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A precision functional atlas of personalized 
network topography and probabilities
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Óscar Miranda-Domínguez    1,2, Adam Pines3,4, Ally Dworetsky5,6,7, 
Gregory Conan1,8, Michael A. Mooney8,9,10,11, Anita Randolph1,2, Alice Graham8, 
Babatunde Adeyemo12, Eric Earl    13, Anders Perrone1, 
Cristian Morales Carrasco1,2, Johnny Uriarte-Lopez8, Kathy Snider8, 
Olivia Doyle    8, Michaela Cordova    14,15, Sanju Koirala1,16, Gracie J. Grimsrud1, 
Nora Byington1, Steven M. Nelson1,2, Caterina Gratton    6,7,17, 
Steven Petersen5,12,17,18,19, Sarah W. Feldstein Ewing20, Bonnie J. Nagel8, 
Nico U. F. Dosenbach    12, Theodore D. Satterthwaite    4,21 & Damien A. Fair    1,2,16

Although the general location of functional neural networks is similar 
across individuals, there is vast person-to-person topographic variability. 
To capture this, we implemented precision brain mapping functional 
magnetic resonance imaging methods to establish an open-source, 
method-flexible set of precision functional network atlases—the Masonic 
Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is 
an evolving resource comprising 53,273 individual-specific network maps, 
from more than 9,900 individuals, across ages and cohorts, including the 
Adolescent Brain Cognitive Development study, the Developmental Human 
Connectome Project and others. We also generated probabilistic network 
maps across multiple ages and integration zones (using a new overlapping 
mapping technique, Overlapping MultiNetwork Imaging). Using regions 
of high network invariance improved the reproducibility of executive 
function statistical maps in brain-wide associations compared to group 
average-based parcellations. Finally, we provide a potential use case for 
probabilistic maps for t ar ge ted n eu ro mo du la tion. The atlas is expandable 
to alternative datasets with an online interface encouraging the scientific 
community to explore and contribute to understanding the human brain 
function more precisely.

In recent decades, there have been several attempts to generate rep-
resentations that delineate homogenous functional brain areas into 
parcellations or networks for use in noninvasive neuroimaging1,2. 
These efforts have led to a series of structure- and function-based 
parcellations that investigators use for various types of brain-wide 
association studies (BWAS). These regional parcellations of network 
descriptions are often based on group-averaged data1,3–7. However, 
considerable interparticipant variability in network topography8,9 on 

the macroscopic scale10–12 might reduce BWAS power13,14 or the applica-
bility of these parcellations to assist in person-specific interventions15,16.

Until recently, limited investigations have attempted to clearly 
describe individual variation of network-level topographical organi-
zation. Although there is some degree of shared patterns of network 
organization among healthy populations, it is clear that large-scale 
brain networks show specific deviations from the group organiza-
tion that are stable11,17. Building on prior work using data-driven 
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various methods of network identification: Infomap (IM)9,31, template 
matching (TM)22,23, non-negative matrix factorization (NMF)8,32 and 
an original overlapping network method, Overlapping MultiNetwork 
Imaging (OMNI) mapping, to generate individual-specific network 
mappings, along with a population network probability atlas from 
resting-state fMRI (rs-fMRI) data from the ABCD study. The original 
overlapping network technique supports evidence that certain net-
works, in particular the default mode33, may have regions with sub-
systems34,35. The highly reproducible probabilistic atlases enable the 
derivation of ROI sets that reflect the variation of brain topography 
of individuals.

Our resource introduces the MIDB Precision Brain Atlas featuring 
individual-specific networks, population probabilistic maps, individ-
ual integrative zones and population integrative zones. We encourage 
contributions of personalized networks and probabilistic maps to the 
MIDB Precision Brain Atlas. Alongside ABCD probabilistic maps, we 
are sharing additional maps across additional ages from the HCP-D  
(The Lifespan Human Connectome Project Development) Project36 
and maps generated in Dworetsky et al.22 from a Washington University 
dataset37, a Dartmouth dataset5, the Midnight Scan Club (MSC) dataset9 
and the Human Connectome Project (HCP) dataset38. Notably, other 
groups have developed analogous network mapping techniques2,6,39,40, 
which require task-based, or multi-session resting-state data, which 
we hope to add to this resource in the future. The atlas includes a 
user-friendly downloader tool with adjustable thresholds for network 
assignments and functional integration zones (https://midbatlas.io/). 
As a resource for the scientific community, it will enable systematic 
exploration of network topography contributions to human cogni-
tion and behavior.

Results
While the MIDB Precision Brain Atlas currently contains multiple child 
and adult datasets (https://midbatlas.io/), as noted, here we focus on 
the ABCD cohort (Extended Data Table 1). This specific example dem-
onstrates the rationale for individual-specific topography, quantifies 
within-participant reliability and showcases the atlas’s utility.

ABCD cohort demographics
The ABCD data were divided into two large cohorts (discovery Cohort 
ABCD-1 (n = 5,786) and replication Cohort ABCD-2 (n = 5,786)) and one 
smaller test cohort (Cohort ABCD-3 (n = 300)), matched on multiple 
demographics (Extended Data Table 2; that is, the ABCD reproducible 
matched samples (ARMS) from the ABCD BIDS Community Collec-
tion (ABCC)13). From these initial groups, participants with at least 
10 min of low-motion data were chosen to test replication (group 1, 
n = 2,995 and group 2, n = 3111) based on a framewise displacement 
(FD) <0.2 mm, which retained similar proportional demographics 
to that of the full cohort (Extended Data Table 3 and Supplementary 
Fig. 1). Group 3 (n = 164 with available processed MRI data) was used 
to build the network templates for the TM procedure described below. 
Groups 1 and 2 were test groups used to validate the community detec-
tion methods.

Individual-specific mapping is robust across techniques
We first sought to establish that each method produces consistent 
within-participant networks by demonstrating that a given par-
ticipant is distinguishable from the group. Individual-specific net-
works were successfully mapped using the following methods: IM9,41, 
TM22,23 and NMF8,32. For all participants in groups 1 and 2, we created 
individual-specific network maps by generating dense connectiv-
ity matrices (91,282 × 91,282 grayordinates) from exactly 10 min of 
resting-state data randomly sampled from the full length of data below 
a FD threshold of 0.2 mm (Supplementary Fig. 3a; Methods). This 
allowed for direct participant-to-participant comparison despite dif-
ferences in movement characteristics within the MRI scanner between 

community detection to identify separable networks in the brain7,18,  
Laumann et al. precisely mapped the network structure in an individual, 
from whom they had collected more than 14 h of resting-state data11,19. 
This approach, termed Precision Functional Mapping (PFM), revealed 
that although individuals have broadly similar networks to those identi-
fied in group averages, specific aspects of the topographical organiza-
tion of these systems are highly unique.

PFM provides challenges for traditional data 
acquisitions
Precisely mapping an individual’s brain may require upwards of 
40–60 min of resting-state data9,11. However, the collection of 
40–60 min worth of data per participant is a burden to the partici-
pant and expensive for the investigative team and therefore creates 
limitations for widespread adoption. Extended collection of resting 
data creates additional obstacles for studies in childhood development 
and disease research, where a resting-state session is typically limited 
to shorter durations. For example, the Adolescent Brain Cognitive 
Development (ABCD) study (11,987 participants enrolled at baseline) 
was designed to determine biological and environmental factors that 
impact brain function by collecting resting-state and task functional 
magnetic resonance imaging (fMRI) data in participants representative 
of the United States population at of 9–10 years old and biennially for 
10 years20,21. Although ABCD will provide an impressive resource for 
describing individual variation in network organization over time, 
‘only’ 20 min of resting-state data are collected per participant, which 
may reduce the ability to maximize the precision of the individualized 
connectome across all participants. However, the shorter resting-state 
dataset is still valuable for precision mapping using new ‘supervised’ 
methods22,23 that create individual-specific networks that may only 
be marginally less precise. Furthermore, as task activity only adds a 
relatively small amount of variance to global resting-state brain organi-
zation24, the additional task fMRI data (40 min) per participant can be 
used to generate individual-specific networks using similar amounts 
of data as prior reports9,11. The combination of a relatively large sample 
from ABCD and relatively long blood-oxygen-level-dependent (BOLD) 
data collected from each participant provides the unique opportunity 
to provide individual network topographies and to produce a proba-
bilistic atlas of functional networks.

Probabilistic atlases are mostly relegated  
to structure
Historically, probabilistic atlases in neuroimaging have been struc-
tural, not functional. For example, the standard Montreal Neurological 
Institute (MNI) and other widely used brain atlases25–27 are derived from 
hundreds of magnetic resonance imaging (MRI) scans for image regis-
tration. These procedures often use probabilistic weights to attempt to 
delineate anatomical structures, such as the cortex25, amygdala28, basal 
ganglia29 and brainstem nuclei30. Probabilistic volumes for subcorti-
cal structures are also often associated with these atlases, providing 
probabilistic-based regions of interest (ROIs). Just as these methods 
have vastly improved standard structural registration and segmenta-
tion, functional probabilistic maps may also be leveraged to create 
individual-specific functional mappings in group-level studies that 
would normally lack sufficient amounts of data for individual-specific 
mapping. Moreover, these maps could enhance neuronavigation for 
targeted brain stimulation based on functional information rather than 
solely relying on anatomical landmarks, benefiting situations without 
resting-state data or access to community-detection techniques for 
precise brain mapping.

The MIDB Precision Brain Atlas provides 
personalized maps and derivatives
Building on recent reports using probabilistic mapping approaches to 
resting-state functional connectivity MRI22, we implement the following 
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participants. Identical matrices were used for each individual as inputs 
for both the IM and TM procedures (see below).

The IM algorithm uses information theory to map networks by 
modeling the flow between nodes. It implements a random walk strat-
egy using the connection weights to minimize the bits (using Huffman 
coding) necessary to identify each node’s (that is, grayordinate’s) net-
work. Each connectivity matrix was thresholded to discrete percentiles 
of connections (or edges), and then IM identified community structure 
at each threshold (Methods). Finally, we generated a consensus across 
the edge densities to (1) ensure that similar communities are identified 
among the groups; and (2) accurately assign distinct communities to 
larger networks and (3) provide brain coverage, as in previous work9.

The TM algorithm assigns each grayordinate to a network by com-
paring the whole-brain connectivity of the grayordinate to a series of 
network templates observed in the group5,22, a method developed by 
Gordon et al.23. Supplementary Fig. 3 shows the technique used to 
establish individual-specific networks using TM. Using group 3 par-
ticipants, templates were generated for each network. This was done 
by using network templates previously identified with IM with an aver-
age dense connectivity matrix from 120 adult participants9,11. We then 
conducted a seed-based correlation whereby the motion-censored 
(see below) resting-state data for each grayordinate are correlated with 
the average resting-state signal for the respective network. To perform 
TM, we used the network templates generated with group 3 to measure 
the extent to which the whole-brain connectivity of each grayordinate 
resembles the connectivity pattern of the template network for each 
participant in groups 1 and 2 (Supplementary Fig. 3a; using η2). Sup-
plementary Fig. 4 shows the network templates that were used, which 
correspond closely with networks that have been previously identified 
within the literature32,42. All of these individual-specific maps are avail-
able on the National Institute of Mental Health (NIMH) Data Archive 
(NDA) or ABCD’s future release platform via the ABCC13,43. Future dis-
tribution locations will be available and updated via the ABCC ‘Read 
the Docs’ (https://collection3165.readthedocs.io/).

Network mapping methods show high intraparticipant 
reliability
To establish that these methods can reliably generate individual-specific 
network maps using limited amounts of data (that is, 10 min of 
motion-free data), we used split-half reliability analysis to demonstrate 
that similar network maps are generated when using the first versus 
second half of a participant’s time series (Fig. 1). We conducted split-half 
reliability analyses for each method in ten participants from group 
1 who had the longest duration of low-motion quality data, exceed-
ing 20 min. To assess network reliability, we used normalized mutual 
information (NMI). We compared the topographic similarity of network 
maps generated within-participant (intraparticipant; first half of data 
versus second half of data) to network maps generated between differ-
ent participants (interparticipant). The distribution of the NMI between 
intraparticipant halves was compared against a null distribution of the 
NMI between interparticipant halves (Fig. 1b,c). For both TM and IM, 
intraparticipant NMI was significantly higher than interparticipant  
NMI (TM: t(9.31) = 11.87, P = 3.1079 × 10−7; IM: t(9.607) = 9.049, 
P = 2.6109 × 10−6; unequal variance assumed, one-tailed). Comparing 
methods, TM displayed significantly higher similarity both between 
halves of data from the same participant (mean NMI for TM = 0.421; 
IM = 0.370, t(18) = 2.951, P = 0.009) and different participants 
(t(358) = 16.0315, P = 5.60 × 10−44; equal variance assumed, two-tailed; 
Fig. 1b versus Fig. 1c (gold bars)). TM had a higher between-group simi-
larity compared to IM when we used group-averaged connectivity 
matrices (Supplementary Fig. 6). Overall, despite intraparticipant vari-
ability, these data highlight that networks generated by both methods 
are highly specific to each individual.

Personalized maps are reliable with less time using TM
We assessed the minimum low-motion resting-state data required to 
produce individual-specific network maps using MSC data9. Similar to 
ABCD, we performed split-half reliability analysis for networks gener-
ated by the TM procedure using interleaved concatenated sessions 
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Fig. 1 | Example of precision maps of ABCD participants using TM. a, Example 
of networks determined by the TM procedure for participants with at least 
20 min of low-motion resting-state data. Resting-state time series were split in 
half, and networks were obtained for each half (n = 10). Only the left hemisphere 
is shown for visualization purposes, but networks were also identified in the 

right hemisphere, subcortex and cerebellum. b, The NMI was calculated between 
participants’ own halves (gold bars) and others in the split-half group (gray 
bars) using TM. c, We also generated network maps using the IM procedure and 
performed an identical NMI comparison.
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(‘Data requirements for network specificity’). Individual-specific net-
works were generated from 1 to 20 randomly sampled noncontiguous 
minutes of low-motion data (ten times each) from one-half of each par-
ticipant’s data and compared to networks generated from the second 
half of data using NMI. We demonstrate that individual-specific maps 
produced by TM, even with relatively few minutes of low-motion data, 
reliably resemble the individual-specific network maps observed with 
10 min of low-motion data (Supplementary Fig. 5). It should be noted 
that randomly sampled data from longer-duration acquisitions likely 
improve reliability (increase in correlation up to 0.04) by reducing 
time-series autocorrelation11. While this split-half analysis was in adults, 
a parallel analysis in adolescents showed similar reliability, aligning 
with our prior NMF work (Supplementary Fig. 19)8,44.

Probabilistic maps are reliable within and across techniques
Next, we illustrated the extent to which each grayordinate partici-
pates in each network across both ABCD-group 1 and ABCD-group 2. 
Using the individual-specific mapping methods described above, we 
generated probabilistic maps in both ABCD-group 1 and ABCD-group 
2 to highlight replicable network probabilities between the groups. 
Individual-specific maps were generated for each participant within 
ABCD-group 1 and ABCD-group 2 (Supplementary Figs. 8 and 9), and 
then the probability of network observation was calculated for each 
grayordinate for each group separately (Fig. 2a,d). To test replica-
tion between groups (Fig. 2i,j) and methods (Fig. 2c,d), we correlated 
nonzero values of probabilistic maps. For example, the frontoparietal 
network (Fig. 2a,e) shows remarkable replicability (r = 0.9996; Fig. 2i) 
between groups, even with respect to functional asymmetries. Note 

how the frontoparietal representation in the dorsolateral prefrontal 
cortex (DLPFC) in the right hemisphere compared to the left is clearly 
present in both groups. These maps highlighted discrete cerebellar 
nuclei communicating extensively with the frontoparietal network 
(Fig. 2k), aligning spatially with previous observations45.

To confirm that the probabilistic network representations 
observed in Fig. 2a,e are not simply the product of the TM method, 
we used the same data to generate probabilistic maps using a robust 
community detection method for large-scale neuroimaging data, IM 
(Fig. 2b,f)9,11 and NMF (Fig. 2d,h)8,46. We compared methods by cor-
relating the probabilistic maps between IM and TM for ABCD-group 
1 (Fig. 2c) and ABCD-group 2 (Fig. 2g), respectively. Cross-method 
correlation analysis between NMF and other methods was not per-
formed due to the differing number of unique networks. Nevertheless,  
NMF probabilistic maps demonstrate very high correlation between 
groups (Fig. 2l; r = 0.9996, P < 0.0001; Supplementary Table 3).

Probabilistic network topography remains highly conserved 
across methods (albeit overall probability is slightly reduced in IM), 
suggesting that the supervised method produces nearly identical 
networks to an unsupervised approach (frontoparietal network 
(nonzero correlation)—group 1 (TM to IM): r(91282) = 0.951, P < 0.0001; 
group 2 (TM to IM): r(91282) = 0.954, P < 0.0001) even retaining the 
aforementioned asymmetries. Supplementary Table 1 provides the 
correlation between methods for the remaining networks (median 
between-method correlation: ABCD-group 1 = 0.937 and ABCD-group 
2 = 0.936). Visual comparisons for all networks are provided (Sup-
plementary Fig. 8). In addition, we generated probabilistic maps for 
each network, using 10 min of low-motion data from the cerebral 
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Fig. 2 | Example of network probability. a,b,d–f,h, An example of network 
probability for the frontoparietal network using TM (a,e), IM (b,f; surface only) 
and NMF (d,h; surface only) procedures with single network assignment.  
i,j,l, The between-group correlation for TM (i), IM (j) and NMF (l), respectively. 
c,g, The correlation between methods for ABCD-group 1 (c) and ABCD-group 2 
(g), respectively. For additional probability maps, see Supplementary Fig. 8.  

k, Network probabilistic map for the frontoparietal network within the cerebellum. 
White circles in a and b highlight similar probabilistic functional asymmetries in 
the SMA across methods. Each dot in c, g, i, j and l represents one grayordinate. 
Independent Pearson’s correlations were conducted between groups 1 and 2 for 
each network. The color in the scatterplot is the probability density estimate based 
on a normal kernel function. SMA, supplementary motor area.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01596-5

cortex only (that is, excluding subcortical nuclei and cerebellum; 
Supplementary Fig. 9).

To demonstrate the generalizability of probabilistic maps to a 
broader age range, we conducted an identical split-half comparison 
using a cohort of children 8–13 years old (half 1, n = 81 and half 2, n = 81) 
from the HCP dataset (Supplementary Fig. 17). Again, we demonstrate 
that the correlation between probabilistic maps between each group is 
high (average correlation = 0.9780 ± 0.008; Supplementary Table 6), 
and the similarity to the ABCD probabilistic maps was high (Supple-
mentary Table 7).

To assess the impact of including task data to generate probabilis-
tic maps, the same between-method comparison was performed using 
concatenated rest and task data instead of rest alone (Supplementary 
Fig. 10). Including task data provided up to an additional 40 min of data 
per participant. The decision to include task data in addition to rest 
was motivated by recent research that suggests that the proportion 
of variation in edges explained by individual features of connectivity 
was substantially higher than cognitive variation induced by tasks. In 
addition, measures of topography as opposed to topology are also less 
influenced by task-related activity24. We observed strong replication 
between groups (median between-method correlation: ABCD-group 
1 = 0.900 and ABCD-group 2 = 0.900), but crucially, the probability 
maps are nearly identical to networks generated from resting-state 
data alone, despite differing amounts of data used to generate the 
maps (Supplementary Figs. 8 versus 10 and Supplementary Table 4). 

Supplementary Fig. 10 shows the probability map for the network using 
TM with a single network assignment, similar to what was shown in 
Supplementary Fig. 9 except with task data included (Methods). This 
suggests that the contribution of task-induced, activation-related, 
hemodynamic responses does not appreciably affect global network 
topographic organization, as noted above and which others have pre-
viously proposed24,47.

Probabilistic based ROIs improve reliability in BWAS
Recent evidence suggests that connectivity-based BWAS show limited 
predictive power when using whole-brain associations with small sam-
ples14; therefore, we wanted to test if omitting network topographies 
that are highly variable would improve group reliability when we only 
used commonly observed network locations. Using the resting-state 
probabilistic maps, we generated a set of network labels to examine 
connectivity among brain regions that are highly homogenous across 
participants (Supplementary Fig. 3d). Figure 3 shows the regional net-
work composition and connectivity matrix across both ABCD groups 
at a 75% threshold (that is, a consensus network map for which at least 
75% of the participants were assigned to a respective network). Using 
these regions of high consensus (80 parcels; Fig. 3a), we produced a 
parcellated connectivity matrix for each participant. The strength of 
the within- and between-network connectivity for each cohort was cal-
culated using the MIDB probabilistic parcellation (Fig. 3c,d) versus the 
Gordon parcellation (Fig. 3e,f), one of the most widely used parcellation 
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a, MIDB probabilistic parcellation (75% probability of network consensus using 
the TM). b, Gordon parcellation. Parcels are colored according to network 
assignment. Similar colors were used between parcellations where possible.  
c–f, Connectivity matrices were generated using the MIDB probabilistic 
parcellation (c,d) and the Gordon parcellation (e,f) for ABCD-group 1 (c,e) 
(n = 2,995) and ABCD-group 2 (d,f) (n = 3,111). g, In total, 9 of 13 shared 
networks showed significantly higher within-network connectivity in the MIDB 
probabilistic parcellation compared to the Gordon parcellation. Open boxes 
represent Gordon parcellation; striped boxes represent MIDB probabilistic 
parcellation. T tests were conducted between methods using within-network 

connections using group average connectivity matrices (Aud, d.f. = 275; CO, 
d.f. = 844; DAN, d.f. = 522; DMN, d.f. = 896; FP, d.f. = 276; PMN, d.f. = 14; PON, 
d.f. = 32; Sal, d.f. = 19; SMd, d.f. = 716; Sml, d.f. = 32; Tpole/unlabeled, d.f. = 1079; 
VAN, d.f. = 252; Vis, d.f. = 745; the number of ROIs and therefore the number 
of degrees of freedom are identical for groups 1 and 2). *P < 0.05 (Benjamini–
Hochberg corrected, two-tailed). Boxplots show median and IQR (box size).  
The maximum and minimum whiskers represent Q3 + 1.5 × IQR and Q1 − 1.5 × IQR. 
IQR, interquartile range; CiO, cingulo opercular; CiP, cingulo parietal; Def, 
default; DoA, dorsal attention; FrP, frontoparietal; ReT, retrosplenial temporal; 
Sml, somatomotor lateral; SMm, somatomotor medial; VeA, ventral attention; 
Sub; subcortical; Non, no assignment.
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schemas in adults, children and adolescents14,48, which are based on a 
population average5,49. We observed a significant correlation between 
the average functional connectivity for each group (Fig. 3c–f; Pearson’s 
r (upper triangle)—TM: r(3.16 × 103) = 0.998, P = 0; Gordon parcellation: 
r(6.17 × 104) = 0.996, P = 0). Compared to Gordon parcellation based 
on group averages, the MIDB probabilistic parcellation set provides 
increased within-network connectivity strength between the two group 
matrices (Fig. 3g; average within-network connectivity—group 1, Gor-
don: 0.3421 ± 0.1467, TM: 0.5208 ± 0.149, t(24) = −3.0801, P = 0.0026; 
group 2, Gordon: 0.3421 ± 0.1467, TM: 0.5189 ± 0.149, t(24) = −3.0402, 
P = 0.0028). This increase in connectivity strength is likely due to only 
including regions with consistent network assignment across the popu-
lation, and therefore have inhomogeneous connectivity.

We examined the added reliability of probabilistic ROI sets in 
brain–behavior correlations. Conventional ROIs sets that apply the 
same network assignment to the parcellation schema to all individu-
als have the potential to dilute the effects that specific brain regions 
have on behavior. For a given region of interest, several networks 
may include a given region, and furthermore, the same location may 
belong to different networks in any given individual (Fig. 4a–c). Using 
Bayesian probabilistic principal components (PC) analysis50 to extract 
three cognitive traits from ARMS-1 and ARMS-2 reflecting general 
cognitive ability, executive function and working memory13,51, we 
examined subset reliability using either the Gordon or MIDB proba-
bilistic parcellation, sampling a random subset of group 1 partici-
pants. We correlated each element of the connectivity matrix from 
each subsample with each behavioral factor. We then correlated the 

brain–behavior correlations from each subsample in group 1 with the 
brain–behavior correlation using all group 2 participants to serve as 
the ‘ground truth’ (‘Brain–behavior associations using subset reli-
ability’). The MIDB probabilistic parcellation provided only a modest 
increase in reliability in general cognitive ability compared to using 
the Gordon ROIs at all sample sizes. However, for the components of 
learning/memory and executive function, we observed an increase in 
reliability (Fig. 4d–f; Cohen’s d with 1,250 participants: PC1 = 0.909, 
PC2 = 1.605 and PC3 = 1.865). A subset of 873 (PC1), 702 (PC2) and 675 
(PC3) participants using the MIDB probabilistic parcellation showed 
the same intergroup brain–behavior correlation observed with 1,250 
participants using Gordon parcellation (Fig. 4d–f). Furthermore, to 
control for the difference in the number of ROIs, we performed an 
intergroup correlation for each random subset using 80 randomly 
selected parcels from Gordon parcellation (orange circles), which 
showed even more robust findings. While these results do not reduce 
the necessity for large sample sizes in BWAS52,53, this offers increased 
reliability for targeted questions.

Revealing an overlapping network structure
Many connectivity studies assume that a given grayordinate (or voxel) 
participates in a single network. However, evidence suggests that 
some brain regions participate in multiple networks54 or demonstrate 
nested or hierarchical structures that can be better described when 
allowing communities to overlap55. For example, neurons that respond 
to multimodal stimuli likely participate in multiple networks56,57. The 
default mode in particular retains distinct subsystems that occupy 
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Fig. 4 | Neural networks have unique topographies that confound 
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belong to one of several potential networks. b, An example of ten individuals’ 
neural networks with the Gordon parcellation (top row) and HCP parcellation 
(bottom row) overlaid. Frontoparietal is shown as yellow. c, The frontoparietal 
probabilistic map indicates inhomogeneity in network topography among 
the population. d–f, Subset reliability analysis showing that using the MIDB 
probabilistic parcellation improves signal-to-noise in group-level predictions 

relative to the Gordon parcellation. Blue circles/lines indicate intergroup 
correlation for each random subset using the MIDB probabilistic parcellation. 
Red circles/lines indicate intergroup correlation for each random subset using 
the Gordon parcellation. Green circles/lines indicate intergroup correlation for 
each random subset using the integration zone parcellation. Orange circles/
lines indicate intergroup correlation for each random subset using 80 randomly 
selected parcels from Gordon parcellation. Data were fitted with an exponential 
rise-to-maximum equation. Please note red and orange fitted curves are nearly 
identical, which obscures visual discernment.
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shared cortical regions34,35. Our OMNI mapping extends the TM pro-
cedure, allowing networks to overlap (Fig. 5)58,59. Instead of using a 
‘winner-take-all’ labeling, we quantified the similarity of each grayor-
dinate’s BOLD signal to each template network by setting a data-driven 
threshold based on the observed local minima in the bimodal distribu-
tion of η2 values for each network (Fig. 5c,d). This technique reveals 
secondary and tertiary (and so forth) networks that communicate 
with a particular grayordinate that would otherwise be missed by only 
identifying the primary network. We further quantified the specific-
ity of the overlapping networks from OMNI mapping by comparing 
the resultant networks from the ten participants in the ABCD test 
cohort to each other by calculating the NMI between each split half  
(Supplementary Fig. 7). For each network, we observed similar regions 
of high probabilistic similarity between ABCD-group 1 and ABCD- 
group 2 for each of the networks measured (Fig. 6b–d and Supple-
mentary Fig. 11) using OMNI mapping.

Integration zones are revealed by overlapping networks
After generating the overlapping networks for an individual, we aver-
aged the number of networks observed at each grayordinate across the 
group to examine the extent to which networks overlap in the popula-
tion. Regions that demonstrate a high degree of overlap are thought 
to facilitate communication between networks59,60.

Split-half reliability was calculated in the same manner with the ten 
ABCD participants mentioned previously. Overlapping regions showed 
high reliability within individuals (average real NMI = 0.4847 ± 0.411 
s.d.; null NMI = 0.3287 ± 0.327 s.d., t(9.644) = 11.783, unequal vari-
ance, P = 4.84 × 10−7), which was overall greater than using a single 
network assignment. In addition, we quantified the number of networks 
detected at each grayordinate. Figure 7a demonstrates that, within a 
given participant, some integrative zones can even show 8–10 networks 
converge in regions such as the posterior parietal cortex, precuneus 
and posterior cerebellum, revealing a complex structure of internet-
work communication.

Furthermore, integration zones across the population are highly 
reliable. The number of networks detected at each grayordinates was 
calculated for ABCD-group 1 and ABCD-group 2 (Fig. 7c). We found 
that the integration zones across the population were highly reliable 
(r(91282) = 0.9994, P < 0.001). We observed that regions with the high-
est number of networks closely resembled the default mode network 
(DMN; Fig. 7), including regions such as the parieto-occipital junction, 
middle temporal gyrus, posterior cingulate cortex (PCC)/precuneus, 
hippocampus and the posterior aspect of the posterior cerebellum, 
consistent with prior work in adults47.

Integration zones yielded more reproducible executive function 
brain-wide associations compared to both the MIDB probabilistic 
and Gordon parcellations in our subset reliability analysis (Fig. 4d). 
To ensure that the improvement in reproducibility was not due to 
fewer ROIs in the integration zone parcellation, we performed a 
subset analysis on the Gordon parcellation, randomly sampling 
the same number of ROIs as integration zones. We found that the 
rise-to-maximum of the randomly sampled Gordon parcellation 
was nearly identical to the complete Gordon parcellation (Fig. 4 and 
Supplementary Table 6).

Probabilistic maps for brain stimulation as a use case
For investigators where a consistent measure of seed-based functional 
connectivity is used to guide neuromodulatory therapies, such as tran-
scranial magnetic stimulation (TMS), probabilistic functional maps 
provide a measurable means for targeting a network. Similar to findings 
discussed in refs. 16,61,62, we demonstrate that a seed placed within 
a region of high network probability (0.75 probability of frontopa-
rietal) within the DLPFC showed consistent anticorrelation with the 
subgenual cortex, both in the MSC and ABCD participants (Fig. 8a). 
However, when the seed was moved slightly outside of the region of 
high network consensus to a region with high network heterogeneity 
(0.35 probability), the correlation with the subgenual cortex was incon-
sistent (Fig. 8b). This suggests that the MIDB probabilistic parcellation 
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allows investigators to quantify the confidence of the spatial location 
of a network of interest and inform targets that could be used in future 
therapeutic brain stimulation, in situations where personalized net-
work maps are not available.

The MIDB Precision Brain Atlas
The MIDB Precision Brain Atlas includes an online tool (https://mid-
batlas.io) with publicly available personalized MRI maps, probabil-
istic maps and integration zones for various methods and datasets 
described here and elsewhere13. Data are provided in surface and vol-
ume where available. Finally, the resource allows for the inclusion of 
community-generated datasets as well.

Discussion
Investigations into brain function, especially in developmental stud-
ies, require confidence in structure- and function-based parcellations 
that consider the vast heterogeneity in functional topography from 
person to person. The MIDB Precision Brain Atlas provides an invaluable 
resource to explore the brain function for basic and clinical research 
that accounts for this individual variation in network topography.

The inaugural MIDB Precision Brain Atlas draws from various 
public datasets and includes over 9,950 participants from the ABCD 
and HCP studies, along with other prominent datasets. It also features 
associated probabilistic and integration zone maps, replicated for 
about 9,000 participants using concatenated tasks and rest data. The 
MIDB Precision Brain Atlas online repository allows users to customize 
ROI sets by adjusting the probability threshold. We encourage explor-
ing this collection of individual precision maps, probabilistic maps and 
integrative zones to understand how individual topographic variation 

influences traditional network mapping and population-wide network 
topology in complex behaviors.

Improving reliability in neuroimaging
Noise in BWAS includes sampling variability and random BOLD fluc-
tuations13,14. Large-scale datasets, as shown here, can offer a reason-
able personalized topography approximation but might show more 
variability than densely sampled cohorts like MSC. Ignoring individual 
topographies adds systematic noise to rs-fMRI, reducing effect sizes 
and power. Probabilistic map-derived ROIs exhibit higher reliability 
than group-averaged ones, likely by excluding voxels or grayordinates 
that demonstrate high network assignment variability across the 
population (for example, DLPFC and temporoparietal junction). The 
increased signal-to-noise ratio (SNR) provided by using the probabilistic 
ROI set allows for additional explanatory reliability when conduct-
ing BWAS (Fig. 4c–e). Accounting for individual-specific topography 
improves reliability with smaller sample sizes and has the potential 
to increase effect sizes for some investigations (but not all), therefore 
saving recruitment of potentially hundreds of fewer participants and 
hundreds of thousands of dollars in MRI scanning costs.

One way to leverage precision mapping in individuals to increase 
reliability for group studies is to create probabilistic network descrip-
tion region sets. The term ‘precision’ in neuroimaging has been used 
with many connotations9,10 and is often synonymous with collect-
ing hours of connectivity data when signifying reliable personal-
ized network topographies from functional connectivity data. As 
methods advance, we anticipate the time in the scanner required for 
precision mapping will reduce. Previous studies focused on inter-
individual network variability, particularly in connection strength  
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between networks8,48. For example, Miranda-Dominguez et al.48 have 
highlighted that the frontoparietal network has personalized network 
topologies. Sydnor and colleagues63 also showed that topological 
variability relates to complex behaviors. Although fewer publications 
have highlighted interindividual variability of topography, Dworetsky 
et al.22 and others23 have shown that network variability exists across 
individuals as well. In all of these cases, frontoparietal and transmodal 
systems exhibit increased variability relative to other unimodal sys-
tems, consistent with our findings here.

Probability maps have been used in the structural literature for 
years; however, there have been limited efforts to produce probabil-
istic atlases of functional networks, for example, Yeo and colleagues6 
used a silhouette measure when generating 7 and 17 network solution 
confidence maps, resembling our ABCD probabilistic maps, but with 
several notable spatial differences (Supplementary Fig. 18). Others 
have implemented a group-guided methodology to improve the detec-
tion of functional networks by component-based analysis32,42,64. These 
methods typically force participant-specific functional networks to 
have component weights that are similar to the group representa-
tions, which can dilute participant-specific differences in topography. 
Recent NMF methods decompose the time series into a set of additive 
parts-based spatial components, yielding a probabilistic parcellation 
that can be discretized for each participant based on maximal loading 
to produce individual-specific networks8,39. This approach contrasts 
with TM because we first generate a correlation matrix and then meas-
ure the spatial similarity of each grayordinate’s connectivity to a set 
of networks identified in a group average. By using an approach that 
leverages the spatial similarity of known networks, we can potentially 
capture participant-specific functional networks even if participants 
demonstrate atypical connection strengths seen in neurodevelop-
mental disorders65,66. This methodology is not without limitations, 

namely that although the functional connectivity of the template was 
generated from a group of adolescents, networks are initialized by 
adult group networks.

Network-specific probabilistic maps have some pros and cons
Structurally informed parcellations (for example, Desikan67,68, 
Destrieux69, Melbourne Children’s Regional Infant Brain70,71 and HCP 
atlas1) may not consistently reflect underlying functional network 
topography (Fig. 4b). One major limitation of these parcellations, as 
well as the Gordon parcellation (333 parcels within ten networks)5, is 
the assumption that a given parcel participates in the same network 
in all individuals (Fig. 4a). Individual-specific topography confounds 
this assumption about network assignments. Moreover, atlases that 
impose network assignments based on gyral-based neuroanatomy 
likely perpetuate the misconception that identical functions occur at 
identical locations across individuals, despite obvious interparticipant 
variation in both gyral anatomy and functional connectivity. Analyses 
that assume identical network assignments across individuals, based 
on structurally derived parcellations therefore introduce the follow-
ing two sources of noise: (1) noise from the misalignment of structural 
parcellation-to-functional network72 and (2) interparticipant network 
topographic variability, potentially necessitating larger sample size to 
detect effects reliability.

We found many brain regions that were highly variable in network 
assignment across the population, namely the DLPFC, and the inferior 
temporal lobe, regions that have been previously shown to be highly 
variable in network assignment22,23, and transmodal (as opposed to 
unimodal) in processing40,63. We also observed variation in network 
assignment in the PCC (a region well characterized as being part of 
the DMN47,73) when using single network assignments. Such a finding 
was illuminated by the integration zones, whereby multiple networks 
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overlapped, suggesting a more complex structure such as a hierarchi-
cal structure for networks may be responsible for the noted variation. 
It should also be noted that the ability to accurately identify either 
single network or overlapping networks depends on several factors, 
among which are SNR of the BOLD data74, resolution spatial/tempo-
ral resolution to reveal network structure75 and head motion criteria 
(Supplementary Fig. 13). Therefore we would expect that subcortical 
structures, such as the brainstem, would have comparatively worse 
network consistency relative to the cerebrum or cerebellum (Sup-
plementary Fig. 14).

By considering individual network topographies and/or focus-
ing on areas that are highly consistent across individuals, one may be 
able to improve power in large-scale studies by limiting the contribu-
tion of individual differences to support inferences about the group. 
The trade-off in the case of the probabilistic regional mappings is 
that the sparse brain coverage might obscure important information 
processing that occurs at these omitted variable locations. In predic-
tive analyses, the sparsity of the region set reduces the feature set for 
prediction; thus, while on the one hand, signals are more reliable rela-
tive to traditional region sets, on the other hand, although the unused 
regions might be less reliable, they could be crucial for maximizing 
prediction accuracy. Therefore, usage of the MIDB probabilistic ROIs 
may not suit all situations.

It should be noted that although reliability is improved when using 
the probabilistic parcellation compared to the Gordon parcellation 
(Fig. 4d–f), this improvement can only be achieved because each of 
these cognitive domains makes use of similar network features across 
the population. However, we want to highlight that the primary goal 
of this resource is to provide support for investigators to consider 
individual topographies when asking questions related to the neural 

architecture supporting learning/memory and executive functions as 
opposed to having specific hypotheses, per se. With that said, our prior 
work using NMF shows clear examples of how such information can 
assist with asking questions about how such information can inform 
cognitive phenomena8.

One important potential usage of probabilistic atlases relates to 
functional neuronavigation for targeted brain stimulation. Tradition-
ally, noninvasive brain stimulation, such as TMS, relied on anatomical 
coordinates or task-based fMRI activations for guidance, but recent 
advancements suggest better outcomes by considering personalized 
functional connectivity76. Recent advances in brain stimulation using 
TMS have shifted focus from anatomical brain landmarks to person-
alized fMRI or functional connectivity15,77 with the goal of increasing 
treatment efficacy15,16. For instance, targeting the DLPFC based on indi-
vidualized negative correlations with the subgenual cortex improved 
antidepressant response16,62. However, when neuroimaging data to 
generate individual maps are lacking or an MRI isn’t available, proba-
bilistic mapping offers a way to optimize targeting across a population.

Integration zones show hub-like properties
The MIDB Precision Brain Atlas also includes integration zones (IZ) 
from OMNI mapping that represent overlapping networks. We posit 
that these integration zones are functionally similar to network hubs59,78 
(that is, nodes that have a higher degree of connectedness) and likely 
have a crucial role in relaying information brain networks. Previous 
investigations79 quantified functional connectivity overlap ratio to 
examine the spatial extent to which each region belongs to a given 
network. Regions belonging to several networks (for example, pos-
terior parietal and posterior cingulate) closely match those that we 
identified (Fig. 7)47. These zones likely share core features central for 
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cognitive processes like attention and consciousness80, showing strong 
between-group reliability (Fig. 4d–f). This ROI set can offer insights 
into the mechanisms of information integration and relay and targeted 
brain stimulation81.

Others have examined connectivity between integration zones, or 
‘hubs’59,82, closely aligning with our integration zones47. Conventionally, 
connector hubs have been conceptualized as specific brain regions that 
enable network integration, derived from group averages59,83. However, 
it is important to note that despite the spatial variability across partici-
pants with respect to the number of overlapping brain networks, the 
location of integration zones was replicated in an independent group, 
suggesting that they are not an artifact of group averaging60, but are 
indeed a common feature of network interaction among the popula-
tion. Comparing BWAS maps between the randomly sampled Gordon 
parcellation to the integration zones reaffirmed higher reproducibility 
using integration zones, suggesting their role in the instantiation of 
complex behaviors (similar to ‘rich club’ areas)84,85. It should be noted 
that the ability to detect grayordinates that overlap with regard to net-
work assignments may be obscured by limited resolution (here 2.4 mm 
isovoxel). Such resolution, by nature, blurs independent neuronal sig-
nals (Supplementary Fig. 12) and might artificially lead to overlapping 
networks or hubs86. Nevertheless, regions with a high density of net-
works appear to be consistent in the population. Furthermore, neurons 
that reside at the internetwork boundary likely maintain the boundary 
through persistent internetwork communication87 (Supplementary 
Fig. 12). Thus, integration zones, while still requiring investigations 
of their origin, are likely important for the integration of information 
processing across systems.

Network maps are a snapshot of topography development
The ABCD study dataset provides a unique opportunity to explore 
neural networks longitudinally in a set of racially and ethnically diverse 
young participants, closely representative of the US population21. 
Using participants from the HCP-D dataset, we calculated probabil-
istic maps for 2-year age bins (8–9, 10–11, 12–13, 14–15, 16–17, 18–19, 
20–21 (Fig. 6a)). It should be noted that the comparisons of the MIDB 
probabilistic regions are against the Gordon parcellation, which was 
derived in a group of adults. We acknowledge that, despite the Gor-
don parcellation being used widely in the literature in children, the 
lack of child-based parcellation generated in a similar manner to the 
Gordon parcellation is a limitation. However, it has been widely shown 
that despite brain changes that occur during adolescence, area and 
network topography with the proper quality control and motion miti-
gation37,88 is largely stable at these age ranges89,90. Given this and that 
the majority of studies within the literature that define the function 
of these networks have been conducted in adults, the comparison 
to Gordon atlas, in this context, seems appropriate. Here we provide 
atlases across multiple ages. Our findings in adults largely replicate, 
highlighting stability across age ranges. We demonstrate the ROI sets 
generated from probabilistic maps generated from either adolescents 
from ABCD or adults from HCP-D (Fig. 3a versus Supplementary Fig. 15a) 
are nearly identical but also demonstrate nearly identical measures 
of within-network connectivity. Findings in adults largely replicate, 
highlighting stability across age ranges. We demonstrate the ROI sets 
generated from probabilistic maps generated from either adolescents 
from ABCD or adults from HCP-D (Fig. 3a versus Supplementary Fig. 15a) 
are nearly identical but also demonstrate nearly identical measures of 
within-network connectivity. To our knowledge, this is the earliest study 
to quantify network topography for a sample of this magnitude from 
adolescence into young adulthood. While we don’t anticipate large 
changes in network topographies from adolescence to adulthood, 
there could be refinements around borders8. Our resource includes 
various ages (Supplementary Fig. 15), not just ABCD adolescents, allow-
ing for capturing subtle changes over time in substance abuse, mental 
health91,92, neurocognition93, development and environment94,95 within 

the same cohort. As participants age, the MIDB Precision Brain Atlas 
will provide additional age-specific maps based on ABCD to accompany 
those provided for HCP-D.

MIDB open science framework
The MIDB Precision Brain Atlas is an evolving resource, and we invite 
the scientific community to contribute toward the additional char-
acterization of brain maps. Currently, it offers diverse network brain 
maps from datasets like ABCD year 1 (ref. 13), MSC9,22, HCP22,38, Yale 
Low-res22,96, Dartmouth Gordon5,22 parcellation and HCP-D36, with plans 
to integrate new individual-specific brain mapping techniques as they 
are developed. The MIDB Precision Brain Atlases will be an evolving 
repository of processing and analysis tools and parcellations that are 
overseen by community partners. All individual-specific maps for 
ABCD will be downloadable through the NDA (https://nda.nih.gov/) 
or newly associated platforms, which will be updated via the ABCC 
information page (https://collection3165.readthedocs.io/). All others 
will be downloadable through the website (per each dataset’s usage 
agreement). Investigators who wish to share individual-specific maps 
based on ABCD data can do so via the ABCC (NDA Collection 3165)13,43. 
Contributions to the MIDB Precision Brain Atlas will use the commu-
nity governance structure (https://bids.neuroimaging.io/governance.
html). Briefly, criteria include clear tool descriptions, BIDS format and 
de-identification. We hope that the thousands of network maps based 
on multiple validated methodologies and replicable population-level 
probabilistic topographies we are providing will serve as a new avenue 
of investigation into adolescent development. Furthermore, the high 
reliability observed from integration zones merits further investigation 
as an explanatory source of behavior. As a community-driven atlas, we 
hope that it fosters systematic studies on network topography and its 
impact on human cognition and behavior.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-024-01596-5.
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Methods
Participant information
Analysis of pre-existing neuroimaging data was approved by the Uni-
versity of Minnesota and Oregon Health and Science University Institu-
tional Review boards. Participants consented (or assented when below 
18 years old) at their respective collection sites for each study (ABCD21: 
https://abcdstudy.org and HCP-D study36,99: https://www.humancon-
nectome.org/study/hcp-lifespan-development/, MSC9: https://open-
neuro.org/datasets/ds000224/versions/1.0.4) and have agreed to have 
their anonymized data shared. Participants were recruited under the 
auspice of the ABCD study to follow brain development and health 
in a longitudinal manner from 9 to 10 years of age until adolescence. 
Written informed consent and assent were obtained from a parent or 
guardian and the child, respectively, to participate in the ABCD study. 
Behavioral analysis used previously collected behavioral measures 
including the NIH toolbox tasks, assessments of mental health using 
Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS) 
and surveys of substance use, culture and environment from baseline 
protocols (https://abcdstudy.org/scientists/protocols/).

ABCD-matched groups
Participants from ABCD were split into three demographically matched 
cohorts, the ARMS13,100. Groups were matched using site, age, sex, 
ethnicity, grade, highest level of parental education, handedness, 
combined family income and exposure to anesthesia. Full demographic 
information for all ABCD cohorts 1, 2 and 3 are described in Extended 
Data Table 1, with the exception of participants that were excluded. 
Of these cohorts, participants were excluded either because they 
were unable to be processed through the DCAN processing pipeline 
(https://github.com/DCAN-Labs/abcd-hcp-pipeline) described in 
Methods (typically due to poor image quality) or had fewer than 10 min 
of resting-state data postmotion correction.

A diagram showing which participants were used to generate 
probabilistic maps is shown in Supplementary Fig. 1. Brain mapping 
was performed for all participants with at least 10 min of resting-state 
data using all three brain mapping methods—IM, TM and NMF. We also 
used TM and IM separately on concatenated rest and task data using 
the same network templates used for rs-fMRI data.

MRI image acquisition
ABCD MRI images were collected from 11,572 participants across 21 sites 
across the United States of America (Children’s Hospital Los Angeles, 
University of Colorado Boulder, Florida International University, Lau-
reate Institute for Brain Research, Medical University of South Caro-
lina, Oregon Health and Science University, University of Rochester, 
SRI International, University of California Los Angeles, University of 
California San Diego, University of Florida, University of Maryland at 
Baltimore, University of Michigan, University of Minnesota, Univer-
sity of Pittsburgh Medical Center, University of Utah, University of 
Vermont, University of Wisconsin-Madison, Virginia Commonwealth 
University and Washington University in St. Louis)21. ABCD participants 
were aged approximately 9–10 years at the time of collection with ~50% 
female (see Extended Data Table 1 for additional details). The imaging 
component of the study was developed by the ABCD Data Analysis and 
Informatics Center and the ABCD Imaging Acquisition Workgroup. No 
statistical methods were used to predetermine sample sizes for this 
manuscript, but the ABCD study is the largest fMRI study conducted 
in the United States to date and is likely to be sufficiently powered to 
capture and analyze different patterns of substance use along with 
many other variables of interest20,101 and have been used by other stud-
ies to examine brain–behavior relationships14. Neuroimaging and 
behavioral data were collected in accordance with local institutional 
review boards at each institution.

Sequences were harmonized across Siemens, Philips and GE 3 
Tesla (3T) scanners. For further details regarding MRI acquisitions, see 

refs. 21,43. Briefly, participants underwent 25–45 min of prescan task 
compliance, localizer, 3D T1-weighted MRI (1 mm isotropic, TR = either 
2,500 or 6,100 ms, TE = 2–2.9 ms, 8o flip angle, 256 × 256 field of view 
(FOV)), diffusion-weighted images, 3D T2-weighted MRI (1 mm iso-
tropic, TR = 2,500 or 3,200 ms, TE = 60–565 ms, variable flip angle, 
256 × 256 FOV), 1–2 runs of rs-fMRI (2.4 mm isotropic, TR = 800 ms, 
TE = 30, variable flip angle = 52o, 216 × 216 FOV) and a randomized order 
of monetary incentive delay (MID), stop signal task (SST) and emotional 
n-back (EN-back) tasks.

Of the original 11,572 participants from the ABCD 2.0 release20, 
participants were divided into discovery (n = 5,786) and replication 
(n = 5,786) sets that were matched along the following ten variables: 
site location, age, sex, ethnicity, grade, highest level of parental edu-
cation, handedness, combined family income and exposure to anes-
thesia93 (Extended Data Table 1). All resting-state scans were acquired 
using a gradient-echo, echo-planar imaging sequence (TR = 800 ms, 
TE = 30 ms, flip angle = 90°, voxel size = 2.4 mm3, 60 slices). Head 
motion was monitored in real time using Framewise Integrated 
Real-time MRI Monitor (FIRMM) software at Siemens sites102. For 
resting-state scans, participants were instructed to lie still and fixate 
on a crosshair at the center of their visual field.

All functional MRIs were processed with the publicly avail-
able ABCD-BIDS pipeline (https://github.com/DCAN-Labs/
abcd-hcp-pipeline), which is a modified version of the HCP process-
ing pipelines13. Brain extraction was performed by PreFreesurfer 
after denoising and bias field correction of the anatomical T1- and/
or T2-weighted images. The DCAN-labs processing pipeline applies 
advanced normalization tools (ANTs) DenoiseImage to improve struc-
tural clarity and ANTs N4BiasFeildCorrection (ANTs)103,104 to reduce 
field bias93.

Resting-state time course processing
Signal regression. Time courses were corrected using DCAN- 
BOLDproc13. The method for signal regression has been previously 
described65. Briefly, resting-state time courses (using surface registra-
tion for cortex and volume registration for subcortical gray matter) 
were detrended and further processed105 using mean whole brain, ven-
tricle and white matter signal as well as displacement on the 6 degrees 
of freedom, rigid body registration, their derivatives and their squares 
by regression106,107. Finally, time courses were filtered using a first-order 
Butterworth band pass filter between 9 and 80 mHz backward and for-
ward using MATLAB’s filtfilt function (The MathWorks, v2016-2018x).

The BOLD fMRI volumetric data from the cerebral cortex were 
constrained to the cortical sheet for surface-based imaging108 and 
combined with volumetric midbrain and hindbrain time courses into 
a Connectivity Informatics Technology Initiative (CIFTI) format. Once 
BOLD data were mapped to the sheet, time courses were deformed and 
resampled to the original surface.

Head motion correction. Head movement in the scanner interferes 
with the ability to identify a grayordinate from one time point to the 
next, and the movement of a large electrically conductive tissue in a 
magnet introduces contaminating artifacts from eddy currents. To 
minimize these effects, we rigorously controlled for head motion by 
using an FD threshold of 0.2 mm and only using participants with at 
least 10 min of resting-state data postmotion correction. Movement 
was calculated by FD in mm using the formula FDi = ∣Δpix∣ + ∣Δpiy∣ + ∣
Δpiz∣ + ∣Δαi∣ + ∣Δβi∣ + ∣Δγi∣, where Δpix is the frame-to-frame change in 
the x position, p: Δpix = p(i−1)x − pix, and so forth for the other rigid body 
parameters (pix, piy, piz, αi, βi, γi)

109. Rotational displacements were con-
verted from degrees to millimeters by calculating displacement on 
the surface of a sphere with a 50 mm radius, which is approximately 
the mean distance from the cerebral cortex to the center of the head. 
Frames were removed if their total relative movement in any direc-
tion (FD) was greater than 0.2 mm relative to the previous frame or if 
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they were contained within a segment of five contiguous frames that 
violated the threshold.

For the remaining frames, the s.d. was calculated across all gray-
ordinates to remove potential artifacts. Frames that had outliers in the 
s.d. of the bold signal were removed using the median absolute devia-
tion method in MATLAB and Statistics Toolbox Release 2016b-2022b 
(The MathWorks). In time courses containing more than 10 min of 
resting-state data, frames were randomly sampled to generate cor-
relation matrices using exactly 10 min of fs-MRI data. Of the 11,572 
participants enrolled, 10,079 in groups 1 and 2 had usable structural 
and functional MRI collected, and of these based on our movement/
signal criteria, approximately 3,973 (~40%) children were excluded 
based on excessive movement in the scanner during resting-state 
scans, resulting in 2,995 (group 1) and 3,111 (group 2) participants. Dur-
ing task-based scans, we were able to retain many more usable frames 
at the FD criteria (group 1, n = 4,699 and group 2, n = 4732), excluding 
only 607 participants (6%).

IM community detection method. The community detection method 
using the graph theory-based algorithm IM has been previously 
described7,9. The same correlation matrices that were used in the TM 
processes were used to detect networks using IM. Briefly, vertices/
voxels within 30 mm of each other were set to zero in the matrix to 
avoid biasing network membership for nearby connections that had 
undergone spatial smoothing. The resulting correlation matrix was 
then thresholded at a range of density thresholds (0.3%, 0.4%, 0.5%, 1%, 
1.5%, 2.0%, 2.5% and 3.0%) and each one was used as an input for IM. For 
instances where IM was implemented on combined cortical and subcor-
tical data (data shown in Fig. 3c and the average group matrix shown in 
Supplementary Fig. 6), we extended the range of density thresholds to 
include 4% and 5%. IM calculates the network assignment based on an 
optimized code length using a flow-based method31,41. Networks that are 
computed in the group average are labeled based on similar patterns of 
activation observed in the scientific literature9,23. Small networks with 
400 or fewer grayordinates were defined as ‘unassigned’.

Networks identified in each individual were then labeled based 
on the Jaccard similarity index to a network observed in the group 
average; however, often individuals will retain new networks that are 
not observed in group averaging, and these remain unlabeled. The 
list of networks included is the DMN, the visual network (Vis), the 
frontal-parietal network (FPN), the dorsal attention network (DAN), 
the ventral attention network (VAN), the salience network (Sal), the 
cingulo-opercular network (CO), the sensorimotor dorsal network 
(SMd), the sensorimotor lateral network (SMl), the auditory network 
(Aud), the anterior medial temporal network, the posterior medial 
temporal network (post-MTL), parieto-occipital network (PON) and 
the parietal medial network (PMN)9,22. In each participant and in the 
average, a ‘consensus’ network assignment was determined across 
the various thresholds, by giving each node the assignment it had at 
the sparsest possible threshold at which it was successfully assigned 
to one of the known group networks (Supplementary Fig. 2). Contigu-
ous network clusters that were smaller than 30 grayordinates were 
removed and merged into neighboring networks, with the largest 
networks given priority.

Similar to how a letter in the United States can be addressed to 
a house with a two-level description state/province, then city, brain 
network organization can be described using a two-level system of 
networks and nodes, respectively. IM is a network-describing algorithm 
that tries to minimize the number of bits (using Huffman coding) 
necessary to describe the whole network31,110. For example, would 
it require fewer bits to describe the whole brain with few networks 
containing many nodes, or many networks with fewer nodes? IM uses 
a random walk algorithm that uses connection weights to determine 
the minimum descriptor code length necessary to describe the struc-
ture. Notably, while the solution provides modules, it is not designed 

to maximize modularity. As others have done previously9, we thresh-
olded the correlation matrix to the top x% of connections (or edges) 
because of the computational limitations of using a full set of 4.1 billion 
connections as descriptors in the map equation. We thresholded the 
connectivity matrix at a threshold of 0.3%, 0.4%, 0.5%, 1%, 1.5%, 2%, 2.5% 
and 3%. These thresholds were chosen to scale the number of edges in 
proportion to edge densities that have been used previously9.

To generate a consensus across multiple edge densities, we imple-
mented a methodology developed by Gordon et al. 9. Briefly, after IM 
detected communities for each participant, putative network assign-
ments were then assigned to each participant’s communities by match-
ing them at each threshold to the independent group networks from 
WashU (n = 120). To do this, for each individual, at each density thresh-
old, the spatial overlap of each unknown community was compared 
to each one of the independent group networks separately using the 
Jaccard similarity index. The unknown community was then assigned 
that network identity to which it had the highest Jaccard similarity 
index. If the Jaccard Index was less than 0.1, the community remained 
unassigned, so as to avoid assigning communities to known networks 
based on only a few vertices. Assignments were first made with the 
large, well-known networks (default, lateral visual, motor, frontopari-
etal, cingulo-opercular and dorsal attention) and then to the smaller, 
less well-known networks (ventral attention, salience, parietal memory, 
parieto-occipital, temporal pole, medial temporal). In each individual, 
a ‘consensus’ network assignment was created by giving each grayor-
dinate the assignment it had at the sparsest threshold at which it was 
successfully assigned to one of the canonical group networks.

TM method. Multiple versions of the time series were used depending 
on the analysis—either exactly 10 min of randomly sampled frames, 
all available frames below the FD threshold, or concatenated rest and 
task data in the following order: rest, MID, n-back and SST (provided 
that the participant had an available scan for the task). To generate 
the templates, IM community detection was performed at several 
tie densities (for full details of average networks, see refs. 9,23) on an 
average connectivity matrix (n = 120 participants) using a two-level 
solution. This yielded 14 networks that include the DMN, the Vis, the 
FPN, the DAN, the VAN, the Sal, the CO, the SMd, the SMl, the Aud, 
the temporal pole network (Tpole), the MTL, the PON and the PMN. 
Sensory and motor systems were combined due to the coupled nature 
of activation. Despite high reproducibility in resting-state functional 
connectivity, the extent to which these networks are activated on a 
neuronal time scale is unclear. However, recent work discussed in ref. 
58 suggests that the contribution of short-term dynamic changes (for 
example, from task-based states) to variation in brain organization is 
quite modest relative to resting-state organization.

A graphical description of the TM method is shown in Supplemen-
tary Fig. 3. Gordon et al. 9 generated single network assignments using 
IM on a group average dense connectivity matrix from a cohort of 210 
adults. The parcellation was used to anatomically define networks 
for each participant and create seed-based correlations for each net-
work in all participants in the template group (n = 164 ABCD-group 3 
participants). Seed-based correlation maps were averaged across the 
participants in the template group for each network separately (Sup-
plementary Fig. 3a). Each template was then thresholded to correla-
tion values >z score = 1 (~top 15.9% of connections). To perform TM in 
the group 3 participants, we first generated whole-brain connectivity 
matrices. Here we show an example of the whole-brain connectivity of a 
grayordinate within the PCC. We then thresholded the connectivity for 
each grayordinate in the same manner as the template and calculated 
an η2 value for each network. Each grayordinate is then assigned to 
the network based on the maximum η2 value (Supplementary Fig. 3b).

To generate an independent template, we conducted a seed-based 
correlation (using an average time series correlated to all the grayor-
dinates) for all networks. Seed-based correlations were generated 
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using the dense time series from each template participant that was 
smoothed with a within-frame spatial Gaussian smoothing kernel 
of 2.55 mm using each participant’s own mid-thickness surfaces 
(extracted from the Surf stage of Freesurfer). The resulting networks 
were converted to a dlabel CIFTI file and applied to the smooth dense 
series to generate an average time series for each network. We then cor-
related the time series of the seed with the time series of all other gray-
ordinates. The seed and remaining time series were motion-censored 
using an FD of 0.2 mm, and outliers in the BOLD signal were removed 
using the median absolute deviation in the remaining frames using the 
motion-censoring method outlined above.

Seed-based correlation values were averaged across all the par-
ticipants in the template group (n = 164, 9–10-year-olds), resulting 
in a vector (91,282 × 1) of average correlation values for each network 
correlated with each grayordinate. Each network vector was averaged 
independently across participants in the template group to generate 
seed-based templates for each network. We then thresholded each 
network template at z ≥ 1.

To generate precision maps for each participant in ABCD-group 
1 and ABCD-group 2, we examined the whole-brain connectivity for 
each grayordinate by correlating the dense time series against all 
other grayordinates. For each participant in each test group (group 
1, n = ~5,000 and group 2, n = ~5,000), we generated a Pearson cor-
relation matrix (91,282 × 91,282 grayordinates) for each connection 
using the dense time series using the Connectome Workbench com-
mand ‘-cifti-correlate’ (https://www.humanconnectome.org/software/
connectome-workbench). Time series were then motion-censored 
(‘Head motion correction’) to reduce artifacts induced by head motion.

Because connectivity matrices were generated including subcor-
tical brain regions, the correlation matrix was z-scored separately for 
each hemisphere, the subcortical region, and the connections between 
the cortex and the subcortex. This allowed for the normalization of 
connectivity between subcortex and cortex where there is the potential 
for a decreased SNR in the subcortex. We thresholded the whole-brain 
connectivity for each grayordinate to only include correlated grayor-
dinates with z-score values greater than or equal to one. This resulted 
in a vector of whole-brain connectivity for each grayordinate that only 
includes grayordinates that are strongly correlated to a given network 
template. We then calculated an η2 value between the remaining gray-
ordinates and each of the network templates seen in Supplementary 
Fig. 4. The grayordinate is assigned to whichever network with the 
maximum η2 value.

OMNI mapping method. To generate overlapping networks for each 
participant, rather than assigning the grayordinate to the network 
with the maximum η2 value, we used a data-driven approach to assign 
multiple networks to each grayordinate. For each network, we plot-
ted the distribution of η2 values (Fig. 5c). The connectivity for each 
network demonstrates a characteristic skewed bimodal distribution. 
The distribution for η2 values was distributed into 10,000 bins and 
fitted with a cubic spline. The distribution was then smoothed using a 
Savitzky–Golay filter using a 2,000 data point window within MATLAB 
(The MathWorks, v2016-2022x). We calculated the local minimum of 
the bimodal distribution by taking the derivative of the smoothed data 
between 4,000 and 7,000 bins. We then used this local minimum as the 
threshold for whether or not a grayordinate would be labeled with this 
network, where grayordinates above this threshold would receive the 
network assignment. Grayordinates that had an η2 value higher than 
the threshold were assigned to those networks (Fig. 5d). Notably, unlike 
the winner-take-all approach, this method does not require an assigned 
network at each grayordinate, whereby grayordinates that do pass this 
thresholding and are not preferentially linked to any given network will 
go unassigned. In Supplementary Fig. 7a, an example of overlapping 
networks using OMNI mapping is shown for an ABCD participant with 
10 min of low-motion resting-state data. Because each grayordinate 

can belong to multiple networks, we used the ten ABCD participants 
mentioned above to calculate NMI independently for each network 
(Supplementary Fig. 7). Networks that have larger topographical vari-
ability among the population (for example, the frontoparietal network) 
are those that had larger difference in NMI between intraparticipant 
split halves compared to the null distribution, indicating topographical 
specificity (Supplementary Fig. 7b, yellow distribution versus black 
distribution). Probabilistic mapping of overlapping networks for each 
group revealed that these probabilistic maps were reliable (see Fig. 6 
and Supplementary Fig. 11 for all the network maps).

OMNI mapping allowed us to identify regions of network over-
lap and integration zones. One might be tempted to interpret the 
observed integration zones as a byproduct of volumetric averaging 
due to the limited volumetric resolution of rs-fMRI (Supplementary 
Fig. 12d–f). rs-MRI is generally collected with 3–4 mm resolution to 
optimize the SNR when using a 3T scanner111. There is evidence to 
suggest that smaller voxels produce a higher SNR and stronger BOLD 
effects at high fields such as 7T, which, at least within the motor system, 
can significantly affect the estimate of intervoxel correlation112. Newton 
and colleagues112 demonstrated that BOLD imaging at very high spatial 
resolution (1 × 1 × 2 mm) allows for improved functional connectivity 
analyses, allowing them to distinguish the intricacies of the sensorimo-
tor network (as defined by a finger tapping task compared to rest) in 
resting-state functional connectivity maps, which may be attributable 
to due to decreased partial volume averaging. Any voxel size larger 
than a single hemodynamic unit (a neuron, corresponding capillaries 
and supporting astrocytes) is going to be susceptible to volumetric 
averaging. However, while volumetric averaging resulting from our 
collection resolution (2.4 × 2.4 × 2.4 mm) does occur, there are several 
reasons why it is still likely that neurons residing at the boundaries 
between networks are important for integration.

First, integration zones appear to be in generally similar locations 
across the population. If volumetric averaging contributed to the over-
lapping integration that we’ve observed, then we would expect them 
to exist indiscriminately near the boundaries of all networks. Instead, 
what we observe is that integration zones are present at relatively 
similar network intersections across participants. Second, the location 
of the integration zones closely corresponds to hubs with regions that 
are either highly metabolically active47, relay information between 
nodes85 or process multimodal information113,114, which supports the 
hypothesis that these regions are likely integrating information from 
multiple networks.

Furthermore, discrete network boundaries such as those shown 
in Supplementary Fig. 12b do not preclude neurons at the interface 
boundary from communicating with one another. On the contrary, they 
reinforce the boundary through persistent internetwork communica-
tion. Techniques that implement boundary mapping are predicated 
on the observation that resting-state functional connectivity patterns 
can abruptly change from one cortical region to an adjacent cortical 
region, which often reflects the abrupt changes in cytoarchitectonics 
in the cortex in nonhuman primates5,115. Few studies have examined 
cross-network communication at the resolution necessary to capture 
the nuances of integration between networks. However, in one study 
of adjacent brain regions, Carmichael and Price identified two distinct 
networks within the macaque orbital and medial prefrontal cortex 
using retrograde and anterograde tracers87. Although the regions’ 
networks were clearly distinct, they were highly interconnected at the 
boundary region between them87,116.

Probabilistic maps. Probabilistic maps were generated separately for 
each group, method and network. Probabilistic maps were generated by 
calculating the probability that a grayordinate was assigned to a given 
network using all the participants within the group. The TM ROI set was 
generated by converting clusters produced by thresholding the prob-
ability maps at 0.8 (excluding clusters smaller than 30 grayordinates), 
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converting them to dlabel files (dlabel.nii) and combining ROIs into 
one combined probabilistic parcellation. Probabilistic dlabel files are 
available for the combined networks and each network separately from 
the MiDB Precision Brain Atlas webpage: http://neuroatlas.org. We 
performed an additional analysis with participants separated by site. 
When we correlated probabilistic maps between sites, we observed 
that probabilistic maps were nearly identical (Supplementary Fig. 16).

NMF community detection method. We implemented a community 
detection technique used previously8 to decompose non-negative 
participant-specific functional networks using their corresponding 
concatenated rest + task dense time series in a constrained manner 
using three regularized terms32,46. Briefly, a voxel-wise group sparsity 
regularization term was first used to ensure that a group consensus 
was used as a prior using group 3. Second, the spatial locality regu-
larization term was used to ensure that functional coherent voxels 
are encouraged to reside in the same functional network. Finally, a 
within-participants regularization term was used to eliminate redun-
dant functional networks8,32. The weights from the consensus were 
then applied to each of the time series for participants in ABCD-group 
1 and ABCD-group 2.

Analysis of minutes necessary for reliable communities using split 
halves. We calculated the similarity between split halves for an indi-
vidual by splitting the resting-state time series in half and generating 
a correlation matrix of all grayordinates from each half using exactly 
10 min of randomly sampled frames. Each correlation matrix was used 
as an input to both the TM algorithm and IM algorithm to generate 
networks for each half (‘TM method’). We then calculated the NMI 
between halves (https://github.com/MidnightScanClub/MSCcode-
base). To create the null distribution, we calculated the NMI between 
an individual participant’s half and all other halves in the group set for 
all participants. The difference between the test (self) and null (other) 
distributions was assessed using an independent two-sample t test 
with unequal variance.

Brain–behavior associations using subset reliability. To assess 
the reliability of a probabilistic parcellation schema, we conducted a 
split-group subset reliability association analysis. We randomly sam-
pled participants from group 1 at discrete sample sizes and correlated 
each corresponding element of the matrix to measure reliability against 
the participants’ behavioral measures. For each analysis, we quanti-
fied the correlation between each participant’s behavioral measure 
and (1) the Gordon connectivity matrix, (2) the probabilistic parcel-
lation connectivity matrix or (3) the integrative zone. The resultant 
correlation matrix for each subset was then correlated to the correla-
tion matrix made from all the participants in group 2. To calculate a 
nonlinear regression estimate across sample sizes, we then fitted a 
curve through the data points using an exponential rise-to-maximum 
single 3-parameter estimate (SigmaPlot 12.5 (Systat Software)) with 
the following equation:

y = y0 + a × (1 − e−bx)

where y is the correlation, y0 is the y-intercept, a is a scaling parameter, 
b is the rate of rise to maximum and x is the number of participants. All 
regression parameter fits were significant (P < 0.0001) and were highly 
correlated with the data (PC1 Gordon: r2 = 0.8045, TM: 0.8540; PC2: 
Gordon = 0.7181, TM = 0.6260; PC3: Gordon = 0.8086, TM = 0.6999). 
The coefficients for the curves for each model are provided in Sup-
plementary Table 5. To ensure that the increase in intergroup repro-
ducibility observed with the integration zones was not simply due 
to the reduced number of ROIs, we conducted an additional subset 
reliability analysis, where we randomly sampled 80 ROIs from the 
Gordon parcellation (the same number of ROIs in the TM region set) 

at each of the various participant subsets (Fig. 4d–f). Neural network 
graphs can be mapped at multiple scales, and the reliability when 
resolving network assignments at those scales can vary depending 
on the dataset and the community detection algorithm117. However, 
thresholding by population-level network probabilities ultimately 
yields different numbers of ROIs, but more importantly, this ROI set is 
not based on thresholding a graph (as is done for IM), so assumptions 
about scale/resolution may not apply to this region set. Because the 
number of regions differs between the MIDB probabilistic parcellation 
and the Gordon parcellation, the within-network connectivity was not 
normally distributed, so for every network, equal variance was not 
assumed for these statistical tests.

Data requirements for network specificity. An open question in the 
field of neuroimaging is ‘What amount of resting-state data is required 
to draw reliable conclusions about an individual’s connectome?’. Some 
estimates examining split-half reliability of connectivity matrices 
have demonstrated that upwards of 30 min of low-motion BOLD data 
are necessary11. We performed a split-half reliability analysis for net-
work maps generated in ten participants from the MSC dataset, who 
underwent 5 h of rs-fMRI (in addition to task collection)9,118. We split the 
resting-state scans into interleaved halves, generated networks from 
each half as described in Methods and calculated the NMI between net-
works generated from halves of the within versus between participants 
(identical to the analysis shown in Fig. 3b). As with the ABCD dataset, 
the NMI of networks generated from the same MSC participants was 
significantly higher than networks from different participants. In Sup-
plementary Fig. 5, the range of same-participant NMIs is shown in a blue 
box (0.527–0.648) and the range of null NMI (from comparing different 
participants) is shown as a gray box (0.314–0.378). Interestingly, the 
average intraparticipant NMI from MSC participants was higher than 
ABCD participants (MSC: 0.584 versus ABCD: 0.4214), suggesting that 
random sampling from longer/multiple sessions may produce more 
reliable network maps.

In addition to the split halves analysis, we also compared the simi-
larity of networks generated from the second half of a participant’s data 
(average of 71.28 ± 37.82 min, FD = 0.2) versus networks generated from 
discrete time intervals (1, 2, 3, 4, 5, 10, 15 and 20 min, 10 times each) 
randomly sampled from the first half (average of 73.12 ± 43.72 min, 
FD = 0.2). The NMI between network maps generated from each interval 
compared to the second half rapidly increased as correlation matrices 
contained more time points up to 5–10 min, then began to plateau. Only 
2 min of resting-state data were needed to generate intraparticipant 
network maps with greater similarity than to the other participants 
in the group (1 min: t(9.68) = −3.37, P = 0.0074; 2 min: t(9.33) = 8.919, 
P = 7.211 × 10−6; 3 min: t(9.50) = 17.10, P = 1.858 × 10−8; 4 min: 
t(9.26) = 15.200, P = 7.33 × 10−8; 5 min: t(9.27) = 17.554, P = 1.978 × 10−8; 
10 min: t(9.19) = 18.201, P = 1.6055 × 10−8; 15 min: t(9.20) = 20.33, 
P = 5.839 × 10−9; 20 min: t(9.15) = 18.603, P = 1.3864 × 10−8, two-tailed, 
unequal variance assumed; Supplementary Fig. 5b). For most MSC par-
ticipants, only 10 min of data were required to generate network maps 
with NMI values that fell within the range of the expected maximum 
NMI. The probabilistic ROIs generated from the ABCD participants 
used 10 min of randomly sampled data; however, sampling from longer 
data collections, such as the ones collected in the MSC dataset, has the 
potential to artificially inflate the similarity between halves due to the 
reduced influence of autocorrelation in the time series. Therefore, in 
addition, we sampled 10 min of continuous low-motion data that were 
motion-censored in an identical manner as described in Methods. The 
only exception was that the time intervals were not randomly sampled 
throughout the collection, but rather a random low-motion frame 
was selected, and the amount of subsequent low-motion frames cor-
responding with each time interval was used to generate a correlation 
matrix. Network maps were then produced by TM in the same manner 
as described in the main text. On comparing Supplementary Fig. 5a 
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with Supplementary Fig. 5b, we observed that the randomly sampled 
frames generated more similar maps between halves (as evidenced 
by the increase in NMI) than the continuously sampled data. The NMI 
for the group continuously sampled data is significantly greater than 
the null for time intervals longer than 5 min; however, specificity is 
indicated when data points are no longer in the gray-shaded regions 
(Supplementary Fig. 5). All network maps using continuous data for 
all MSC participants were outside the gray region after using 10 min of 
continuously sampled data, suggesting that sampling from longer time 
intervals does improve reliability that others have shown11.

It is unknown whether adolescent brains demonstrate similar 
reliability in network topography to that of adult brains. Therefore, we 
aimed to collect additional data in an adolescent sample. Because the 
ABCD study did not collect a sufficiently long duration of resting-state 
data to examine reliability in a similar manner to that of the MSC dataset 
(Supplementary Fig. 5), we collected additional long-duration rs-fMRI 
data in a group of child/adolescents at the Masonic Institute for the 
Developing Brain (MIDB subpopulation cohort), to test reliability in 
a similar way as done in the adult cohort. We examined the reliability 
of networks in 5 and 9–10-year-old children by splitting dense time 
series data in half. Then we randomly sampled minutes (average total 
time 143.0 ± 28.66 min) from the first half and compared them to the 
second half. In Supplementary Fig. 19, we compare split-half reliability 
in cortical networks in adolescents (left) to adult networks (right). The 
pattern of split-half reliability is mostly similar to what we observed in 
adults, albeit actually a little bit better. At 5 min of randomly sampled 
data, roughly half of the participants are within the range of maxi-
mum reliability (blue region), and by 10 min nearly all participants are 
in this range. Using a nonlinear curve-fit (3-parameter exponential 
rise-to-maximum function: f(y0) + α × (1 − βx)), we observed that the 
curvature is similar between these datasets (adolescent, β = 0.609 and 
adult, β = 0.6153). It should be noted that there are a few differences 
in interpreting the reliability compared to the MSC, notably that the 
adolescent participants were collected with a multi-band, multi-echo 
sequence119,120, and processed using an updated version of fMRIprep 
pipeline121 that our lab has assisted in building, as the abcd-hcp-pipeline 
has not been modified to handle multi-echo data.

Network topography group replication in matched samples. In 
addition to brain mapping on an individual basis, we also created net-
work maps from average dense connectivity matrices for groups 1 and 
2 to show replication across independent samples and across methods 
(Supplementary Fig. 6). IM and TM brain mapping methods were 
applied to identical connectivity matrices generated from matched 
groups. To highlight reproducibility we measured the amount of 
replication using an average dense connectivity matrix generated 
from all participants within each independent group (Supplementary 
Fig. 6; group 1 and group 2; see Supplementary Table 1 for demo-
graphic details). We calculated the NMI between groups and between 
methods for group-specific networks. The NMI between group 1 and 
group 2 was relatively high for each method (TM: 0.9110; IM: 0.7893), 
suggesting that each method provides robustness to replication. 
We also used NMI to compare the similarity of networks generated 
from TM versus IM for each group (Supplementary Fig. 6). Between 
methods, groups generally display similar topographies as evidenced 
by high NMI values (group 1, 0.4798 and group 2, 0.4762), relative to 
the null comparison between participants (Fig. 1). IM (upper row) and 
TM (lower row) produced relatively high replication as evidenced 
by split-group NMI. Insets show that the network labels identified 
for subcortical regions and cerebellum are markedly similar across 
groups as well.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
ABCD neuroimaging data and behavioral data constitute the minimum 
dataset used to generate findings in this study and are currently avail-
able from the NDA upon approval with a data use agreement (https://
nda.nih.gov/). The data will also be available on any future release 
platform. Updates will be announced on the ABCC information website 
(https://collection3165.readthedocs.io/). All individual-specific maps 
for ABCD will be downloadable via these platforms as well (pending 
approval). Investigators who wish to share individual-specific maps 
based on ABCD data can do so via the ABCC (instructions provided on 
the ABCC information page and https://midbatlas.io/)13,43. Probabilistic 
maps from each network are available at https://midbatlas.io/. The 
MSC data are publically available at https://openneuro.org/datasets/
ds000224. Individual-specific maps and connectivity maps are avail-
able at https://nda.nih.gov/edit_collection.html?id=3165. HCP and 
HCP-D data are available at https://www.humanconnectome.org/. Data 
associated with the WashU-120 are available at https://openneuro.org/
datasets/ds000243/versions/00001.

Code availability
Custom computer code that was used to process the neuroimaging data 
using surface-based analysis can be found here and is publicly available 
at https://github.com/DCAN-Labs/abcd-hcp-pipeline (v0.1.0). Code 
to generate connectivity matrices (v1.0) from time series data can be 
found at https://github.com/DCAN-Labs/cifti-connectivity and is pub-
licly available. Custom code to generate individual-specific networks 
and probabilistic maps can be found at https://github.com/DCAN-Labs/
compare_matrices_to_assign_networks (v1.0) and is publicly available. 
IM community detection code is available at www.mapequation.org 
(v1.4 was used in this manuscript). Additional tools used to work with 
CIFTI files that were used to support the findings of this study were as 
follows: MATLAB 2019b–2022b (MathWorks, https://www.mathworks.
com/), Connectome Workbench122 (v1.4.2–1.5.0; http://www.human-
connectome.org/software/connectome-workbench), Freesurfer123 
(v6.0–7.4.1; https://surfer.nmr.mgh.harvard.edu/), FSL124 5.0 and 
above (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), code from the MSC (v1.0)  
(ref. 9; https://www.openfmri.org/dataset/ds000224/), MIDB ROI tool 
(R.J.M.H. and J. Fair: https://midbatlas.io/), ABCC for matched groups 
v1.0.0 by ref. 13, https://www.biorxiv.org/content/10.1101/2021.07.09
.451638v1. fMRIPrep v23.0.0–23.1.4. (https://fmriprep.org/) was used 
for processing multi-band, multi-echo fMRI data. ARMS software code 
(v1.0) that was used to generate matched groups can be found here: 
https://osf.io/7xn4f/.
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Extended Data Table 1 | Neuroimaging datasets and their respective usage in this paper

Dataset N (N female) Average age (years) Usage

MSC 4 10 (5) 29.3 Within-subject
reliability testing,
probabilistic maps
provided.

ABCD group1 5 2995 () 9.9 Generating
probabilistic maps,
used in brain -behavior
reliability analysis. used
for the creation of
integration zones used
to make probabilistic
ROIs.

ABCD group2 5 3111 9.9 Generating
probabilistic maps,
used in brain -behavior
reliability analysis. used
for the creation of
integration zones

ABCD group3 5 163 9.8 Used to make the
network template for
template matching.

ABCD test cohort 10 9-10 Within-subject
reliability

HCP-D ages 8-9 3 38 9.2 Probabilistic maps and
ROI sets provided

HCP-D ages 10-11 3 53 10.9 Probabilistic maps and
ROI sets provided

HCP-D ages 12-13 3 72 13.1 Probabilistic maps and
ROI sets provided

HCP-D ages 14-15 3 84 15.0 Probabilistic maps and
ROI sets provided

HCP-D ages 16-17 3 59 16.9 Probabilistic maps and
ROI sets provided

HCP-D ages 18-19 3 52 18.9 Probabilistic maps and
ROI sets provided

HCP-D ages 20-21 3 67 21.0 Probabilistic maps and
ROI sets provided

HCP-D ages 08-13 81 11.45 Correlation between
probabilistic maps for
broader age ranges.

HCP-D ages 08-13 81 11.49 Correlation between
probabilistic maps for
broader age ranges.

WashU-120 35 130 25.0 Group-average for
data-driven discovery
cohort, probabilistic
maps provided

Dworetsky-Dartmouth
25

69 20.2 Probabilistic maps and
ROI sets provided

Dworetsky-HCP 25 384 28.4 Probabilistic maps and
ROI sets provided

Dworetsky-Yale 25 65 32.3 Probabilistic maps and
ROI sets provided

MIDB subpopulation 5 9-10 Within-subject
reliability testing

This table describes the source of the source neuroimaging cohorts described in the manuscript, the sample size, N, the average age of participants, and how the cohort is used with  
each analysis.
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Extended Data Table 2 | Demographics of all ABCD participants for year 1

continuous ABCD Cohort-1
(N=5786)

ABCD Cohort-2
(N=5786)

ABCD Cohort-3
(N=303)

mean (sd) mean (sd) mean (sd)
age (months) 119.01 (7.47) 118.87 (7.43) 119.07 (7.81)

current grade level 4.22 (.79) 4.21 (.79) 4.28 (.76)
highest parent edu. 17.07 (2.67) 17.06 (2.66) 16.75 (2.83)
combined income 7.24 (2.42) 7.23 (2.42) 6.93 (2.5)

categorical ABCD Cohort-1
(N=5786)

ABCD Cohort-2
(N=5786)

ABCD Cohort-3
(N=303)

count (%) count (%) count (%)
# female 2799 (48.4) 2734 (47.3) 148 (48.8)

anesthesia exposure 1839 (31.8) 1828 (31.6) 87 (28.7)
right handed 4605 (79.6) 4580 (79.2) 238 (78.5)

race ABCD Cohort-1
(N=5786)

ABCD Cohort-2
(N=5786)

ABCD Cohort-3
(N=303)

count (%) count (%) count (%)

white 3719 (64.3) 3638 (62.9) 158 (52.1)
black 892 (15.4) 918 (15.9) 54 (17.8)
AlAK 27 (.5) 30 (.5) 5 (1.7)
NHPI 10 (.2) 6 (.1) 0
asian 130 (2.2) 136 (2.4) 10 (3.3)
other 239 (4.1) 244 (4.2) 38 (12.5)

unknown/declined 87 (1.5) 86 (1.5) 12 (4.0)
more than one race 682 (11.8) 728 (12.6) 23 (7.6)

latinx 1176 (20.6) 1172 (20.3) 59 (19.5)

site ABCD Cohort-1
(N=5786)

ABCD Cohort-2
(N=5786)

ABCD Cohort-3
(N=303)

count (%) count (%) count (%)
1 194 (3.4) 203 (3.5) 9 (3.0)
2 274 (4.7) 273 (4.7) 14 (4.6)
3 318 (5.5) 307 (5.3) 8 (2.6)
4 366 (6.3) 362 (6.3) 15 (5.0)
5 180 (3.1) 185 (3.2) 13 (4.3)
6 279 (4.8) 279 (4.8) 27 (8.9)
7 165 (2.9) 166 (2.9) 8 (2.6)
8 175 (3.0) 174 (3.0) 6 (2.0)
9 212 (3.7) 210 (3.6) 10 (3.3)
10 360 (6.2) 361 (6.2) 20 (6.6)
11 222 (3.8) 220 (3.8) 12 (4.0)
12 291 (5.0) 295 (5.1) 19 (6.3)
13 351 (6.1) 353 (6.1) 19 (6.3)
14 297 (5.1) 294 (5.1) 16 (5.3)
15 229 (4.0) 213 (3.7) 12 (4.0)
16 479 (8.3) 506 (8.7) 20 (6.6)
17 286 (4.9) 278 (4.8) 14 (4.6)
18 187 (3.2) 187 (3.2) 10 (3.3)
19 270 (4.7) 268 (4.6) 14 (4.6)
20 343 (5.9) 342 (5.9) 18 (5.9)
21 308 (5.3) 310 (5.4) 16 (5.3)

This table provides demographic information summarizing the three ABCD cohorts that were collected (full sample).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01596-5

Extended Data Table 3 | Group demographics table—participants with at least 10 min of resting-state data

Variable Group1 (N=2995) Group2 (N=3111) Group3 (N=161)
mean (sd) mean (sd) mean (sd)

Age (in
months)

119.64 (7.48) 119.75 (7.47) 118.37 (7.73)

Grade level 4.27 (0.78) 4.27 (0.78) 4.20 (0.76)
Highest parent
education

17.38 (2.85) 17.34 (2.46) 16.83 (2.90)

Combined
income (in
thousands).

7.51 (2.24) 7.46 (2.24) 7.08 (2.35)

categorical Group1 (N=2995) Group2 (N=3111) Group3 (N=161)
count (%) count (%) count (%)

# Female* 1411 (47.10) 1544 (49.66) 78 (48.45)

Anesthesia
exposure

966 (32.2) 1005 (32.3) 42 (26.1)

Right handed 2401 (80.2) 2525 (81.2) 136 (84.5)

Race/Eth
White 2399 (80.10) 2460 (79.07) 106 (65.84)
Black 539 (18.00) 556 (17.87) 30 (18.63)
AlAK** 94 (3.14) 99 (3.18) 4 (2.48)
NHPI 19 (0.63) 18 (0.58) 0(0)
Asian 62 (2.07) 62 (1.99) 6 (0.373)
Other 143 (4.77) 166 (5.34) 21 (13.04)
Unknown 23 (0.77) 34 (1.09) 4 (2.48)
Latinx 544 (18.16) 564 (18.13) 28 (17.39)

site
Group1 (N=2995) Group2 (N=3111) Group3 (N=161)

count (%) count (%) count (%)
1 41 (1.37) 49 (1.58) 4 (2.48)
2 212 (7.08) 205 (6.59) 9 (5.59)
3 199 (6.64) 213 (6.85) 5 (3.11)
4 205 (6.84) 182 (5.85) 9 (5.59)
5 103 (3.44) 112 (3.60) 12 (7.45)
6 170 (5.68) 170 (5.46) 22 (13.66)
7 91 (3.04) 84 (2.70) 4 (2.48)
8 62 (2.07) 88 (2.83) 3 (1.86)
9 122 (4.07) 112 (3.60) 6 (3.73)
10 128 (4.27) 146 (4.69) 5 (3.11)
11 133 (4.44) 122 (3.92) 4 (2.48)
12 42 (1.40) 57 (1.83) 3 (1.86)
13 157 (5.24) 145 (4.66) 5 (3.11)
14 189 (6.31) 194 (6.24) 11 (6.83)
15 89 (2.97) 95 (3.05) 8 (4.97)
16 380 (12.69) 404 (12.99) 10 (6.21)
17 97 (3.24) 121 (3.89) 8 (4.97)
18 88 (2.94) 86 (2.76) 2 (1.24)
19 124 (4.14) 115 (3.70) 12 (7.45)
20 183 (6.11) 212 (6.81) 10 (6.21)
21 180 (6.01) 199 (6.40) 9 (5.59)

This table provides demographic information summarizing the three ABCD groups that had at least 10 min of resting-state data.

http://www.nature.com/natureneuroscience
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	A precision functional atlas of personalized network topography and probabilities

	PFM provides challenges for traditional data acquisitions
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