetries. Previous 
studies have reported radial symmetries in HD tuning in the retros-
plenial cortex53 and in spatial tuning in the medial entorhinal cortex 
in the form of grid cells3, border54 and band cells55, as well as neurons 
modulated by environment boundaries56 and axis of travel57 in the 
subiculum. The retrosplenial cortex, medial entorhinal cortex and sub-
iculum are main output targets of the PoSub. Although HD cell activity 
in the ADN-PoSub network is crucial for grid cell activity in the medial 
entorhinal cortex58, it remains to be shown whether the organization of 

PoSub-HD cells into functional and symmetrical assemblies influences 
downstream spatial symmetries.

The relationship between excitatory and inhibitory tuning that we 
observed in the cortical HD system may constitute a general principle 
extending to other cortical systems. Thus, in the primary visual cortex, 
orientation- and direction-selectivity tuning of excitatory and inhibi-
tory cell populations may show similar equivalence in the Fourier space. 
What follows is that inhibitory cell tuning may display the same type 
of radial symmetries observed here but for orientation and direction. 
Similarly, we predict that in the medial entorhinal cortex, the Fourier 
signature of grid cell tuning should match the average Fourier signature 
of the FS cell population within the same module of similarly spaced 
grid cells. Moreover, FS cells could be tuned to the spatial frequencies 
of the underlying toroidal topology of grid cell population activity59.
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PoSub-FS cells (bottom; n = 427; Wilcoxon signed-rank test versus time-reversed 

control, z = 17.9). c, Isomap projection of HD cell population vectors during REM 
sleep from the same recording session. Green shading shows the REM epoch. 
Bottom-left, HD cell raster plot of a part of sleep epoch from a single recording 
session. HD cells are color-coded according to their preferred directions during 
WAKE. Right, Isomap projection of HD population vectors during REM and WAKE 
(subsampled). Distance of population vectors to the center of the manifold (d) 
is the same during WAKE and REM. Top-left, coordinate α represents virtual 
HD during REM. NREM sleep epochs were not analyzed. d, Left, examples of 
PoSub-HD and PoSub-FS cell tuning curves reconstructed during REM using 
the coordinate α, and corresponding cross-correlograms between WAKE and 
REM Isomap tuning curves. Dotted line shows the maximum correlation. Right, 
distributions of correlation values between WAKE and REM Isomap tuning curves 
of PoSub-HD cells (top; n = 1148; Wilcoxon signed-rank test versus time-reversed 
control, z = 29.2) and PoSub-FS cells (bottom; n = 317; Wilcoxon signed-rank test 
versus time-reversed control, z = 10.4). NREM, non-REM.
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Methods
Subjects
All procedures were approved by the Animal Care Committee of the 
Montreal Neurological Institute at McGill University in accordance 
with Canadian Council on Animal Care guidelines (protocol MNI-
7839). The subjects (n = 43 for electrophysiology and n = 6 for anat-
omy) were adult (>8 weeks old) male mice bred by crossing wild-type 
females on C57BL/6J background ( Jackson Laboratories, 000664) with 
either homozygous male VGAT-IRES-Cre mice ( Jackson Laboratories, 
028862; n = 38), PV-IRES-Cre mice ( Jackson Laboratories, 017320; 
n = 2) or SST-IRES-Cre mice ( Jackson Laboratories, 013044; n = 2). 
One additional mouse implanted with a Neuropixel probe (Fig. 1a–c)  
was a cross-bred C57BL/6J and FVB ( Jackson Laboratory, 001800). 
Mice were kept in standard conditions (room temperature and 50% 
humidity) on a 12-h light/12-h dark cycle and were housed in group 
cages (2–5 mice per cage) before electrode implantation surgery and 
individually afterwards.

Electrode implantation
Mice were implanted under isofluorane anesthesia. Silicon probes 
were mounted on in-house built movable microdrives and implanted 
through a small craniotomy. Probes were implanted either vertically 
above left PoSub (from Bregma: AP, −4.24 mm; ML, 2.05 mm; DV, 
−1.00 mm)60 or at a 26° angle pointing away from the midline into left 
pRSC (from Bregma: anterior-posterior (AP), −4.24 mm; medial-lateral 
(ML), 1.70 mm; dorsal-ventral (DV), −1.00 mm). A mesh wire cap was 
then built around the implanted microdrive and was reinforced with 
UV-cured adhesive. Mice were allowed to recover for at least 1 d before 
electrophysiological recordings.

Each mouse was implanted with one probe. The probes were either 
a Neuropixel 1.0 probe (384 active sites arranged in a dense checker-
board layout, that is two columns, 20 μm between each row), a single 
shank with 64 recording sites (H5; Cambridge NeuroTech) or four 
shanks with 8 recording sites each (Buzsaki32; NeuroNexus). In all 
experiments, both ground and reference wires were soldered to a single 
100 μm silver wire, which was then implanted above the cerebellum.

Behavioral procedures
Before the implant surgery, mice were habituated over several days 
to forage for small pieces of Honey Cheerios cereal (Nestle) in the 
open field. For most recordings, the recording chamber consisted of 
a metal frame (90 × 90 × 180 cm) supporting a plastic platform with 
removable walls (width, 80 cm; height, 50 cm) that could be arranged 
into either a square or triangular open field. Recordings of two mice 
implanted in ADN were conducted in a circular open field (diameter, 
85 cm; height, 50 cm). The recording protocol consisted of a sleep ses-
sion in the home cage, followed by open-field exploration in a square 
arena and another sleep session. A subset of animals then explored a 
triangular arena. A white rectangular cue card on one of the walls served 
as a salient landmark.

Recording procedures
During the recording sessions with 32- or 64-channel silicon probes, 
neurophysiological signals were acquired continuously at 20 kHz 
on a 256-channel RHD USB interface board (Intan Technologies) 
and captured with Intan RHX software (Intan Technologies). For the 
Neuropixel recording, neurophysiological signals were acquired 
continuously at 20 kHz on a control board (Native Instruments) and 
captured with SpikeGLX 3.0 (https://billkarsh.github.io/SpikeGLX/). 
The wide-band signal was downsampled to 1.25 kHz and used as a local 
field potential(LFP) signal. The recording cables were tethered to a 
motorized electrical rotary joint (AERJ; Doric Lenses). Ahead of the 
main recording session, the microdrive was lowered over several hours 
in small (35–70 μm) increments until the whole shank was positioned 
in PoSub or ADN. A short open-field session was then recorded to map 

the HD receptive fields of all neurons. For PoSub, the recording depth 
was adjusted so that sharply tuned HD cells (a hallmark of PoSub) were 
present along the whole length of the shank. Data collection did not 
commence until at least 2 h after the last depth adjustment. For animals 
implanted with single-shank linear probes, only one session per mouse 
was included in each analysis to prevent double-counting of cells. 
For animals implanted with four-shank Buzsaki32 probes, multiple 
sessions per mouse (obtained on separate days) were included in the 
analysis, ensuring that the probe was moved by at least 70 μm between 
the recording sessions.

Animal position and orientation were tracked in 3D using seven 
infrared cameras (Flex 13; Optitrack) placed above the enclosure and 
coupled to the Motive 2.0 motion capture system (Optitrack). Seven 
small tracking markers were attached to the headcap. Video record-
ing was captured by an overhead camera (Flex 13; Optitrack) placed 
close to the rotary joint. Animal position and head orientation were 
sampled at 100 Hz and were synchronized with the electrophysiologi-
cal recording via voltage pulses registered by the RHD USB interface 
board (Intan Technologies).

Optogenetic experiments
VGAT-IRES-Cre mice were injected with an adeno-associated virus vec-
tor (AAV 2/9 CAG-Flex-ArchT-EGFP or CAG-Flex-EGFP, titer: 4–5 × 1012 
genomic copies (GC) per ml; Neurophotonics) into TRN (from Bregma: 
AP, −0.70 mm; ML, 1.25 cm; DV, −3.25 cm) under isofluorane anesthesia 
either unilaterally for ADN recordings or bilaterally for PoSub record-
ings. Injections (300–400 nl per injection site) were done with a micro-
injector (Harvard Apparatus) through a small craniotomy, at the speed 
of 100 nl s−1. The needle was left in place for 2–5 min after injection.

At least 3 weeks after the injection surgery, optic fiber implants 
(Doric Lenses; MFC_200/240-0.22_25mm_SM3) were implanted unilat-
erally (left hemisphere, ADN recordings) or bilaterally (PoSub record-
ings) above ADN at a 20° angle from the sagittal plane (from Bregma: 
AP, −0.82 mm; ML, 1.00 cm; DV, −2.25 cm). Mice were then implanted 
with a microdrive-mounted Buzsaki32 probe above left ADN (Bregma: 
AP, −0.82 mm; ML, 0.85 cm; DV, −2.00 cm) or either Buzsaki32 probe 
(Neuronexus) or H5 probe (Cambridge Neurotech) above left PoSub, 
as described above.

Laser light was delivered from a 520 nm fiber-coupled laser diode 
module (Doric Lenses) controlled with a laser diode module driver 
(Doric Lenses). Light power output at the tip of the fiber implant was 
measured before each implantation and an output curve was calculated 
individually for each implant. Light output was then set to 14–16 mW 
before each recording session. For this subset of mice, the second sleep 
session was followed by a second exploration session in the open field, 
during which a laser stimulation protocol was delivered via patch cords 
attached to the optic fiber implants. After 5 min of exploration, light 
pulses (1 s) were delivered at 0.2 Hz in groups of 60 (5 min total), each 
followed by 5 min of no stimulation. Four such epochs were delivered 
in total, resulting in 240 light pulses over a 45-min recording session.

Cue rotation experiment
A subset of animals implanted into PoSub with linear probes under-
went a cue rotation experiment in a separate recording session. To this 
end, the frame of the recording chamber was fitted with black plastic 
insets that covered the floor (90 × 90 cm) and walls to obstruct any 
visual cues. Each of the four walls had an identical panel made of two 
light-emitting diode (LED) strips (yellow V-shape or blue X-shape) in 
the center. A small (diameter: 30 cm) elevated circular platform was 
placed in the center of the arena. Before each recording session, two 
adjacent LED panels were chosen as distal visual cues. The LED light 
intensity was titrated so that the panels were visible in the dark but 
provided minimal illumination of the surrounding area. The on/off 
cycle of the LED panels was controlled with an Arduino microcontroller. 
To reduce the specificity of olfactory and auditory cues, the whole 
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recording chamber was thoroughly cleaned with antibacterial wipes 
before the experiment and white noise was emitted from speakers 
placed underneath the chamber.

The recording protocol consisted of a 1-h sleep session in the home 
cage followed by a 75-min cue rotation session. At the start of the cue 
rotation session, a single LED cue was switched on, and the mouse was 
placed directly on the circular platform and was left undisturbed for 
the duration of the session. After 15–20 min of exploration with a stable 
cue, the cue rotation protocol was initiated. The protocol consisted of 
the illuminated cue switching back and forth between two adjacent 
walls every 200 s for a total of 16 rotations. Additionally, to habituate 
the mouse to the cue disappearing from its field of view, the cue was 
switched off for 0.1 s every 20 s. To encourage the mouse to explore 
the platform for the whole duration of the session, the experiment was 
conducted in the middle of the dark phase of the light cycle and the 
recording chamber was sprayed with a new odor (scented air freshener) 
right before the cue rotation session.

Tissue processing and probe recovery
Following the termination of the experiments, animals were deeply 
anesthetized and perfused transcardially first with 0.9% saline solution 
followed by 4% paraformaldehyde solution. The microdrive was then 
retracted to remove the probe from the brain. Brains were sectioned 
with a freezing microtome coronally in 40 μm slices. Sections were 
washed, counterstained with DAPI and Green Neurotrace and mounted 
on glass slides with ProlongGold fluorescence antifade medium. Sec-
tions containing probe tracts were additionally incubated with a Cy3 
anti-mouse secondary antibody (1:200 dilution; Cedarlane, 715-165-
150) to help visualize the electrode tract. Widefield fluorescence micro-
scope (Leica) was used to obtain images of sections and verify the tracks 
of silicon probe shanks, optic fiber position and virus expression.

Spike sorting and unit classification
Spike sorting was performed semi-automatically using Kilosort 2.0 
(ref. 61) followed by manual curation of the waveform clusters using 
the software Klusters62 or Phy63. At this stage, any cluster without a 
clear waveform and clear dip in the spike train auto-correlogram at the 
0–1 ms time bin was classified as noise and cluster pairs with similar 
waveforms and a clear dip in their spike train cross-correlograms at 
the 0–1 ms time bin were merged.

For PoSub recordings, viable units were first identified as units that 
(1) had an average firing rate of at least 0.5 Hz during open-field explora-
tion and (2) had a waveform with negative deflection (criterion aiming 
to exclude spikes from fibers of passage). Next, putative excitatory 
cells and putative FS interneurons were classified on the basis of their 
mean firing rate during open-field exploration and the through-to-peak 
duration of their average waveforms (Extended Data Fig. 2a). Putative 
FS interneurons were defined as cells with short trough-to-peak dura-
tion (<0.4 ms) and high mean firing rates (>10 Hz). Conversely, cells 
with long trough-to-peak (>0.4 ms) and low mean firing rates (<10 Hz) 
were classified as putative excitatory cells.

HD tuning curves and tuning metrics
The animal’s HD was calculated as the horizontal orientation (yaw) of a 
polygon constructed in Optitrack tracking software by connecting the 
three-dimensional coordinates of all tracking markers on the animal’s 
headcap. The yaw of the polygon was measured in the global coordi-
nates (that is, the axes of the environment, not the axes of the polygon), 
and these were constant across the whole study. HD tuning curves were 
then computed as the ratio between histograms of spike count and total 
time spent in each direction in bins of 1° and smoothed with a Gaussian 
kernel of 3° s.d. Tuning curves were computed from epochs when the 
animal’s speed exceeded 2 cm s−1 for all analyses except cue rotation 
and optogenetic experiments, where epoch duration (200 and 240 s, 
respectively) was too short to allow for further refinement.

To prevent any bias in HD cell population due to assumptions 
about the unipolar shape of HD cell tuning curves, we chose to define 
HD cells based on HD information contained in the tuning curves64, 
calculated for n angular bins as:

I = ∑
i=1.n

λ(Θi)log2 (
λ(Θi)
λ )p(ϴi)

where λ(Θi) is the firing rate of the cell for the ith angular bin, λ is the 
average firing rate of the neuron during exploration and p(Θi) is the 
occupancy (that is, normalized time spent) in direction Θi. This infor-
mation rate (measured in bit s−1) was normalized by the cell’s average 
firing rate to provide an information content (measured in bit spike-1) 
independent of firing rate.

For each cell, we obtained the control tuning curve using a 
time-reversed HD angle—a method that preserves the dynamics of 
both the spike train and the HD angle but decouples the two from each 
other. We computed the time-reversed HD angle by reversing the order 
of HD angle values with respect to their timestamps within a particular 
epoch. We then classified HD cells as those with HD information scores 
higher than the 99th percentile of the null distribution (>0.2 bits per 
spike, 85% of putative excitatory cells). We did not apply any HD infor-
mation threshold to PoSub-FS cells.

Cross-validated HD tuning curve auto-correlograms and 
cross-correlograms
We obtained HD tuning curve auto-correlogram and cross-correlogram 
by computing Pearson’s correlation coefficients between the reference 
tuning curve vector and the second tuning curve vector (from either 
the same or another cell), which was circularly shifted by 0–359 bins. To 
minimize the effect of non-HD factors on tuning curves computed from 
the same epoch, we used a cross-validation procedure whereby the 
two tuning curves were computed from separate halves of the epoch.

When computing HD tuning curves during the exploration of 
the triangular open field, we noticed that sometimes the cells’ recep-
tive fields were rotated with respect to the prior square open-field 
exploration. To correct for this, we first calculated for each HD cell 
the degree of tuning curve rotation between the two environments 
via cross-correlation. We then used the average rotation per recording 
session to circularly shift all triangular open-field tuning curves in the 
opposite direction by the equivalent amount. This allowed us to com-
pute the true tuning curve correlation between the two environments.

Detection of monosynaptic connections
Spike train cross-correlograms of ±50 ms binned in 0.2-ms windows 
were convolved with a Gaussian kernel of 4 ms s.d, resulting in a pre-
dictor of the baseline rate. At each time bin, the 99th percentile of the 
cumulative Poisson distribution (at the predicted rate) was used at the 
statistical threshold for significant detection of outliers from baseline. 
A putative connection was considered significant when at least two 
consecutive bins in the cross-correlograms passed the statistical test.

Analysis of HD cell realignment after cue rotation
To estimate the degree of realignment of the HD system following 
cue rotation, HD cell spike times were binned into population vectors 
(50 ms window, smoothed in 100 ms s.d. Gaussian windows). Based 
on cells’ tuning curves from the baseline period of exploration with 
a stable cue, the population vectors were converted into a Bayesian 
probabilistic map under the hypothesis that HD cells fire as a Poisson 
process. The instantaneous internal HDs were taken as the maxima 
of these probabilistic maps. These estimates faithfully tracked the 
head orientation of the mouse during the period preceding cue rota-
tion. The degree of realignment of the HD system was calculated as 
the decoder error—angular difference between the real HD and the 
decoded HD at each time bin. Because not all cue rotations resulted in 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01588-5

HD realignment, we excluded all cue rotation epochs that (1) resulted 
in less than 45° of mean decoder error in the following 200 s epoch and 
(2) occurred when the animal was stationary in the preceding epoch 
(average velocity <2 cm s−1).

To estimate the point at which the HD system remaps, we fitted 
a sigmoid curve to the decoder error values following each cue rota-
tion using the sigm_fit function (https://www.mathworks.com/mat-
labcentral/fileexchange/42641-sigm_fit). We defined the beginning 
and end of realignment epochs as the timestamps corresponding to 
the values of 0.01 and 0.99 of the normalized sigmoids. We then, for 
each cell, calculated an HD tuning curve for the remainder of each 
cue epoch (from the end of realignment to the next cue rotation) and 
computed the cross-correlation (see above) between HD tuning curves 
from consecutive epochs. For each cell, the degree of realignment was 
defined as the tuning curve offset that results in the highest correlation 
coefficient. The difference in realignment between FS and HD cells was 
defined as, for each FS cell, the angular difference between its degree of 
realignment and the average realignment of HD cells in the same epoch.

Classification of sleep states
Sleep scoring was performed using the automated SleepScoreMas-
ter algorithm and TheStateEditor software65,66 (Buzsaki Laboratory, 
https://github.com/buzsakilab). The wide-band signal was downsam-
pled to 1.25 kHz and used as the LFP signal. Electromyograph (EMG) 
was computed from correlated high-frequency noise across several 
channels of the linear probe. Recording sessions with less than 100 s of 
REM sleep detected (n = 6) were excluded from the analyses involving 
REM sleep because of low number of samples.

Pairwise spike–rate coupling
Quantification of pairwise spike–rate coupling between cells was quan-
tified using a GLM according to the method described in ref. 49. Spike 
trains were binned in 100 ms bins and smoothed in 100 ms s.d. Gaussian 
windows. The population firing rate was calculated by aggregating all 
spike times from all recorded units in a given recording and processing 
them in the same manner as single spike trains. Both binned trains were 
then restricted to either WAKE or REM epoch (see above).

The GLM was fitted using the MATLAB glmfit function. The binned 
spike train of cell A was modeled as a Poisson process, as a function 
of both the binned spike train of cell B and the binned population fir-
ing rate, using a log link function. The model produced a coefficient 
of coupling between the spike trains of cells A and B (‘β’), as well as 
a coefficient for the coupling of cell A to the population firing rate 
(‘βPOP’). The procedure was repeated by offsetting the spike train of 
cell A by ±10 s in 100 ms intervals, to yield the equivalent of the spike 
train cross-correlogram that discounts the coupling of cell A to the 
local population rate. Because this procedure, unlike Pearson’s cor-
relation, is not symmetric, it was repeated by swapping cell A and cell 
B and averaging the coupling coefficient values at equivalent offset 
intervals. A cell pair was removed from the analysis in rare cases when 
the glmfit function identified the model as ill-fitted or reached the 
iteration limit.

Visualization and analysis of the ring manifold
For the visualization of the HD manifold during WAKE, HD cell spike 
times from the whole epoch were binned into population vectors in 
200 ms bins, smoothed in 400 ms s.d. Gaussian windows and a square 
root of each value was taken. Then, nonlinear dimensionality reduc-
tion was performed using the Isometric Feature Mapping (Isomap) 
algorithm39 implemented in the MATLAB Toolbox for Dimensionality 
Reduction (version 0.8.1b, https://lvdmaaten.github.io/drtoolbox/). 
The parameters were set to 12 nearest neighbors and three dimen-
sions—the latter to inspect if there is no higher dimensional manifold 
in the data. Shuffled Isomap embeddings were computed by shifting 
each cell’s binned spike train in time by a random number of bins.

Internal HD at each time bin was then calculated as a four-quadrant 
arctangent of the first two Isomap dimensions (range: −180° to 180°). 
Notably, the ‘virtual HD’ generated this way has arbitrary directional-
ity (clockwise/counterclockwise) and an arbitrary point of origin. To 
align it, Isomap directionality was established by computing the Iso-
map error as the difference between real HD values and (1) virtual HD 
values and (2) additive inverse of virtual HD values, and selecting the 
directionality for which the distribution of angular differences between 
real and virtual HD had smaller circular variance. Internal HD tuning 
curves were then computed as the ratio between histograms of spike 
count and total time spent in each virtual HD bin (1°) and smoothed 
with a Gaussian kernel of 3° s.d. Real HD tuning curves were computed 
by downsampling the real HD into 200 ms bins and applying the same 
procedure as above. To correct for the arbitrary point of origin, HD tun-
ing curve cross-correlations (see above) were computed between the 
real and virtual HD tuning curve of each HD cell, and the mean offset of 
maximum correlation was then used to circularly shift all tuning curve 
vectors by the equivalent number of bins. Although this procedure (as 
well as Isomap mapping in general) was dependent on the real HD tun-
ing of HD cells, it was independent of FS cell tuning. Control HD tuning 
curves were computed by time-reversing the Isomap angle (see above).

For the comparison between Isomap HD tuning curves during 
WAKE and REM, population vectors across WAKE and REM were com-
puted in the same manner as above. WAKE population vectors were 
then randomly downsampled to equal in number to the REM popula-
tion vectors. Isomap algorithm was then run on both WAKE and REM 
population vectors together. Virtual HD was computed in the same way 
as above. HD tuning curves were computed in bins of 6° and smoothed 
with a Gaussian kernel of 6° s.d for both real and internal HD. Larger 
bin size was chosen due to sometimes uneven occupancy of virtual 
HD during REM.

Fourier analysis of HD tuning curves
To decompose tuning curves into Fourier series, we projected the tun-
ing curves onto a basis of sine and cosine functions whose frequencies 
were the harmonic of the unit circle, that is, from the fundamental 
frequency (period of 360°) to the highest possible frequency (2°, the 
inverse of the Nyquist frequency as tuning curves were computed in 1° 
bins). The power, or Fourier coefficient, at a particular frequency was 
defined as the root mean square of the projection values onto the sine 
and cosine basis at that frequency. Similarly, the phase was defined as 
the arctangent of the projections. The validity of the projection was 
verified by checking that the sum of squared Fourier coefficients is 
equal to the variance of the tuning curves (Parseval’s identity), which 
was indeed the case (Extended Data Fig. 3e). Because higher Fourier 
components likely represent noise fluctuations in the tuning curves, 
we focused our analysis on the relative power of the first ten Fourier 
components, normalizing their individual power values to the sum of 
their power.

Kullback–Leibler (KL) divergence was used as a measure to assess 
the similarity between the individual Fourier spectra and the popula-
tion means. While KL divergence is regularly used to compare probabil-
ity distributions, we deemed it appropriate to apply it to normalized 
Fourier spectra as they were mathematically indistinguishable from 
probability distributions. We thus computed the KL divergence 
between the spectrum of an individual neuron σi (k) (with kϵ[1.10] the 
angular frequencies) and the average Fourier spectrum of a population 
Si (k) as follows:

DKL(σi||S) = ∑
k=1.10

σi(k) log (
σi(k)
S(k) )

While KL divergence is not symmetrical, that is, KL divergence 
(DKL) (σi||S) does not equal DKL (S||σi), we always applied it in the same 
direction, that is, DKL (σi||S).
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To further validate our results, we repeated the analysis after 
applying a higher velocity threshold (10 cm s−1) as well as after the exclu-
sion of HD cells with multiple receptive fields or noisy unit clusters. 
To detect multipeaked cells, multipeak score was computed for each 
cell, defined as the mean firing rate of a normalized tuning curve at the 
angular values outside of its primary peak (±width of the curve from 
the angle of its maximum firing rate). To identify noisy unit clusters, 
for each cell, a spike train auto-correlogram was computed at ±100 ms 
(1 ms bins) and the cluster contamination score was defined as the ratio 
between the value at 0.1 ms and the highest value. Noisy clusters were 
defined as those with cluster contamination scores above 0.2 (11% of 
all cells in the dataset).

Isomap analysis of HD tuning curve auto-correlograms
Cross-validated auto-correlograms of each cell’s HD tuning curve were 
computed as described above. Then, nonlinear dimensionality reduc-
tion was performed using the Isomap algorithm39. The parameters 
were set to 12 nearest neighbors and two dimensions. When mapping 
the first three Fourier components onto the resulting embedding, we 
normalized their power to the total sum of their powers.

Anatomical tract tracing
VGAT-IRES-Cre mice were injected with an adeno-associated virus vec-
tor (AAV 2/9 CAG-Flex-EGFP, titer: 4 to 5 × 1012 GC per ml; Neurophoton-
ics; 500 μl per injection site) bilaterally into the TRN as described above. 
Four weeks after injections, animals were perfused transcradially with 
4% PFA in phosphate-buffered saline and their brains were then cut 
coronally in 40 μm sections with a freezing microtome. The sections 
were counterstained with blue NeuroTrace (Thermo Fisher Scientific; 
1:200 dilution) and mounted on slides with coronal z-stacks of the sec-
tions containing the rostral thalamus that were taken with a Leica SP-8 
confocal microscope at ×10 magnification, using the same settings for 
all sections. GFP signal was acquired using the 473 nm excitation laser 
line. Z-projections of each stack were then obtained using ImageJ (ver-
sion 1.52). Quantification of anterograde tracing was done in ImageJ. 
The images were converted to grayscale, and rectangular regions of 
interest (ROI) were defined within each thalamic nucleus. Average pixel 
intensity per ROI was then calculated using the ‘Measure’ function.

Gain modulation analysis: experiment
Epochs of optogenetic stimulation (light ON) consisted of time peri-
ods when the laser was switched on (240 pulses of 1-s duration, 240 s 
per session). Control epochs (light OFF) were defined as time periods 
in between light pulses (240 periods of 4-s duration, 960 s per session). 
Light ON and light OFF tuning curves were computed from these peri-
ods. For analysis of tuning curve width, HD tuning curves were then 
computed in bins of 1° and smoothed with a Gaussian kernel of 3° s.d.

For analysis of additive and multiplicative gain, to preserve the 
independence of individual angular bins, HD tuning curves were 
instead computed in bins of 6° with no Gaussian smoothing applied. 
Light ON (that is, high gain) and light OFF (that is, baseline) tuning 
curves for each cell were then normalized by dividing them by the 
maximum value of the baseline tuning curve. To calculate the additive 
and multiplicative factors for each cell, a linear fit between high gain 
and baseline tuning curve vectors was then obtained using the MATLAB 
polyfit function. The slope of the resulting linear fit and its Y intercept 
were then taken as multiplicative and additive factors, respectively.

Because estimation of gain factors is not possible for cells that are 
not gain-modulated and/or their baseline and high gain tuning curves 
are not significantly correlated, we excluded cells in the ArchT group 
that did not show statistically significant modulation by light and did 
not show a statistically significant correlation between baseline and 
high gain tuning curves. Significant modulation by light was computed 
by, for each cell, calculating the average firing rate during each baseline 
and each high gain epoch, and subsequently comparing the two sets of 

values with a Wilcoxon signed-rank test with a significance threshold 
of 0.05. Significance of the tuning curve correlation was determined 
by the Pearson correlation coefficient (significance threshold of 0.05). 
This led to the exclusion of 1 of 47 PoSub-FS cells and no cells from 
other populations.

Gain modulation analysis: simulations
The relationship between tuning curve correlations and additive/mul-
tiplicative factors was first explored in simple simulations involving 
monotonically increasing vectors (correlation coefficient (r) between 
vectors = 1). Noise was added separately to each vector by offsetting 
each point by a random value drawn from a Gaussian distribution. We 
varied the s.d. of the noise distribution to alter the value of the Pearson 
correlation coefficient between the two vectors. We then performed 
a linear regression between the two vectors using the MATLAB polyfit 
function and computed the additive and multiplicative factors as 
outlined above. The procedure was performed 1,000 times for each 
value of s.d. of the noise distribution. This enabled us to quantify how 
the apparent gain factor estimations change as a function of vector 
correlation.

On the basis of above simple simulations, it became apparent that 
our methods might have underestimated the amount of multiplicative 
gain in PoSub-FS cells. Consequently, we next sought to determine 
whether considerably low tuning curve correlations in the PoSub-FS 
cells preclude the detection of multiplicative gain via linear regres-
sion. To that end, we applied a method analogous to the one described 
above to real PoSub-FS cell tuning curves. We used the baseline tuning 
curves from the ArchT group and computed simulated high-gain tuning 
curves by applying Gaussian noise independently to each tuning curve 
until we obtained a similar distribution of tuning curve correlations 
to the one observed experimentally. We subsequently applied either 
multiplicative gain (multiplying each point on the tuning curve by 1.2) 
or additive gain (by adding 20% of the maximum tuning curve value to 
each point on the tuning curve) before applying Gaussian noise. These 
simulations allowed us to establish that multiplicative gain is indeed 
detectable in tuning curves with correlation values similar to those 
observed experimentally in PoSub-FS cells and that our experimental 
results in PoSub-FS cells are best explained by significant additive gain.

Model fitting and theory
First, we derived network parameters based on the statistics of 
observed PoSub-FS cell tuning curves. Specifically, we characterized 
the connectivity from ADN- and PoSub-HD cells to PoSub-FS cells using 
mean and s.d. of connection weights. To differentiate the contributions 
of ADN and PoSub inputs, we optimized these parameters. The goal was 
to closely replicate the firing rate statistics and Fourier tuning profiles 
of the PoSub-FS cells. The optimization process is governed by the 
following three constraints, formulated as a loss function minimized 
through a gradient descent procedure: (1) matching the firing rates 
between simulated and recorded PoSub-FS cells, (2) equating the 
variance of the firing rates and (3) ensuring similarity in tuning curve 
shapes by aligning the variances of the actual Fourier coefficients.

Next, we theoretically derived the asymptotic behavior of the 
proportion of simulated cells with a certain Fourier power. We showed 
that this proportion becomes independent of the weight mean and s.d. 
in the limit of low or high variance relative to the mean.

Finally, we aimed to determine the actual distribution of output 
neuron tuning curves. We show that tuning curves of randomly con-
nected linear neurons, with normally distributed weights W, are con-
strained to lie in the subspace spanned by the singular components 
of their input tuning curves. Furthermore, they are distributed in this 
subspace according to a multivariate normal distribution with diago-
nal covariance. As a result, Fourier components of an output tuning 
curve are independent of each other, as observed in the population 
of PoSub-FS cells.
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Supplementary Methods provide further details of the model fit-
ting procedure, the theoretical distribution of FS tuning curves and a 
generalization to other synaptic weight distributions.

Data analysis and statistics
Analyses presented in Fig. 2 and Extended Data Fig. 5 were conducted 
using software custom-written in Python 3.9.7 with the following librar-
ies: Scipy (version 1.7.3), Matplotlib (3.5.1), Numpy (1.20.3), Uncertain-
ties (3.1.17) and Hdf5storage (0.1.18). All other analyses were conducted 
using MATLAB R2020b (Mathworks) with TStoolbox 2.0 and Circular 
Statistics Toolbox version 1.21 (ref. 67). Statistical comparisons were 
performed with nonparametric tests (Mann–Whitney U test, Wilcoxon 
signed-rank test) or analysis of variance (ANOVA) with multiple com-
parisons, where applicable. For ANOVA, data distribution was assumed 
to be normal but this was not formally tested. All statistical tests were 
two-tailed. No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to those reported in previous 
publications34,48,49. Data collection and analysis were not performed 
blind to the conditions of the experiments. Data collection was not 
randomized as individual experiments were performed in sequence.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study can be found at: https://doi.org/10.6084/
m9.figshare.24921252.

Code availability
The code generated is available at the following address: https://doi.
org/10.6084/m9.figshare.24921252.
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Extended Data Fig. 1 | Vertical recordings, examples of probe trajectories, 
and examples of tuning curves. (a) Brain diagram showing the vertical 
positioning of the 64channel linear probe in PoSub in a subset of animals.  
(b,c) HD information of all putative excitatory cells (b) and putative FS cells (c) 
in a single vertical 64channel probe recording as well as the running average 
(solid lines). Representative HD tuning curves and spike waveforms correspond 
to filled circles. (d) Anti-mouse antibody-stained coronal sections depicting the 

probe tract for the Neuropixel (NPX) recording (top) as well as representative 
tracts for the angled (middle) and vertical recordings (bottom). Images on the 
right are magnified regions denoted with a dotted square on the left. Dashed line, 
position of the probe recording sites. (e) Tuning curves of all cells recorded in the 
example session depicted in Fig. 1d,e, arranged in anatomical order from the top 
to the bottom of the probe.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01588-5

Extended Data Fig. 2 | Cell types, synaptic connections, stability, and cue 
rotation. (a) Classification of PoSub units into putative excitatory and putative 
FS cells. Inset: distribution of trough-to-peak duration among recorded PoSub 
units. (b) Distribution of HD information carried by tuning curves of putative 
excitatory cells in PoSub (n = 1835; Wilcoxon signed rank test vs time-reversed 
control, z = 37.1). Purple shading, PoSub-HD cells. Dotted lines, medians.  
(c) Bimodal distribution of HD information among all recorded PoSub cells. 
(d) Distribution of modulation index of PoSub-FS cell tuning curves. Dotted 
line, median. (e) Median Bayesian decoding error as a function of the number 
of PoSub-FS cells used. Black dotted line, chance level; purple dashed line, 
median HD decoding error using PoSub-HD cells (average across all recording 
sessions). Pearson correlation; n = 32 recording sessions. (f) Distribution of 
putative synaptic connection latencies between PoSub-HD cells and PoSub-
FS cells. Dashed line, latency threshold. Inset: example spike-timing cross-
correlogram between a PoSub-HD and a PoSub-FS cell showing a putative 
synaptic connection. (g) Probability of a putative excitatory synaptic connection 

between a PoSub-HD and PoSub-FS cell as a function of linear distance on the 
electrode array. (h) PoSub-FS cell tuning curve correlation across two halves 
of the square arena epoch. Left, example tuning curves of a single PoSub-FS 
cell and their cross-correlation. Dotted lines, maximum correlation. Right, 
distribution of correlations (n = 427, Wilcoxon signed rank test vs time-reversed 
control, z = 17.8). Dotted lines, medians; dashed line, median of the PoSub-HD 
cell distribution. (i) Distribution of correlations between PoSub-HD cell tuning 
curves obtained from two halves of the square arena epoch (n = 1602; Wilcoxon 
signed rank test vs time-reversed control, z = 34.7). Dotted lines, medians.  
(j) Distribution of correlations between PoSub-HD cell tuning curves in square 
and triangle arenas (n = 1013; Wilcoxon signed rank test vs time-reversed 
control, z = 27.6). Dotted lines, medians. (k) Bayesian decoder error during 
a representative cue rotation session. Left, rotation of the cue by 90 degrees 
(blue bars) corresponds to the equivalent change in HD decoding error. Right, a 
single cue rotation epoch (denoted with a black arrowhead on the left). Red line, 
sigmoidal fit.
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Extended Data Fig. 3 | ADN-HD cells, anticipatory intervals, and additional 
analyses of Fourier signatures. (a) Bimodal distribution of HD information 
in the anterior thalamus. (b) Tuning curve slopes of ADN-HD cells (n = 97) and 
PoSub-HD cells (n = 97, randomly selected). (c) Distribution of anticipatory 
intervals of PoSub-HD and ADN-HD cells (Mann-Whitney U, n = (1602, 97), 
z = 13.6). Dotted lines, medians. Inset: HD information as a function of time 
lag. Shaded lines, mean +/− s.e.m. (d) PoSub-HD and ADN-HD cell tuning curve 
width as a function of time lag. Shaded lines, mean +/− s.e.m. (e) Relationship 
between the sum of Fourier components and tuning curve variance. (f) Average 
Fourier spectra of PoSub-FS, PoSub-HD and ADN-HD cells (individual mice). 
(g) Statistical distance between individual Fourier spectra and corresponding 
population averages (cell type, n = (427, 1602, 97 cells), F(2,2123) = 169, P = 5 × 10−69; 
Mann-Whitney U (Bonferroni correction): PoSub-FS vs PoSub-HD, z = 5.71; PoSub-
FS vs ADN-HD, z = 3.40; PoSub-HD vs ADN-HD, z = 0.45). Boxes, median and the 
interquartile range (IQR); whiskers, minimum/maximum values that are not 

outliers. Outliers (>1.5× IQR away from IQR), are not shown. (h) Average  
Fourier spectra of PoSub-FS cells in experimental conditions shown in Fig. 1  
(2-way ANOVA, Condition. Left: n = 427 cells, F(1,9) = 2 × 10−13, P = 1.00; middle: 
n = 264 cells, F(1,9) = 2 × 10−14, P = 1.00; right: n = 99 cells, F(1,9) = 6 × 10−14, P = 1.00.  
(i) Multipeak scores of example tuning curves. (j) Multipeak scores in PoSub-
HD and ADN-HD cells (Mann-Whitney U, n = (1602, 97), z = 4.25). Dotted lines, 
medians. (k) Statistical distance between individual PoSub-HD cell or ADN-HD 
cell Fourier spectra and the average Fourier spectrum of the PoSub-FS cells after 
exclusion of multi-peaked HD cells (left; Mann-Whitney U, n = (789, 69), z = 10.4), 
after exclusion of the noisiest unit clusters (middle; n = (1472, 83), z = 5.91), and 
with a higher velocity threshold (right; n = (1602, 97), z = 6.46). Dotted lines, 
medians. DKL, Kullback-Leibler divergence. (l) Circular correlation between 
phases of Fourier components; n = 1602 PoSub-HD, 97 ADN-HD and 427 PoSub-FS 
cells; ρcc, circular correlation coefficient.
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Extended Data Fig. 4 | Continuous distribution of the first three Fourier 
components across the population of PoSub-FS cells. (a) Left, average tuning 
curve auto-correlograms of PoSub-FS cells with the highest power in each of the 
first three Fourier components, n = (231, 141, 55). Note peaks in autocorrelograms 
at offsets corresponding to different radial symmetries. Shaded lines 
represent +/− s.e.m. Right, comparisons of the correlation values at the offsets 
corresponding to radial symmetries for 1-fold, 2-fold and 3-fold PoSub- 
FS cells with control (time-reversed) distributions (Wilcoxon signed rank test; 
n = (231, 141, 55). (b) Left, two-dimensional Isomap projection of time-reversed 
control PoSub-FS cell tuning curve auto-correlograms. Top right, mean relative 
power of the first three Fourier components as a function of the angular 
coordinate from the center of the Isomap projection shown in Fig. 2i. Bottom 
right, mean relative power of the first three Fourier components as a function of 
the angular coordinate from the center of the control Isomap projection shown 
on the left. Shaded lines represent +/− s.e.m. (c) Joint two-dimensional projection 

of PoSub-FS cell tuning curve autocorrelograms (gray points) and (left) PoSub-
HD cell or (right) ADN-HD cell auto-correlograms. Values for PoSub-FS cells 
are shown as individual points (gray) underneath the density distribution of 
HD cell values. Densities below 0.1 of the maximum value are not shown. Black 
crosses, centers of the PoSub-FS cell distribution. (d) Distribution of Euclidean 
distances between individual PoSub-HD or ADN-HD cells and the center of 
PoSub-FS distribution within the Isomap projections shown in c (n = (1602, 97), 
Mann-Whitney U, z = 4.26). Dotted lines, medians. (e) Two-dimensional Isomap 
projection of all PoSub-FS cell tuning curve auto-correlograms (gray points) with 
all PoSub-FS cells recorded in a single recording session (black circles). Points 
represent auto-correlograms of individual PoSub-FS cells, colored using the 
red-green-blue (RGB) color model mapped to the relative power of the first three 
Fourier components. The projection is surrounded by representative PoSub-FS 
cell tuning curves coming from a single recording session and the relative power 
of their first three Fourier components.
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Extended Data Fig. 5 | PoSub-FS-like tuning curves emerge from random 
connectivity in a linear regime. (a) Proportion of simulated cells with maximum 
power in the first three Fourier components as a function of dispersion of the 
input weight distribution. Left, normal distribution; right, uniform distribution. 
Dotted lines denote proportions of PoSub-FS cells observed in in vivo recordings. 
Shaded area of each curve, standard deviation (s.d.) based on 40 simulations. 
(b) Proportions of output units with the highest nth Fourier component across 
multiple simulations. Top, sampling from different sub-populations of the 
pool of input tuning curves. Bottom, sampling from the whole pool of input 
tuning curves with a random circular shift. (c) Quantification of variance across 
individual simulations shown in b. (d) Proportion of output units with the highest 

nth Fourier component as a function of connection sparsity (percentage of 
inputs shared between output units). (e) Mean and coefficient of variation (CV) 
of HD information of simulated output tuning curves as a function of dispersion 
of input weight distribution and input sparsity. (f) Difference in HD information 
distribution between PoSub-FS cell tuning curves and simulated output tuning 
curves as a function of dispersion of input weight distribution and input sparsity. 
DKL, Kullback-Leibler divergence. (g) Left, Isomap projection of simulated output 
tuning curve autocorrelograms. Right, mean relative power of the first three 
Fourier components as a function of the angular coordinate from the center of 
the Isomap projection shown on the left. Shaded lines represent +/− s.e.m.
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Extended Data Fig. 6 | ADN is densely innervated by inhibitory afferents 
from the TRN. (a,b), Anterograde tracing of projections from TRN to the rostral 
thalamus. (a) Left, brain diagram showing virus injection sites and sub-divisions 
of the rostral thalamic nuclei. Right, representative images of fluorescent  
signal in TRN and neighboring thalamic nuclei. Experiment was repeated  
4 times with similar results. (b) Left, TRN innervation density in rostral thalamic 
nuclei (n = 4 mice). Inset: density of TRN projections across sub-divisions of the 
rostral thalamus (repeated measures ANOVA, F(2,9) = 44.9, P < 10−4). Individual 
comparisons (Bonferroni correction) are displayed on the panel. Data are 

shown for individual mice. Right, individual rostral thalamic nuclei color-coded 
according to the TRN projection strength. ADN, anterodorsal nucleus; AV, 
anteroventral nucleus; AM, anteromedial nucleus; VA, ventral anterior nucleus; 
LD, laterodorsal nucleus; PT, paratenial nucleus; CM, centromedial nucleus; 
MD, mediodorsal nucleus; RE, nucleus reuniens; PV, paraventricular nucleus. 
(c) Retrograde tracing of projections from TRN to ADN. Top, coronal diagram 
showing the virus injection site. Bottom,representative image of fluorescent 
signal in ADN and anterodorsal TRN. Experiment was repeated 2 times with 
similar results.
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Extended Data Fig. 7 | Disinhibition of ADN-HD cells and comparison with 
other cell populations. (a) Brain diagram showing unilateral viral injection  
into anterior TRN and placement of probe and optic fiber above ADN.  
(b) Examples of ADN-HD cell and thalamic nonHD cell responses to optogenetic 
inactivation of TRN projections to ADN. Left, HD tuning curves during baseline 
and high gain epochs. Middle, average effect of the optogenetic manipulation 
on representative cells’ firing rates. Green shading, light pulse. Right, cross-
correlation between HD tuning curves from baseline and high gain epochs.  
(c) Firing rate modulation in ADN-HD and nonHD cells (n = (52, 75), Mann-Whitney 
U test between cell types, z = 6.57). Dotted lines, medians. (d) Width of individual 
ADN-HD cell tuning curves in baseline and high gain epochs (n = 52; Wilcoxon 
signed rank test, z = 0.67, P = 0.50). Horizontal lines, medians. (e) Temporal 

profile of ADN-HD, PoSub-HD and PoSub-FS cell responses to optogenetic ADN 
disinhibition. Only cells with average response above the median for a given 
population were included (n = 26, 41, 23). Shaded areas, +/− s.e.m. (f) Firing rate 
modulation in PoSub-HD cells (left; ArchT, n = 83; control: n = 89; Mann-Whitney 
U test vs control group, z = 1.69) and PoSub-FS cells (right; ArchT, n = 47; control: 
n = 38; Mann-Whitney U test vs control group, z = 4.99). Dotted lines, medians. 
(g,h) Tuning curve slopes of individual ADN-HD cells (n = 52) and PoSub-HD cells 
(n = 83) from baseline and high gain epochs. (i) Width of individual PoSub-HD cell 
tuning curves in baseline and high gain epochs (n = 52; Wilcoxon signed rank test, 
z = 0.30). Horizontal lines, medians. (j) Correlation between PoSub-FS cell tuning 
curves during baseline and high gain epochs (ArchT group, n = 47; control group: 
n = 38; Mann-Whitney U test, z = 1.14). Dotted lines, medians.
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Extended Data Fig. 8 | PoSub-HD cells exhibit only multiplicative gain, 
PoSub-FS cells only additive gain, and ADN-HD cells a mixture of both. 
(a) Left and middle, experimentally determined additive and multiplicative 
factors for PoSub-HD cells (n = (83, 89); additive factor: Mann-Whitney U test 
vs control group, z = 1.57; multiplicative factor: Mann-Whitney U test vs control 
group, z = 6.80). Dotted lines, medians. Right, relationship between additive 
and multiplicative factors. (b) Left, experimentally determined additive and 
multiplicative factors for PoSub-FS cells (n = (46, 38); additive factor: Mann-
Whitney U test vs control group, z = 4.16; multiplicative factor: Mann-Whitney 
U test vs control group, z = 0.36). Dotted lines, medians. Right, contributions 
of additive and multiplicative factors in PoSub-FS cells and distribution of 
correlations between unsmoothed baseline and high gain tuning curves 
(Mann-Whitney U test. ArchT vs control group, z = 0.46). (c) Relationship 
between correlation of simulated vectors and the apparent values of additive/
multiplicative factors. Top, relationship between correlation coefficient and the 
additive factor (left) or multiplicative factor (right). For low correlations additive 
and multiplicative factors are over-, and underestimated, respectively.  

Orange dotted lines, median correlation coefficient between experimentally 
determined baseline and high gain PoSub-FS cell tuning curves. Black dotted 
lines, expected magnitudes of additive/multiplicative factors. Shaded lines, 
+/− 1 s.d. from 1000 iterations. (d) Simulations of baseline and high gain tuning 
curves in noisy conditions. Noise levels were titrated to reflect the experimentally 
determined distribution of correlation coefficients. Top row, simulations with 
no gain. Middle row, simulations with multiplicative gain do not reflect the 
experimentally determined distributions. Bottom row, simulations with additive 
gain match the experimentally determined distributions. For description 
of individual panels, see b. Statistical comparisons with Mann-Whitney U 
test, n = (46, 38). (e) Left, examples of ADN-HD cells in baseline and high gain 
conditions and their respective tuning correlation plots. Red lines, linear fit. 
Right, comparison of multiplicative factors (Mann-Whitney U test, z = 0.55) and 
additive factors (Mann-Whitney U test, z = 5.07) in ADN-HD and PoSub-HD cell 
populations. Dotted lines, medians. (f) Values of additive and multiplicative 
factors in PoSub-HD and ADN-HD cells. (g) Diagram of the differential effect of 
thalamic HD input on PoSub-HD and PoSub-FS cell tuning.
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Extended Data Fig. 9 | Single unit spiking characteristics, population 
coupling, and coupling-tuning relationship during WAKE and REM.  
(a) Representative broadband local field potential (LFP) traces and PoSub-HD  
cell raster plots during WAKE and REM epochs. Gray areas indicate magnitude  
of LFP-derived electromyogram (EMG, see Methods). HD cells are sorted 
and color-coded according to their preferred direction during WAKE. (b) 
Relationship between firing rates during WAKE and REM epochs for PoSub-HD 

and PoSub-FS cells. Pearson correlation, n = (1284, 347). (c) Distributions of GLM 
cross-coupling coefficients of individual cells to the population firing rate (βPOP). 
(d) Relationship between HD tuning correlation and GLM pairwise coupling (β) 
for PoSub-HD:PoSub-FS and PoSub-FS:PoSub-FS cell pairs during WAKE and REM 
(Pearson correlation, n = 18992 PoSub-HD:PoSub-FS cell pairs, 2492 PoSub-
FS:PoSub-FS cell pairs).
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Extended Data Fig. 10 | Isomap projections during WAKE and REM and 
additional tuning curve examples. (a) Additional examples of Isomap 
projections of HD population vectors during WAKE from six recordings.  
(b) Distributions of distances from each point to the center of the manifold 
for all WAKE Isomap projections of real and shuffled HD population vectors, 
normalized to the mean distance of the real projections. Each curve represents 
one recording session. Inset: mean distance to the center of the manifold for 
real Isomap projections (n = 32 mice; Wilcoxon signed rank test vs control, 
z = 4.79). (c) Additional examples of Isomap projections of HD population vectors 
during WAKE and REM from six recordings (same as in a). Pearson correlation 
coefficients are depicted above each pair of tuning curves. (d) Distributions of 

distances to the center of the manifold for all REM and subsampled WAKE Isomap 
projections, normalized to the mean distance of the WAKE projections. Each 
curve represents one recording session. Inset: mean distance to the center of 
the manifold for REM and subsampled WAKE Isomap projections (n = 26 mice; 
Wilcoxon signed rank test, z = 0.17). (e) Real HD tuning curves (light shades) and 
WAKE Isomap HD tuning curves (dark shades) of all PoSub-HD and PoSub-FS cells 
from a single recording (same as in Fig. 6b). Pearson correlation coefficients are 
depicted above each pair of tuning curves. (f) WAKE (light shades) and REM  
(dark shades) Isomap tuning curves of all PoSub-HD and PoSub-FS cells from a 
single recording (same as in Fig. 6e).
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Sample size across cortical layers, angled implantation along cortical layers) was pooled, resulting in a large cohort of 32 mice and nearly 3000 single units. 

We did not observe any substantial differences in results across the two implant configurations. For mice implanted in the anterodorsal 

thalamic nucleus the total number of animals (n = 8) and number of single units (n = 228) due to the small size of this brain structure and the 

high targeting difficulty associated with it.  

 

Samples included all available cells that matched the classification criteria for the relevant cell type.  We reasoned that due to the high 

heterogeneity of tuning in PoSub-FS compared to HD cells it was critical to direct our resources to maximise the sample size of this cell group. 

The total number of FS cells in our dataset (n = 427) is high in comparison with other studies of cortical interneuron tuning. Since HD cells 

show much more homogenous tuning, we judge the sample size of 97 ADN-HD cells to be sufficient to quantify the tuning properties of these 

neurons. This sample size is comparable to, and often exceeds, those reported in other papers about ADN-HD cells.   

 

In optogenetic experiments, the responses cells to the optogenetic manipulation were relatively homogenous within each cell group, which in 

our opinion justifies the smaller sample size. 

Data exclusions For the main analysis, the only exclusion criterion was off-target implantation, as judged by absence of sharply-tuned HD cells and histological 

assessment. For the analysis of tuning stability across environments, only mice that underwent the additional exploration session in a 

triangular environment (n = 20) were included. For the cue rotation analysis, only the mice that underwent the cue rotation experiment and in 

which a substantial effect of cue rotation on receptive fields was observed were included (n = 6). Mice which underwent the cue rotation 

protocol but in which HD cells did not remap following cue rotation (n = 5) were excluded. All the above criteria were pre-established. 

 

For REM sleep analysis, only mice in which at least 2 minutes of REM sleep was recorded (n = 28) were included, and those with less than 2 

min of REM sleep (n = 6) were excluded. We observed that less than 2 min of REM sleep is not enough to reliably calculate the cross-

correlations between cell pairs or perform the manifold analysis. This criterion was not pre-established.  

 

For the purpose of comparison with simulated data (Extended Data Figure 5) HD information for the recorded population of FS cells was 

calculated after exclusion of two outliers (out of 427 cells). Both outliers had narrow waveforms and high firing rates consistent with putative 

FS cells, but their tuning curves were indistinguishable from canonical HD cells, which resulted in HD information scores orders of magnitude 

higher than other putative FS cells (see Figure 1f).

Replication For PoSub recordings, results from mice implanted vertically (n = 14) were reproduced in the next cohort of mice implanted parallel to cortical 

layers (n = 18).  All other experiments were conducted as single cohorts and replication was not attempted. 

Randomization Allocation of animals to either ADN or PoSub implant group was not random as these experiments were carried out in sequence and over a 

period of 3 years. For optogenetic experiments, animals were randomly allocated to either ArchT or control group. 

Blinding Experimenters were not blinded to the group allocation during data collection or analysis since group allocation was easily deducible due to 

different appearance of the probe implant, obvious differences in neural activity patterns between PoSub and ADN and strong effects of the 

optogenetic manipulation on neural activity. 
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Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Donkey anti-mouse secondary antibody for visualizing the probe tracts (Cy3, Cedarlane: 715-165-150, various batches)

Validation No primary antibodies were used

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals The subjects were adult (> 8 week old) male mice bred by crossing wild-type females on C57BL/6J background (Jackson laboratories 
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Laboratory animals 000664) with either homozygous male VGAT-IRES-Cre mice (Jackson laboratories 028862, n = 41) or PV-IRES-Cre mice (Jackson 

laboratories 017320, n = 3). An additional mouse (n = 1) implanted with a Neuropixel probe (Figure 1a-c) was a cross-bred C57BL/6J 

and FVB (Jackson laboratory 001800). 

Wild animals No wild animals were used

Reporting on sex All experiments were conducted on male mice. Only male mice were used because female mice are smaller in size and thus unable to 

comfortably carry the microdrive implants used in the study. 

Field-collected samples No field-collected samples were used

Ethics oversight All procedures were approved by the Animal Care Committee of the Montreal Neurological Institute at McGill University in 

accordance with Canadian Council on Animal Care guidelines. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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