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The brain’s functionality is developed and maintained through synaptic
plasticity. As synapses undergo plasticity, they also affect each other. The
nature of such ‘co-dependency’ is difficult to disentangle experimentally,

because multiple synapses must be monitored simultaneously. To help
understand the experimentally observed phenomena, we introduce a
framework that formalizes synaptic co-dependency between different
connection types. The resulting model explains how inhibition can gate

excitatory plasticity while neighboring excitatory-excitatory interactions
determine the strength of long-term potentiation. Furthermore, we show
how theinterplay between excitatory and inhibitory synapses can account

for the quick rise and long-term stability of a variety of synaptic weight
profiles, such as orientation tuning and dendritic clustering of co-active
synapses. Inrecurrent neuronal networks, co-dependent plasticity produces
rich and stable motor cortex-like dynamics with high input sensitivity. Our
results suggest an essential role for the neighborly synapticinteraction
duringlearning, connecting micro-level physiology with network-wide

phenomena.

Synaptic plasticity is thought to be the brain’s fundamental mechanism
forlearning' . Based on Hebb’s postulate and early experimental data,
theories have focused on the idea that synapses change based solely
ontheactivity of their presynaptic and postsynaptic counterparts* ™,
defining synaptic plasticity as predominantly a synapse-specific pro-
cess. However, experimental evidence" ?° has pointed toward learning
mechanisms thatactlocally at the mesoscale, takinginto account the
activity of multiple synapses and synapse types nearby. For example,
excitatory synaptic plasticity (ESP) haslong been knowntorely oninter-
synaptic cooperativity by way of elevated calcium concentrations from
multiple presynaptically active excitatory synapses™ . Interestingly,
GABAergic, inhibitory synaptic plasticity (ISP) has also been shown to
depend on the activation of neighboring excitatory synapses: ISP is
blocked when nearby excitatory synapses are deactivated"?, and the
magnitude of the changes depends on the ratio between local excita-
tory and inhibitory currents (El balance)". Moreover, the absence of

inhibitory currents can either flip the direction>"* or maximize ESP* %,
The amplitude of long-term potentiation (LTP) at excitatory synapses
also depends onthe history of nearby excitatory LTPinduction, reveal-
ing temporal and distance-dependent effects*. Finally, Hebbian LTP
canalso trigger long-term depression (LTD) at neighboring synapses”
through a heterosynaptic plasticity mechanism—that is, without the
need of presynaptic activation. There is currently no unifying frame-
work toincorporate these experimentally observed interdependencies
at the mesoscopic level of synaptic plasticity.

Existing models typically aimto explain, forexample, how cell assem-
blies are formed and maintained®?. In these studies, synapse-specific
plasticity rules are typically complemented withglobal processes, such as
normalization of excitatory synapses® or modulation of inhibitory syn-
aptic plasticity by the average network activity’, for stability. Moreover,
intricate spatiotemporal dynamics, such asthe activity patterns observed
in motor cortex during reaching movements®, can be reproduced only
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when inhibitory connections are optimized (that is, hand tuned) by
iteratively changing the eigenvalues of the connectivity matrix toward
stable values®*® or learned by non-local supervised algorithms, such as
FORCE??*°, However, models that rely on connectivity changes triggered
by non-local quantities are usually based on the optimization of network
dynamics”°and often do not reflect biologically relevant mechanisms
(butseeref.31).

Tofillthe theoretical gap in mesoscopic, yetlocal, synaptic plastic-
ity rules, weintroduce anew model of ‘co-dependent’ synaptic plastic-
ity thatincludes the directinteraction between different neighboring
synapses. Our model accounts for a wide range of experimental data
onexcitatory plasticity and receptive field plasticity of excitatory and
inhibitory synapses and makes predictions for future experiments
involving multiple synaptic stimulation. Furthermore, it provides a
mechanistic explanation for experimentally observed synaptic cluster-
ing and for how dendritic morphology can facilitate the emergence of
single (clustered) or mixed (scattered) feature selectivity. Finally, we
show how naive recurrent networks can grow into strongly connected,
stable and input-sensitive circuits showing amplifying dynamics.

Results

We developed a general theoretical framework for synaptic plasticity
rulesthataccountsfor theinterplay between different synapse types dur-
inglearning.Inourframework, excitatoryandinhibitory synapseschange
according to the functions ¢(E, I; PRE, POST) and ¢,(E, I; PRE, POST),
respectively (Fig. 1a). The signature of the co-dependency between
neighboring synapses—that is, synapses that are within each others’
realm of physicalinfluence—is given by £and/, which describe the recent
postsynaptic activation of nearby excitatory and inhibitory synapses.
Theactivity of the synapses’ own presynaptic and postsynaptic neurons—
thatis, thelocal synapse-specific activity—is described by the variables
PRE and POST. We modeled F and/as variables thatintegrate neighboring
synaptic currents: calciuminflux through N-methyl-D-aspartate (NMDA)
channels for F and chloride influx through y-aminobutyric acid type A
(GABA,) channels for /. Theimplementation of excitatory and inhibitory
plasticity rules varies slightly, as follows below.

Co-dependent excitatory plasticity model

The rule ¢ (E, I; PRE, POST) by which excitatory synaptic efficacy
change is constructed similarly to classic spike-timing-dependent
plasticity (STDP) models'>** pre-before-post spike patterns may elicit
potentiation (details below), whereas post-before-pre elicits depres-
sion (Fig. 1b). Synaptic changes are also modulated by ‘neighboring’
excitatory and inhibitory activity (Fig. 1a). Initially, we defined an
explicit distance-dependent term so that the influence between two
neighboring synapses decays with their separation (Methods). Inlater
models, we assumed, for simplicity, that all synapses onto a dendritic
compartment or postsynaptic neuron contribute equally to the vari-
ables Fand/, such that all synapses onto a dendritic compartment or
postsynaptic neuron are neighbors with each other.

In addition to the STDP component, the learning rate for poten-
tiation increases linearly with the magnitude of neighboring (includ-
ing the synapse’s own) NMDA currents'>'** (Fig. 1c, green line). This
destabilizing positive feedback, in which potentiation leads to big-
ger excitatory currents, which, in turn, leads to more potentiation, is
counterbalanced by introducing a heterosynaptic term’ that weakens
a synapse via a quadratic dependency on its neighboring (including
the synapse’s own) NMDA currents (Fig. 1c, orange line). This term
is based on experimentally observed heterosynaptic weakening of
excitatory synapses neighboring other synapses undergoing LTP".
Together, potentiation and heterosynaptic weakening form a fixed
point in the dynamics of synaptic weights. As a result, weak to inter-
mediate excitatory currents elicit strengthening, whereas strong cur-
rents induce weakening (Fig. 1c, gray line). In addition to neighboring
excitatory-excitatory effects, we constructed the model such that
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Fig.1| Co-dependent synaptic plasticity model. a, Co-dependent excitatory
(top) and inhibitory (bottom) plasticity. Plasticity of a synapse (highlighted with
black contour) depends on the activation of its neighboring excitatory (red) and
inhibitory (blue) synapses, together with its synapse-specific presynaptic and
postsynaptic activity—that s, spike times, indicated by PRE and POST,
respectively. Variables £ and /integrate NMDA and GABAergic currents (low-pass
filters), respectively. b, Excitatory weight change, Awy, as a function of the time
interval between postsynaptic and presynaptic spikes, At, and neighboring
synapticinputs, Eand /. At = tposc — tpre, Where t,,,and e are spike times of
postsynaptic and presynaptic neurons, respectively, so that At > O for pre-before-
postand At < O for post-before-pre spike patterns. ¢, Excitatory inputs, £, control
Hebbian LTP (green line; At > 0) and heterosynaptic plasticity (orange line), which
combined (gray line) create acommon setpoint for the total excitatory input (red
dot).d, Inhibitory inputs, /, gate excitatory plasticity (‘ON’ versus ‘OFF’).

e, Inhibitory weight change, Aw,, is a function of At and neighboring synaptic
inputs (asinb).f,g, Synaptic changes in inhibitory synapses as a function of
excitatory (f) and inhibitory (g) inputs.
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elevatedinhibition blocks excitatory plasticity: only when synapses are
disinhibited can excitatory plasticity change their efficacies (Fig. 1d).
Inhibition thus directly modulates excitatory plasticity in our model,
complementing theindirectinfluence of inhibition on excitatory plas-
ticity viathe directinfluence of inhibition on the postsynaptic neurons’
membrane potential and spike times. This direct control of inhibition
over excitatory plasticity allows for rapid, one-shot-like learning™
during periods of disinhibition®* in behavioral timescales—that is,
whenmultiple presynaptic excitatory spikes coincidentally activate a
postsynaptic neuron, because the effective learning rate can vary wildly
(through rapid intermittent disinhibition) without compromising the
stability of the network. At all other times—when inhibition is strong
enough to effectively block excitatory plasticity—excitatory weights
cannot drift due to ongoing presynaptic and postsynaptic activity.

Changes in a given excitatory synapse, wg, denoted by Awy, are
expressed in asimplified way as:

Awg = ¢e(E, I, PRE, POST)
= [Avte (PREL1p) (POSTpike ) E
—Apet (POSThe) (POSTSpike) E
—Ar1p (POST 1p) (PREgpike ) We]

X exp [—(IL)V]
@

where A, p, Apand A, are the (strictly positive) learning rates for the
LTP, heterosynaptic and LTD plasticity terms, respectively (see

LTP (pre-before-post)
heterosynaptic

LTD (post-before-pre)

inhibitory control,
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Fig.2| Co-dependent excitatory synaptic plasticity: influence of voltage,
firing frequency and synaptic distance. a, Schematic of the protocol used in
band c: two connected excitatory neurons. b, Simulation of 10-ms pre-before-
post STDP protocol as a function of depolarization, capturing observed voltage
influence of excitatory plasticity'. ¢, Simulation of pre-before-post (+10 ms)

and post-before-pre (-10 ms) STDP protocols at various frequencies, capturing
observed firing frequency influence of STDP". d, Schematic of the protocol used
ineand f: one excitatory postsynaptic neuron receiving one plastic excitatory
synapse and two static (inhibitory and excitatory) neighboring synapses. e, Same
as cfor different firing rates of neighboring synapses (color coded). f, Weight
change as a function of neighboring synapses’ input frequency (y axis) and
frequency of spike pairs (x axis). Arrows indicate external frequencies used in
e.g, Schematic of the protocol used in h-i: two presynaptic excitatory neurons
connected to asingle postsynaptic neuron via plastic excitatory synapses.
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The two synapses are separated by a given distance explicitly simulated in the
plasticity model (Methods). h, Weight change of a single synapse as a function
of the timing between the presynaptic spike and the first postsynaptic spike of
athree-spike burst*. Black and purple arrowheads indicate the two pairings
used for inducing strong and weak LTP, respectively, at neighboring synapses
iniandj.i, Weight change of the synapse undergoing weak LTP inductionasa
function of the timing betweenits induction and a prior strong LTP induction at
aneighboring synapse 3 um apart. j, Weight change of the synapse undergoing
weak LTP induction 90 s after strong LTP induction at a neighboring synapse as
afunction of their distance. Purplelines iniandjshow changes of anisolated
synapse (from h). Error bars indicate s.e.m. Experimental datain b,c,e h-j, were
adapted with permission from the following references: b fromref.16,cand e
fromref. 15 and h-jfromref. 24 (we refer to ref. 15 and ref. 24 for information
about sample sizes and statistical analysis).

Methods for the detailed implementation). The terms (PRE 1p),
(POSTye) and (POST, 1p) represent the filtered spike trains (that is,
firing rate estimates) of presynaptic and postsynaptic neurons. Spike
times of presynaptic and postsynaptic neurons are represented by
(PREgpike)and (POST e ), respectively, which trigger synaptic weight
changes. The parameters /* and y define the inhibitory control over
excitatory plasticity. Theamplitude of excitatory-to-excitatory plastic-
ity ismaximum when inhibitionis blocked, decreasing monotonically
with the magnitude of local inhibitory currents. Interestingly, both
weight-dependent STDP**** and triplet learning rules® can be recovered
from equation (1) under certain approximations and simplifications
(see the Supplementary Modeling Note for details).

Co-dependent inhibitory plasticity model

Inhibitory synapses change according to afunction ¢,(E, ; PRE, POST)
that follows a symmetric STDP curve®** (Fig. 1e)—synaptic changes
are scaled according to the temporal proximity of presynaptic and
postsynaptic spikes. Similar to excitatory plasticity, the learning rate
of inhibitory plasticity is modulated by neighboring excitatory and
inhibitory activity (Fig. 1f,g). In this case, when Eand/ (thatis, NMDA and
GABAergic currents) are equal (£ =/), or when NMDA currents vanish
(E=0), there is no change in the efficacy of inhibitory synapses: they
remain constant. LTPisinduced when excitatory currents are stronger
thaninhibitory ones and vice versa for LTD. As a consequence, spike
times and neighboring synaptic currents act together but at different
timescales. These co-dependent components of ISP are based on the
abolition of either LTP or both LTP and LTD" when postsynaptic NMDA

currents are blocked as well as evidence of increase in amplitude of
changes for larger El ratios™.

Changes in a given inhibitory synapse, w,, denoted by Aw,, are
expressed in asimplified way as:

Aw, = ¢,(E, I, PRE, POST)
= AispE (E—al)

X [(PRE;on) (POSTpie)  pre-before-post

+ (POSTinn) (PREspike)]  post-before-pre,

codependency

where A, is the (strictly positive) learning rate for the co-dependent
inhibitory synaptic plasticity rule, and a is the El balance setpoint
imposed by the learning rule, such that £/ /= a (see Methods for the
detailed implementation). The terms (PRE;,,) and (POST;,,) represent
the filtered spike trains (that is, firing rate estimates) of presynaptic
and postsynaptic neurons. Spike times of presynaptic and postsynap-
ticneuronsare represented by (PREpi. )and (POST i ), respectively,
which trigger synaptic weight changes. Applying specific simplifica-
tionstoequation (2), we canrecover a previously proposed spiked-based
learning rule’, similarly to the above case for excitatory synapses (see
the Supplementary Modeling Note for details).

Stability of excitatory currents

We implemented the above rules in a single leaky integrate-and-fire
(LIF) neuron with plastic excitatory synapses that emulate a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA
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Fig. 3| Effect of distance dependence for excitatory current stability.

a,b, Schematics of the simulation. a, A single postsynaptic neuron receives 800
plastic excitatory (*) and 200 static inhibitory synapses. b, Top, all excitatory
synapses are assumed to form a one-dimensional (1D) (line) connectivity pattern,
with two consecutive synapses being separated by a unitary distance (normalized
distance; Ax=1). The effect of neighboring activation is weighted by a Gaussian
curve centered at the synapse undergoing plasticity (black synapse) defined

by astandard deviation, 0. Bottom, three examples for different o values (c=1,

2 and 3). To compare different values of ¢ (cand d), the peak of the distance
dependent interaction was normalized by the area under the curve. ¢,d, Average
(c) and standard deviation (d) of the excitatory NMDA currents per synapse after
learning as a function of the standard deviation, which defined the distance-
dependent effect, 0. Gray dots represent simulations in which all presynaptic
neurons’ firing rates are equal. Colored dots represent simulations in which
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individual excitatory presynaptic neurons’ firing rates are uniformly distributed
between 0 Hz and 18 Hz. Each color indicates a different characteristic time

for the excitatory current filter, E (equation (1)). Allinhibitory neurons have
aconstant firing rate of 18 Hz. g, = 0.6 defines the transition from effectively
non-interacting (o < g,;,) to interacting (o > g,;,) synapses, whose steady-state
distributions of synapse-specific NMDA currents differ (Extended Data Fig.

3). 0; = 4.4 is the value fitted to the experimental curve (green curve in Fig. 2j;
0=4.4 pum) assuming an average distance of 1 um between neighboring synapses.
e-g, Total excitatory NMDA current after learning as a function of the ratio
between heterosynaptic and LTP learning rates (e), initial excitatory weights

(f) and inhibitory weights (g). Continuous lines indicate a simplified analytical
solution (Methods). The dashed line in e indicates the threshold for which the
heterosynaptic plasticity term may induce vanishing of weights (shaded region;
Methods).

receptors as wellasinhibitory (GABA,) synapses (Methods). We initially
assessed the properties of co-dependent excitatory plasticity with
regard to previous experimental™'*** and modeling studies>***"*, as
described below.

First, we considered two otherwise isolated excitatory neurons,
so that there was noinfluence of other presynaptic partners over syn-
apticchanges aside from the synapse that we investigated (Fig. 2a). We
found that our model—in agreement with previous models®***—could
capture the influence of membrane potential depolarization due to
strong initial excitatory weight, current clamp or backpropagating
action potential (Supplementary Fig. 1) on synaptic efficacy changes.
As aresult, an LTD-inducing pre-before-post spike protocol became
LTP inducing when accompanied by large postsynaptic depolariza-
tion™ (Fig. 2b). In our model, the switch from LTD to LTP was due to
an increase in the magnitude of the presynaptic excitatory current
through NMDA channels for depolarized states, eliciting stronger LTP
(Fig.1cand Extended Data Fig. 1a).

Similarly, theinteraction of presynaptic and postsynaptic spikes
could also account for efficacy changes based on the frequency of
spike pair presentations (Fig. 2c). Notably, in our model, high fre-
quency of presynaptic and postsynaptic spike pairs elicited increased
LTP (Fig. 2c) duetoadirectelevationin NMDA currents (Extended Data
Fig. 2a and Fig. 1c). Spike-based>’ or voltage-based® models imitate
the influence of spike frequency on LTP amplitudes by reacting to
anincrease in the postsynaptic firing frequency and the consequent
increase inspike triplets (post-pre-post; Extended Data Fig. 2b,c). Our
model thus varies in the locus of its mechanism: elevated excitatory
currents—that is, a presynaptic-driven effect—instead of elevated
postsynaptic activity.

Inour model, plasticity could be affected by excitatory and inhibi-
tory currents, altering amplitude and direction of synaptic change
(Extended Data Fig. 1a-c). To highlight this co-dependent effect, we
simulated the classic frequency-dependent protocol®™ with a pair of
neighboring synapses (one excitatory and one inhibitory with static
weights) simultaneously activated (Fig. 2d). Anincrease in neighboring
firing rate amplified LTP, which was induced by the synapse-specific
pre-before-post spike pattern (Fig. 2e, full lines, and Fig. 2f, left). The
same increase in neighbring firing rate reduced LTD, lowering the
pairing frequency for which LTD becomes LTP for synapse-specific
post-before-pre spike patterns (Fig. 2e, dashed lines, and Fig. 2f, right).
These effects arose from elevated NMDA currents from the neigh-
boring excitatory synapse (Extended Data Fig. 1a) and are magnified
without inhibitory control (Extended DataFig. 2e,i). Incontrast, inthe
traditional spike-based*’ or voltage-based® learning rules, neighbor-
ingactivation does not affect plasticity as long asit does not influence
presynaptic and postsynaptic spike patterns or the mean postsynaptic
membrane potential®” (Extended Data Fig. 2d-k)—that is, due to bal-
anced excitatory and inhibitory currents (Supplementary Fig. 2).

Tofurther investigate the distance and temporal effects of multi-
ple presynapticactivation, we simulated a single postsynaptic neuron
connected with two presynaptic excitatory synapses separated by a
defined electrotonic distance (Fig. 2g). Similar to experiments in mice
corticalslices?, the activation of asingle synapse, when followed by a
three-spike burst of the postsynaptic neuron withatimelag A¢,induced
a STDP-like change in efficacy (Fig. 2h). Repeating the same protocol
with a time lag of At =5 ms between presynaptic and postsynaptic
spikestoinduce ‘strong’ LTP (black arrowhead in Fig. 2h) followed by a
second, ‘weak’ LTP at aneighboring synapse with atime lag of At =35 ms
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(purple arrowheadinFig.2h), shortly after, reproduced the experimen-
tally reported temporal (Fig. 2i) and spatial (Fig. 2j) dependencies of
excitatory synaptic plasticity* in our model.

We extended the above protocol and simulated a single postsynap-
tic neuron receiving homogeneous Poisson excitatory and inhibitory
spike trains from synapses with spatial organization (Fig. 3a,b and
Methods). For simplicity, we modeled excitatory synapses as equally
spaced along a single-compartment neuron with equal, unitary dis-
tance between immediate neighbors (Fig. 3b, top). The influence of
a given synapse onto another was implemented according to their
assumed electrotonic distance as a normalized current following a
Gaussian-shaped decay with standard deviation o (Fig. 3b). o thus
characterized the topology of spatial interactions. It means that the
maximum influence on a synapse was its own NMDA current influx
(center of the Gaussian). Other synapses also contributed to the effi-
cacy change, with the amplitude of their effect normalized by the length
of interactions, g, and number of neighboring synapses (Fig. 3b, bot-
tom, and Methods). After the system reached equilibrium, we found
that the mean excitatory current influx through NMDA channels was
independent of the length constant, g (Fig. 3¢c), asaresult of the combi-
nation ofthe Hebbian LTP and heterosynaptic terms, which produces a
setpoint for the total NMDA currents (Methods and Fig. 1c, red circle).

However, the shape of the distribution of synaptic currents
depended on o (Fig. 3d and Extended Data Fig. 3) such that, for small
o (thatis, only weak spatial coupling of synapses), synapse-specific
NMDA currents and weights were proportional to the presynaptic
neurons’ firing rates (Extended Data Fig. 3d,f). For larger o (that is,
when more distant synapses could affect each other), synapses with
low presynaptic firing rates were deleted (Extended Data Fig. 3f), as
competitive heterosynaptic plasticity disadvantaged these synapses.
Although deleted synapses did not generate synapse-specific NMDA
currents (Extended DataFig. 3d), their synapse-specific co-dependent
variable E (filtered neighboring NMDA currents) did not vanish, becom-
ingindependent of the presynaptic neuron’s firing rate and o (Extended
Data Fig. 3e). The transition to competition between synapses hap-
pened at o= o0, = 0.6 (Fig. 3d and Extended Data Fig. 3c-f), whichis at
60% of the distance between two immediately neighboring synapses
in our unitary distance formulation, meaning that the transition to
competition occurs when any two synapses could interactin a substan-
tialway (Extended Data Fig. 3g), in line with the experimental results*
(Fig. 3d, oy Fig. 2j, greenline). For the sake of simplicity, we can thus
consider all presynaptic synapses onto asingle compartment modelto
affect each other equally, until weintroduce dendritic compartments
further below.

For a fixed o, the setpoint for the total NMDA current is deter-
mined by the learning rates of the three mechanisms involved in the
learning rule: LTP, LTD and heterosynaptic plasticity (equation (1);
Methods). This setpoint decreases with the increase in the learning
rate of heterosynaptic plasticity (Fig. 3e), being independent of ini-
tial excitatory weights (Fig. 3f), and slightly dependent on inhibitory
input strength (Fig. 3g) due to its effect on the postsynaptic firing
rate (Extended Data Fig. 3a). Collectively, these results highlight the
excitatory co-dependent plasticity model’s versatility in incorporat-
ing effects of spike times, voltage, distance and temporal activation
of neighboring synapses in a stable manner.

El balance and firing rate setpoint

The dynamics of traditional spike-based plasticity rules can be approxi-
mated by the firing rate of presynaptic and postsynaptic neurons™. In
these types of models, stable postsynaptic activity may be achieved if
synaptic weights change toward afiring rate setpoint” that controls the
dynamics such that excitatory weightsincrease when the postsynaptic
firing rate is lower than the setpoint and decrease otherwise’. In the
same vein, inhibitory weights decrease for low postsynaptic firing rates
(below the setpoint) and increase for high firing rates”*°, When both
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Fig. 4| Co-dependent inhibitory synaptic plasticity: El balance without firing
rate setpoint. a, Schematic of the simulations used in cand d. A postsynaptic
neuron receives 800 excitatory and 200 inhibitory synapses that undergo
plasticity (*). b, Schematic of changes in synaptic weight, Aw, as a function of the
postsynaptic neuron’s firing rate for spike-based models with stable setpoints.
Top, firing rate setpoint from ESP is higher than the one from ISP. Bottom, firing
rate setpoint from ISP is higher than the one from ESP. The interval between the
setpoint is defined as Ar. ¢, Combination of excitatory® and inhibitory’ spike-
based rules. Top, firing rate of a postsynaptic neuron receiving excitatory and
inhibitory inputs. Red and blue lines indicate the firing rate setpoints imposed
by the excitatory® and inhibitory’ spike-based learning rules, respectively. The
parameters of the learning rules were chosen so that the setpoints coincide
during the first and third quarters of the simulation. During the second and
fourth quarters of the simulation, the setpoint imposed by the excitatory
spike-based learningrule isincreased and decreased, respectively. Middle, ratio
between excitatory and inhibitory currents. Bottom, average excitatory (red)
and inhibitory (blue) synaptic weights of input neurons normalized by their
initial value. d, Same as c for the combination of excitatory spike-based’ and co-
dependent inhibitory synaptic learning rules. The blue line in the middle panel
indicates the balance setpoint imposed by the co-dependent inhibitory synaptic
plasticity rule.

excitatory andinhibitory synapses are plastic (Fig. 4a), the fixed points
fromboth rules must match to avoid acompetition between synapses
dueto the asymmetric nature of excitatory and inhibitory plasticity with
firing rate setpoints* (Fig. 4b) that would result in synaptic weights to
either diverge or vanish (Fig. 4c). Co-dependent inhibitory plasticity
does not have such a problem because thereis no firing rate setpoint.
Instead, it modifies inhibitory synapses based on an explicit setpoint
for excitatory andinhibitory currents (ain equation (2)), allowing vari-
ous stable activity regimes for a postsynaptic neuron while avoiding
competition with excitatory plasticity and maintaining a state of bal-
ance between excitation and inhibition (Fig. 4d).

Receptive field plasticity

Sensory neurons have been shown to respond more strongly to some
features of stimuli than others, which is thought to facilitate recog-
nition, classification and discrimination of stimuli. The shape of a
neuron’s response profile—that is, its receptive field—is a result of its
input connectivity”. Receptive fields are susceptible to change when
an animal learns*, with strong evidence supporting receptive field
changes as a direct consequence of synaptic plasticity*.

Toassess the functional consequence of co-dependent plasticity,
we studied its performancein receptive field formation for both excita-
tory and inhibitory synapses jointly. We simulated a postsynaptic LIF
neuronreceiving inputs from eight pathways (Methods) that represent,
for example, different sound frequencies® (Fig. 5a). In this scenario,
inhibitory activity acted as agating mechanism for excitatory plastic-
ity, by keeping the learning rate ataminimum wheninhibitory currents
were high?® (Fig. 1d). Excitatory input weights could, thus, change
only during periods of presynaptic disinhibition—that s, the learning
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simulation from b. Weights are stable until inhibition is downregulated for
a200-ms window (*), during which the green pathway (4) has the strongest
activation (Extended Data Fig. 4b). Consequently, the preferred input pathway
switches from 6 (pink) to 4 (green). d, Snapshots of the average synaptic weights
for the different pathways before (top), immediately after plasticity induction
(middle) and at the end of the simulation as indicated by the x symbolsinband c.
e, Experimental data? show receptive field profiles of excitatory and inhibitory
inputs before (top) as well as 30 minutes (middle) and 180 minutes (bottom)
after pairing of non-preferred tone and nucleus basalis activation. Error bars
indicate s.e.m. Experimental data were adapted from ref. 21 with permission

(we refer to ref. 21 for information about sample sizes and statistical analysis).

window (Extended Data Fig. 4)—and were otherwise stable (Fig. 5b,c).
In our simulations, we initially set all excitatory weights to the same
strength. Areceptive field profile emerged at excitatory synapses after
a period of strong stimulation of pathways during the first learning
window. The acquired excitatory receptive profile remained stable
(static) after the learning period (Fig. 5b, top). Inhibitory synapses
changed on a slower timescale (Fig. 5b, bottom) and, due to the spike
timing dependence of co-dependent ISP, developed a co-tuned field
with the excitatory receptive field (Fig. 5d, top). Inspired by experimen-
tal work”, we then briefly activated a non-preferred pathway duringa
period of disinhibition (Fig. 5¢, top), altering the tuning of excitatory
weights and making the previously non-preferred pathway ‘preferred’
(Fig. 5d, middle). This change in tuning happened thanks to the Heb-
bian component of the co-dependent excitatory plasticity rule that
induced LTP in the active pathway and the heterosynaptic plasticity
component triggering LTD in pathways that were inactive during the
learning window, similar to receptive field plasticity reported in mice
visual cortex in vivo'. As before, inhibitory weights were reshaped by
co-dependent ISP to a co-tuned field with the most recent excitatory
receptive field (Fig. 5c, bottom), reaching a state of detailed balance,
inwhichexcitatory andinhibitory weights are co-tuned based on their
input preference’® (Fig. 5d, bottom). Plasticity of both excitatory and
inhibitory inputs, thus, mimicked results from rat auditory cortex”
(Fig. 5e).

Receptive field formation followed by a reshaping of stimulus-
tuned excitation and co-tuned inhibition was successful only when
the learning rules were co-dependent (see Supplementary Fig. 3 fora
comparison with spike-based and voltage-based models). Moreover,
either fastinhibitory plasticity or weak inhibitory control over excita-
tory plasticity disrupted the formation or stability of receptive fields
(Extended DataFig.5). When excitatory and inhibitory plasticity oper-
ated at similar timescales, inhibitory plasticity prevented excitatory
weights to change during disinhibition, because any externally induced
decrease in inhibition was quickly compensated for by inhibitory
plasticity (Extended Data Fig. 5a—c). With reduced inhibitory con-
trol, excitatory weights fluctuated wildly (Extended Data Fig. 5d,e).
Although a preferred input signal could be momentarily established,
the new preference was soon lost because baseline levels of inhibi-
tion were not blocking ongoing excitatory plasticity (Extended Data
Fig. 5f).

Dendritic clustering with single or mixed feature selectivity
The dendritic tree of neurons is an intricate spatial structure ena-
bling complex neuronal processing that is impossible to achieve in
single-compartment neuron models**. To assess how our learning
rules affected the dendritic organization of synapses, we attached
passive dendritic compartments to the soma of our model. Dendritic
membrane potentials could be depolarized to values well above the
somatic spiking threshold depending on their proximity—that is,
electrotonic distance—to the soma (Fig. 6a). These super-threshold
membrane potential fluctuations gave rise to larger NMDA and GABA ,
current fluctuations in distal dendrites (Fig. 6b). Like in the single
compartmental models, when excitation and inhibition were unbal-
anced (that is, when receiving uncorrelated inputs), distal dendrites
could undergo fast changes due to the current-induced high learn-
ing rates for excitatory plasticity (Fig. 6b, thick red line). However,
when currents were balanced (that is, when receiving correlated
excitatory and inhibitory inputs), larger inhibitory currents gated
excitatory plasticity ‘off’ despite strong excitation (Fig. 6b, thick blue
line). Additionally, the larger the distance of a dendrite to the soma
and, consequently, weaker passive coupling® (Fig. 6¢), the smaller
the influence on the initiation of postsynaptic spikes (Extended Data
Fig. 6).

Synapses thus developed differently according to the activity of
their neighboringinputs and according to somatic proximity (Fig. 6d).
When most excitatory inputs onto a dendritic compartment were
co-active—that is, originated from the same source (for example,
stimulus feature)—their co-active synapses were strengthened,
creating a cluster of similarly tuned inputs onto the compartment
(Fig. 6d, middle). Uncorrelated, independently active excitatory
synapses weakened and eventually faded away (Fig. 6d, middle). In
contrast, when more than a certain number of excitatory inputs were
independent, co-active synapses decreased in weight and faded,
whereas independently active excitatory synapses strengthened
(Fig. 6d, right). The number of co-active excitatory synapses neces-
sary for a dendritic compartment to develop single feature tuning
varied with somatic proximity and whether excitation and inhibi-
tion were matched (Fig. 6e,f and Extended Data Fig. 7). Notably, in
the balanced state, substantially more co-active excitatory synapses
were necessary to create clusters at distal than at proximal dendrites
(Fig. 6e), because only large groups of co-active excitatory synapses
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atthe soma.b, NMDA (red) and GABA, (blue) currents as a function of membrane
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ref. 45 with permission. d, Schematic of the synaptic organization onto two
dendrites (left). In our simulations, both dendrites are connected with the same
coupling strength to the soma. The synapses onto one dendrite are plastic for
us to assess the effect of co-dependent plasticity, whereas the synapses onto the
other dendrite are not plastic to provide background noise mimicking all other
dendrites. Each line represents a synapse, with co-active synapses bearing the
same color. Examples of clustering of co-active (middle) orindependent (right)
synapses resulting in single or mixed feature selectivity, respectively, at the level
of asingle dendrite. Line length indicates synaptic weight in arbitrary units.

e, Clusteringindex as a function of the size of the co-active input group for distal
(orange) and proximal (yellow) dendrites with independent (top) and matching
(bottom) excitatory and inhibitory inputs. Clustering index is equal to 1 (1)
when only co-active (independent) synapses connected onto a given dendritic
branch survived and O when all synapses survived (Methods). f, Clustering
index (color coded) as a function of the size of co-active input group (x axis) and
the distance from the dendrite to the soma (y axis) forindependent (top) and
matching (bottom) excitatory and inhibitory inputs. Dark green indicates single
feature selectivity, whereas brown indicates mixed feature selectivity. Indep.,
independent; no plast., not plastic; Thr., threshold.

could initiate LTP-inducing pre-before-post spike pairs (Extended
Data Fig. 6). Thus, single feature or mixed selectivity emerged in our
model depending on the branch architecture of the dendritic host
structure (Fig. 6f). The resulting connectivity of our simulations, for
initially uncorrelated (and, thus, unbalanced) excitatory and inhibitory
inputs (Fig. 6f, top), reflects experimental evidence of local dendritic
clusters of neighboring excitatory synapses connected onto pyramidal
neurons in layer 2/3 of ferrets’ visual cortex*®. Moreover, our results

were inline with observationsin CA3 pyramidal neurons of rats where
alarger proportion of clusters of excitatory connections was found in
proximal regions of apical dendrites* (Fig. 6f, bottom).

Transient amplification in recurrent spiking networks
Uptohere, we explored the effects of co-dependent synaptic plasticity
inasingle postsynaptic neuron. However, recurrent neuronal circuits
typically amplify instabilities of any synaptic plasticity rules at play®*.
We thus investigated co-dependent plasticity in arecurrent neuronal
network of spiking neurons with plastic excitatory-to-excitatory (E-E)
andinhibitory-to-excitatory (I-E) synapses (Methods and Fig. 7a). Naive
network activity was approximately asynchronous and irregular, with
unimodal membrane potential distribution (Extended DataFig. 8). Dur-
inglearning, neurons began to alternate between hyperpolarized and
depolarized states (Fig. 7b,c). Excitatory neurons with longer periods
of depolarization developed strong (E-E) output synapses and weak
(E-E) input synapses. Vice versa, neurons with longer periods of hyper-
polarization developed weak output synapses but strong excitatory
input synapses (Fig. 7d,e). The network eventually stabilized in a high
conductance state*® that was driven mainly by the excitatory current
setpoint set by the co-dependent excitatory plasticity model (Extended
DataFig. 8). The final connectivity matrix featured opposing strengths
of input and output E-E connections—that is, excitatory neurons with
strong (E-E) output synapses developed weak (E-E) input synapses
and vice versa (Fig. 7f,g)—with I-E connections that were correlated to
the E-E input weights of each neuron (Fig. 7h). Notably, this structure
in the learned connectivity matrix depended on the balancing set-
pointterm of the co-dependentinhibitory plasticity model (Fig. 7iand
Extended Data Fig. 9a-c; ain equation (2)). For asetpointa=E//<1,
strong inhibitory currents effectively matched excitatory inputs, not
allowing any weight asymmetry to emerge (Extended Data Fig. 9, top
row).Fora >1.2, periods of network-wide high and low firing rates due
to synchronized hyperpolarized and depolarized states (Extended
DataFig. 9, bottom row) led to symmetric connections. For1<a <1.2,
astrong asymmetry of weights emerged (Fig. 7i and Extended Data
Fig.9, middle row) that resulted inawide distribution of baseline firing
ratesin the same network (Fig. 7j, k), similar to what has been observed
in cortical recordings in vivo®.

Toinvestigate the network’s response to perturbations, we deliv-
ered various stimulus patterns to the network (Methods). Before the
external stimulation, network neurons were in astate of self-sustained
activity, not receiving any external input. During a 1-s stimulation,
used to perturb the network’s dynamics, each of the neuronsreceived
external excitatory spikes with a constant, pattern-specific and
neuron-specific firing rate (Methods). Randomly selected stimulus
patterns (uniformly distributed firing rates) resulted in relatively
muted responses (Fig. 8a,b, ‘stimulus R.) similar to the naive network
responses (Extended Data Fig. 10a,b). To identify specific patterns
that affected the firing rate dynamics more greatly, we calculated a
hypothetical impact of a neuron on the network dynamics, defined
as its baseline firing rate (in the self-sustained state) multiplied by its
total output weights (according to Fig. 7g,j), giving us a measure of
howmuchavariationinfiring rate of a particular neuron would affect
the network. To quantify observed network responses, we calculated
the ¢,-norm of the firing rate deviations frombaseline, which takes into
account both positive and negative deviations from baseline equally
(thatis, it is the sum of the square of the individual firing rates minus
the baseline; Methods), allowing us to find large transients even when
the rate deviations were increased and decreased in equal amounts.
The most impactful perturbation stimuli were observed in a network
with asymmetric E-E connectivity (Fig. 7f-h). Here, individual neuron
responses ranged from small firing rate deflections to large, transient
events during or after the delivery of the stimulus that could last several
seconds (Fig. 8a,b, ‘stimuli 1-4’), similar to in vivo recordings during
sensory activity and movement production® in mammalian systems.
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Fig.7|Recurrent network of spiking neurons develops an asymmetric
connectivity pattern after learning period with co-dependent synaptic
plasticity. a, Network of 1,000 excitatory and 250 inhibitory neurons.
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neurons are plastic (indicated by *). b, Histogram of the membrane potential
during the learning period. Spatial: instantaneous (at a given timestep of the
simulation), taking into account all excitatory neurons. Temporal: asingle
excitatory neuron over 300 s. Both: all excitatory neurons over 300 s. ¢, Examples
of membrane potential dynamics during periods of depolarization (left) and
hyperpolarization (right). d, NMDA (red) and GABA, (blue) currents as a function
of membrane potential (as in Fig. 6b), highlighting the possible excitatory weight
change during periods of hyperpolarization (green bar) and depolarization
(yellow bar). e, Sum of excitatory weight changes per second as a function of the
membrane potential of the presynaptic (top) and the postsynaptic (bottom)
neuron of the connection. Left and right show examples of two distinct neurons
of the network. Dots show the amount of change in consecutive 1-s bins given

the average membrane potential during that bin. f-h, Mean excitatory input

() and output (g) connection and inhibitory input connection (h) received per
excitatory neuron before (gray) and after (pink) learning. Neurons are ordered
from strongest to weakest mean excitatory input connection after alearning
period of 10 h. i, Pearson correlation between mean excitatory input and

output connections (red) and between mean excitatory and inhibitory input
connections (blue) as a function of the balance term used in the co-dependent
inhibitory plasticity model. j k, Firing rate distribution (j) and as a function of
theratio between input excitatory and inhibitory synapses (k), before (gray) and
after (pink) the learning period. Mem. pot., membrane potential.

The maximum response amplitude resulted from a stimulation pattern
in which excitatory neurons with big hypothetical impact and inhibi-
tory neurons with small hypotheticalimpact received the strong excita-
tory input currents (Fig. 8a,b, ‘stimulus 1’). Other combinations (for
example, shuffling 75% of the ‘stimulus 1’ pattern; Methods) generated
intermediate response amplitudes (Fig. 8a,b, ‘stimuli2-4’). Both naive
networks and networks with symmetric connectivity (Fig. 7i,a = 0.9 and
a=1.4)failed to generate large deviations from baseline after stimulus
offset (Extended Data Fig. 10), confirming that co-dependent plasticity
shapedthe connectivity structure to allow for transient amplification.

Finally, the activity of transiently amplified population dynamics could
be used to control the activity of a readout network with two output
units to draw complex patterns (Fig. 8c,d).

Discussion

Hereweintroduce ageneral framework to describe synaptic plasticity
asafunction of synapse-specific (presynaptic and postsynaptic) inter-
actions, including the modulatory effects of nearby synapses. We built
excitatory and inhibitory plasticity rules according to experimental
observations, such that the effect of neighboring synapses could gate,
control and eveninvert the direction of efficacy changes™ '***. Notably,
excitatory and inhibitory plasticity rules were constructed such that
they strove toward different fixed points (constant levels of excitatory
currents for excitatory plasticity and El balance for inhibitory plastic-
ity), thus collaborating without mutual antagonism.

In our model, inhibition plays an important role in control-
ling excitatory plasticity, allowing us to make several predictions.
First, inhibitory plasticity must be slower than excitatory plasticity.
Rapid strengthening of inhibitory weights could compensate for the
decreased inhibition during learning periods, effectively blocking
excitatory plasticity. Second, inhibitory control over excitatory plas-
ticity has to be relatively strong. That is because the mechanism that
allows excitatory weights to quickly reorganize during periods of disin-
hibition was also responsible for long-term stability of such modifica-
tionswheninhibitory activity was at baseline. Without strong control,
excitatory weights constantly changed due to presynaptic and post-
synaptic activity, drifting from the learned weight pattern. Finally, our
model also predicts that dendrites on which synaptic contacts of both
excitatory andinhibitory presynaptic neurons have correlated activity
likely forma connectivity patternreflecting single feature selectivity.
Inthis scenario, the initial connectivity pattern will determine whether
a dendritic region may respond to only a few or many input features,
which might, for example, give rise to linear or nonlinear integration
ofinputs at the soma**.

Inour model, neighboring excitatoryinfluence on synaptic plastic-
ity was driven by slow, NMDA-like excitatory currents. Consequently,
the same pattern of presynaptic and postsynaptic spike times could
produce distinct weight dynamics depending on the levels of postsyn-
aptic depolarization (due toanincreasein excitatory currents through
NMDA channels caused by the release of the magnesium block*’). How-
ever, anincreasein excitatory activity canlead toarise inthe amplitude
of excitatory currents (thus also eliciting stronger LTP), even without
depolarization of the postsynaptic neuron (when, for example, inhibi-
tion tightly balances excitation). Postsynaptic membrane potential and
presynaptic spike patterns, thus, independently control excitatory
plasticity inour model. Thisisin line with cooperative views on synaptic
plasticity’® and experimental findings showing that high-frequency
stimulation, which usually elicits LTP, produces LTD when NMDA ion
channels are blocked®'. Further experimental data are necessary to
disentangle the specific role of excitatory currents and postsynaptic
firing frequency in shaping excitatory synaptic plasticity and, thus,
unveiling the precise biological form of co-dependent plasticity.

The setpoint dynamics for excitatory currents can beinterpreted
as amechanism that normalizes excitatory weights by keeping their
total combined weights within a range that guarantees a certain level
of excitatory currents, similarly to homeostatic regulation of excitatory
bouton size in dendrites®. Our rule accomplishes this homeostatic
regulation through alocal combination of Hebbian LTP and heterosyn-
aptic weakening, similarly to what has been reported in dendrites of
visual cortex of mice in vivo™. Our results show how such plasticity can
develop a stable, balanced network that amplifies particular types of
input, generating complex spatiotemporal patterns of activity. These
networks developed such that they emulate motor-like outputs for
both average and single-trial experiments®*** without specifically
being tuned for it. In our simulations, the phenomenon of transient
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amplification emerged as a result of the network acquiring a stable
high conductance state*® with asymmetric excitatory—excitatory con-
nectivity. This state was established by an autonomous modification of
excitatory weights toward asetpoint for excitatory currents combined
with periods of hyperpolarized and depolarized membrane potential.
Notably, excitation was balanced by inhibition due to the inhibitory
weights self-adjusting toward a regime of precise balance.

Our set of co-dependent synaptic plasticity rules integrates the
mathematical formulation of a number of previously proposed rules
that rely on spike times®”’, synaptic current®*® with implicit voltage
dependence®”, heterosynaptic weakening’ and neighboring syn-
aptic activation®® in a single theoretical framework. In addition to
amplifying correlated input activity by way of controlling the efficacy
of a synapse, each of the mechanisms in these previous models may
replicate a different facet of learning that was not fully explored with
our model and may serve as a starting point for future modifications
ofthe co-dependent plasticity rules that we put forward. For example,
spike-based plasticity rules can maintain a set of stable firing rate set-
points”**, Rules based on local membrane potentials®, on the other
hand, are ideal for spatially extended dendritic structure, making it
possible to detect localized activity and allowing a spatial redistribu-
tion of synaptic weights toimprove, for example, associative memory
when multiple features are learned by a neural network®. Similarly,
calcium-influx-related models® are ideal to incorporate information
about presynaptic activation, explaining the emergence of binocular
matching in dendrites®. Neighboring activation models” emulate
neurotrophic factors that influence the emergence of clustering of
synapses during development.

We unified these disparate approaches in a four-variable model
thataccounts for theinterplay between different synapse types during
learning and captures alarge range of experimental observations. We
focused on only two types of synapses—that is, excitatory-to-excitatory
and inhibitory-to-excitatory synapses, in an abstract setting—but the
simplicity of our model allows for the adaptation of a larger number
of synaptictypes, including, for example, modulatory signals present
in three-factor learning rules®’. Faithful modeling of a broader range
of influences will require additional experimental work to monitor
multi-cell interactions by way of, for example, patterns of excitatory
input withglutamate uncaging® or all-optical interventionin vivo®".
Looking at synaptic plasticity from a holistic viewpoint of integrated
synaptic machinery, rather thanas aset of disconnected mechanisms,
may provide a solid basis to understanding learning and memory.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Neuron model

Point neuron. Inthe simulations with a postsynaptic neuron described
by asingle variable (point neuron), weimplemented a LIF neuron with
after-hyperpolarization (AHP) current and conductance-based syn-
apses. The postsynaptic neuron’s membrane potential, u(¢), evolved
according to afirst-order differential equation:

T 20 = —[u(0) — tyese] — up(O[U(O) — Enpp] + Rl (O

—Zampa(O[U(®) — Eampal — 8casa, (O[U(®) — Egaga, ] (©)
—8nmpa(OHNvpa U(O)[u(®) — Enmpals

where 7, is the membrane time constant (7, = RC; leak resistance x
membrane capacitance); u, is the resting membrane potential; g,,p(¢)
isthe conductance of the AHP channel with reversal potential £,p; /... (£)
isanexternal current used to mimic experimental protocolstoinduce
excitatory plasticity; and g,(t) and Eyare the conductance and the rever-
sal potential of the synaptic channel X, respectively, with X={AMPA,
NMDA, GABA ,}. Excitatory NMDA channels were implemented with a
nonlinear function of the membrane potential, caused by aMg?* block,
whose effect was simulated by the function:

Hympa(@) = (1 + anmpa eXp[bywpa (U — ENMDA)])_ls 4)

where ayypa and byps are parameters®’. The AHP conductance was
modeled as:

dgane(®) _ _ 8anp()

dl’ TAHP + AAHPSpost(t)’ (5)

where 7, is the characteristic time of the AHP channel; A, is the
amplitude of increase in conductance due to a single postsynaptic
spike; and S, (¢) is the spike train of the postsynaptic neuron:

Spost(t) = Zk: 6(t - flzpost)’ (6)
where B post isthe time of the keh spike of the postsynaptic neuron, and
6(-)isthe Dirac’s delta. The synaptic conductance was modeled as:

dgx(®) _

8x(©)
i s > w80, @)

JeEX

where 7,is the characteristic time of the neuroreceptor X. The sumon
the right-hand side of equation (7) corresponds to presynaptic spike
trains weighted by the synaptic strength wj(¢). The presynaptic spike
train of neuronjwas modeled as:

S0 =6(¢-t;,), ®)
k

where t; . is the time of the kth spike of neuron j. The postsynaptic
neuron e(icited anaction potential whenever the membrane potential
crossed a spiking threshold from below. We simulated two types of

threshold: fixed or adaptive.

« Fixed spiking threshold. A fixed spiking threshold was imple-
mented as a parameter, u,,. When the postsynaptic neuron’s
membrane potential crossed u,, from below, a spike was gener-
ated, and the postsynaptic neuron’s membrane potential was
instantaneously reset to u,. and then clamped at this value for
the duration of the refractory period, 7, All simulations with a
single postsynaptic neuron were implemented with a fixed spik-
ing threshold (Figs. 2-6, Extended Data Figs. 2, 3 and 5-7 and
Supplementary Figs. 3 and 4), except the simulations in which
the action potential was explicitly implemented (Extended Data
Fig.2c,g k and Supplementary Figs. 2 and 3d; details in the Sup-
plementary Modeling Note).

» Adapting spiking threshold. For the simulations of the recurrent
network, we used an adapting spiking threshold, u,,(¢). When the
postsynaptic neuron’s membrane potential crossed uy,(t) from
below, a spike was generated, and the postsynaptic neuron’s
membrane potential was instantaneously reset to u,... without any
additional clamping of the membrane potential (the refractory
period that results from the adapting threshold is calculated below).
Upon spike, the adapting spiking threshold, u,(¢), was instantane-
ously set to u?,, decaying back to its baseline according to:

dug, (¢
Tth _:jht( ) = —Um () + U?h, 9

where 7, is the decaying time for the spiking threshold variable,
and uj is the baseline for spike generation. The maximum depo-
larization of the membrane potentialis linked to the reversal poten-
tial of NMDA, and, thus, the absolute refractory period can be

calculated as:
* 0
u, —u
th th
Tref=Tthln< ) )s
Enmpa — Uy,

whichis the time the adapting threshold takes to decay to the same
value as the reversal potential of the NMDA channels.

(10)

Two-layer neuron. The two-layer neuron was simulated as acompart-
mental model with aspiking somathat receives input from N dendritic
branches. The soma was modeled as a LIF neuron and the dendrite as
aleaky integrator (without generation of action potentials). Somatic
membrane potential evolved according to:

dusoma () _

de _[usoma(t) - urest] _gAHP(t)[usoma(t) - EAHP]

Ne (11)
- Z:lji[usoma(t) —u(0)].

Thesoma of the two-layer neuronwas similar to the point neuron (equa-
tion (3)); however, synaptic currents were injected on the dendritictree,
whichinteracted with the soma passively through the last termonthe
right-hand side of equation (11),/;being the conductance that controls
the current flow due to connection between the soma and the ith den-
drite. In equation (11), u,(¢) is the membrane potential of the dendritic
branch i. When the somatic membrane potential, u,,,,(t), crossed the
threshold, u,,, from below, the postsynaptic neuron generated anaction
potential, being instantaneously reset to u,... and then clamped at this
value for the duration of the refractory period, 7,

Dendritic compartments received presynapticinputs aswell as a
sink current from the soma. The membrane potential of the ithbranch,
u,(t), evolved according to the following differential equation:

m D = —{ui(6)  threse] ~4(0) — Usoma ()]
—Zampa,i(O[Ui(t) — Eavpal
—8GABA, i (O[Ui(8) — Egaa, |

—gnmoa,i (OHNvpa (Ui ()[4 (€) — Enmpal-

(12)

Spikes were not elicited in dendritic compartments, but, due to the
gating function Hyypa(u) and the absence of spiking threshold, voltage
plateaus occurred naturally when multiple inputs arrived simultane-
ously on a compartment (Fig. 6a). We simulated two compartments
(N =2) with the same coupling with the soma, /;: one whose synapses
changed according to the co-dependent synaptic plasticity model and
one with fixed synapses that acted as a noise source.
« Coupling strength as function of electrotonic distance.
The crucial parameter introduced when including dendritic
compartments was the coupling, /, between soma and the den-
dritic compartment i. Steady changes in membrane potential
at the soma are attenuated at dendritic compartments, and this
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attenuation has been shown to decrease with distance. Without
synaptic inputs and steady membrane potential at both soma
and dendritic compartments, equations (11) and (12) are equal to
zero, whichresultsin:

a;

e (13)

Ji=

where qg;is the passive dendritic attenuation of the dendritic com-
partmenti,

Ei — Urest
Q= ——-",

Usoma — Urest

(14)

with uy,m,being a constant steady state held at the somaand u;being
theresulting steady state at the dendritic compartmenti. The cou-
plingbetween somaand the dendriticcompartmentiisafunction
of distance as follows:

Ji=fold) = (15)

%:l *Qnt-

whered.isaparameter that we fitted from experimental data from
ref. 45 (Fig. 6¢). We used this fitted parameter to approximate the dis-
tancetothesomain Fig. 6f and Extended DataFigs. 6 and 7 according
to the soma-dendrite coupling strength used in our simulations.

Co-dependent synaptic plasticity model

The co-dependent plasticity model is a function on both spike times
and input currents. We first describe how synaptic currents are
accounted and then how excitatory and inhibitory plasticity models
wereimplemented. We defined a variable E(t) to represent the process
triggered by excitatory currents thatinfluence plasticity at the synapse
connecting a presynaptic neuron to the postsynaptic neuron. We
considered NMDA currents, which reflect influx of calcium into the
postsynaptic cell, as the trigger for biochemical processes that
are represented by the state of E(¢). Its dynamics are described by the
weighted sum (Gaussian envelope) of the synapse-specific filtered
NMDA current, Ei(t),

E® = 3 £ OE(D, (16)

keE

where f{ (. k) is the function describing the effect of synapse kin the
plasticity of synapsej (based on physical distance considering that
both synapses are connected onto the same postsynaptic neuron;
detailsbelow). The synapse-specific filtered NMDA current dynamics
aregivenby:

dE;(t)

S 17)

= —E{(6) — gnmpa (OHnmpa ((©) [u(t) — Enmpal »
where 7. is the characteristic time of the excitatory trace; u(t) is the
postsynaptic membrane potential (dendritic membrane potential for
the two-layer neuron model); and gywpa (¢) is the conductance of the
Jjthexcitatory synapse connected onto the postsynaptic neuron, with
dynamics given by:

dgnmpa,i(0) _ _gNMDA,j(f)

= 18
de TNMDA 18)

+ w;(©)S;(0).

Inhibitoryinputs contributed to the plasticity model through avariable
I(¢). For the inhibitory trace, we used GABA, currents, which reflect
influx of chloride, as the trigger of the process described by /(¢). The
inhibitory trace evolved as:

di(®

n— =

ar 19)

=I(t) + ZgGABAA (0 [u(®) — Egaga, | »
where t;is the characteristic time of the inhibitory trace, and ggaga, «(6)
is the conductance of the kth inhibitory synapse connected onto the
postsynaptic neuron (or dendritic compartment) described as:

dgcasa, k(O _ _gGABAA,k([)
dt TGABA,

+ Wi(OSK(D). (20)

Notice thatboth E(t) and /(¢) are in units of voltage because the conduct-
anceis unit free in our neuron model implementation (equation (3)).

Influence of distance between synapses. To incorporate distance-
dependent influence of the activation of a synapse’s neighbors onto
excitatory plasticity, weimplemented the function ff (i./)inequation
(16). For simplicity, we considered that the amplitude of the distance-
dependentinfluence decays with Gaussian-like shaped function of the

synapses’ distance:
1(axG V)
3
[_§<T) H , (@1

fEan = eXp[ 2(“5,”])) H N kéexp
where N isthe number of excitatory synapses; i is the index of synapse
undergoing plasticity; andjis theindex of theits neighboring synapse,
includingj = isothatthe strongest effectis theinflux of the excitatory
current by the synapse undergoing plasticity. In equation (21), the
term Ax(i, j) is the electrotonic distance between synapsesjand i, and
the parameter gis the characteristic distance (that is, standard devia-
tion) of the contribution of excitatory synapses for the variable E(t).
Theterminside curly brackets on the right-hand side of equation (21)
isanormalizing constant.

The sum of the co-dependent variables E(t) for a postsynaptic
neuron based on the synapse-specific filtered NMDA currents, E(¢),
canbewritten as:

500 - pgsoms|- Y| pos|-yeey]]
_EEE(L‘)EEeXp[ <Ax(1,/)) HNE k%f exp [ (Axi’k)) ]}—1 22)

~ Ne X E(0), for Ng > 1.
JeE

Withthe normalizationusedin equation (21), the average of the variable
E(t) isapproximately equal to the total synapse-specific filtered NMDA
currents, E;(t) (equation (16)), which is independent of o for a large
number of synapses (N; > 1). Notably, for very large o values (o> Ny),
all synapses influence each other’s plasticity equally, so that itsimple-

mentation can be simplified as:
E(0) = Y B0, ).

keE

(23)

Co-dependent excitatory synaptic plasticity. The co-dependent
excitatory synaptic plasticity model is an STDP model regulated by
excitatory andinhibitory inputs through E(t) and /(¢). The weight of the
Jjth synapse onto the the postsynaptic neuron (or dendritic compart-
ment), w(t), changed according to:

dw/(t)

= Pe(E(0). 1(1); S;(0), Spost (1))

= {[Avrex; OB ~ Are o OEOY [ Spos® 21

Ao (O5,00)exp [<(A2)'].

where A, 1p, Anecand A p are the learning rates of long-term potentiation,
heterosynaptic plasticity and long-term depression, respectively. The
additional parameter /* defines the level of control that inhibitory
activity imposes onto excitatory synapses, with parameter y defining
the shape of the control. Variables S,.(t) and S(¢) represent the
postsynaptic and presynaptic spike trains, respectively, as described
above for the neuron model (equations (6) and (8)). The trace of the
presynaptic spike train is represented by xj.*(t), and the traces of the
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postsynaptic spike train (with different timescales) are represented by
Yo and y-_ . (6). They evolve in time according to:

dxj+(t) xjf'(t)
dr = —T + Sj(t), (25)
oot ®  Vhou®
and
dy- (¢ (s
yPOSt( ) = _yPOSt( ) + Spost(t)- (27)

de [

Forvalues ofinhibitory tracelarger thanathreshold, /(t) > I, we effec-
tively blocked excitatory plasticity to mimic complete shunting of
backpropagating action potentials® or additional blocking mecha-
nisms that depend on inhibition?’. We implemented maximum and
minimum allowed values for excitatory weights, wt, =10 nS and
wE . =10-°nS, respectively.

Co-dependent inhibitory synaptic plasticity. Similar to the excita-
tory learning rule, the co-dependent inhibitory synaptic plasticity
is a function of spike times and synaptic currents. The weight of the
Jjthinhibitory synapse onto the postsynaptic neuron (or dendritic
compartment), w(t), changed over time according to a differential
equationgiven by:

dw;(® _ .
S = Gy(EO, K0 510, Spose(D) 08)

= AISPE}(O [Ej(t) - a’(t)] [ypost(t)sj(t) + xj(t)spost(t)] .

Parameters A,;p and a control the learning rate and the balance of excita-
toryand inhibitory currents, respectively. Variables x;(t) and y,..(t) are
traces of presynaptic and postsynaptic spike trains, respectively, that
create asymmetric STDP-like curve, with dynamics given by:

dypost(t) _ _ypost(t)

de TisToP * Spos() @9
and
dy(n x50
dr ~  Tistor 30 (30)

The STDPwindow is characterized by the time constant 7,s;pp. The vari-
able E(t) is given by equation (23). We implemented maximum and
minimum allowed values for inhibitory weights, w! ., = 70 nS and
w' . =1075nS, respectively.

Experimental protocols: Fig. 2b,c,e,f,h-j and Extended Data
Fig. 2d-k. We fitted three datasets with the co-dependent excitatory
synaptic plasticity model to asses its dependency on voltage—that is,
membrane potential (Fig. 2b)—on the frequency of presynaptic and
postsynaptic spikes (Fig. 2c) and on the effect of co-induction of LTP
at neighboring synapses (Fig. 2h-i).

+ Voltage-dependent STDP protocol. Following the original
experiments'®, we simulated five presynaptic and five postsyn-
aptic spikes at 50 Hz, with 10 ms between presynaptic and post-
synaptic spike times (pre-before-post; At = +10 ms), repeated 15
times with an interval of 10 s in between each pairing (Fig. 2b).
The more depolarized the membrane potential, the bigger
the effect of the NMDA currents, and, therefore, more LTP was
induced. We combined three different ways to depolarize the
postsynaptic neuron’s membrane potential: strength of synapse,
current clamp and backpropagating action potential (see the
Supplementary Modeling Note for details). Postsynaptic spike
times were directly implemented in the co-dependent plasticity
rule—that is, manually setting the spike times in equation (6),

spike times that were also used to generate backpropagating
action potentials (Supplementary Fig. 1; see the Supplementary
Modeling Note for details). We implemented a parameter sweep
on these three quantities (see the Supplementary Modeling
Note for details), measuring the average depolarization during
the pre-before-post interval of the simulation (200-ms interval
starting at the first presynaptic spike in each burst). Due to

the multiple ways to depolarize the postsynaptic membrane
potential, we plotted a region (instead of a single line) in Fig. 2b
indicating the possible weight changes for the same depolariza-
tion with the different depolarization methods.

«  Frequency-dependent STDP protocol. Following the
protocol from the original experiments®, we simulated 60
presynaptic and postsynaptic spikes with either At = +10 ms
(pre-before-post) or At =-10 ms interval (post-before-pre) with
firing rates between 0.1Hz and 50 Hz. In the simulations of the
frequency-dependent protocol (Fig. 2c), postsynaptic spikes
were induced by the injection of a current pulse, /., (¢) =3 nA,
for the duration of 2 ms. For a smooth curve, we incremented
presynaptic and postsynaptic firing rates in steps of 0.1 Hz (500
simulations per pairing in total). The increase in presynaptic
firing rate caused a bigger accumulation in NMDA currents,
whichincreased LTP (Extended Data Fig. 2a). In the simulations
with extra presynaptic partners (Fig. 2e,f and Extended Data
Fig.2d-k), we calculated the average synaptic change over 10
trials to account for the trial-to-trial variability due to the added
external Poisson spike trains.

« Distance-dependent STDP protocol. In the simulations of the
distance-dependent protocol (Fig. 2h-i), postsynaptic spikes
were induced by the injection of a current pulse, /,,.(t) =3 nA, for
the duration of 2 ms. We simulated 60 presynaptic spikes with
inter-spike interval of 500 ms, each followed by three postsyn-
aptic spikes with inter-spike interval of 20 ms. For Fig. 2h, we
varied the interval between the presynaptic spike and the first
postsynaptic spike in a three-spike burst, defined as A¢. For Fig.
2i, we simulated the above protocol (pre-before-burst) with an
interval At=5ms (‘strong LTP’) in a given synapse, followed by
the same protocol with At =35 ms (‘weak LTP’) in a neighboring
synapse (Ax=3 pm and o= 3.16 pmin equation (21)), varying the
interval between the strong and weak LTP inductions. For Fig. 2j,
we simulated a similar protocol as the one in Fig. 2i, but we fixed
the interval between the strong and weak LTP inductions (90 s)
and varied the distance between the synapses.

» Fitting. Fitting was done with brute force parameter sweep on
four parameters for Fig. 2b,c (each fit with different values): A;p,
Apeo Airp and 7. For Fig. 2h-j, a similar brute force parameter
sweep on five parameters was performed: A,p, Aper, Ao, Tr and o,
with the three plots having the same set of parameters.

Stability. The co-dependent plasticity model has arich dynamics that
involves changes in synaptic weights due to presynaptic and post-
synaptic spike times as well as synaptic weight and input currents. In
this section, we briefly analyze the fixed points for input currents and
synaptic weights for general conditions of inputs and outputs.
Considering each synapse individually, we can write the average
changeinweights (fromequation (24), ignoringinhibitory inputs) as:

(Z22) = (Spost® [A1eX (OB = AneVose OE D)

(31
—ALTDJ’,;OS((t)Sj(t)ll/J-(t)>t
(%)t = Aure(X OE(OSpos(0),
~Anex{Spos W hox OE D)), 32

~ALn{ SOV pos(OW(D),
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(%2), = Aol OE@Spen0),
_AhEt<Sp°5t(t)>t<ygost(t)>t<(lf}(t))2>t
Ao (S(0) Vpos O) (w/0)

(33)

where (-),is the average over a time window bigger than the timescale
of the quantities involved. In equation (33), we took into considera-
tion that presynaptic spike times are not influenced by postsynaptic
activity, and, thus, the average of the products in the last term on the
right-hand side of equation (32) is the equal to the product of the
averages. Additionally, we assumed no strong correlations between
E(t) and S,.(f) due to the small fluctuations of the variable E(t).
Correlations between presynaptic and postsynaptic spikes govern
the LTP term and, thus, cannot be ignored. They also depend on the
neuron model and amount of inhibition a neuron (or compartment)
receives. We can conclude from equation (33) that the weights from
silent presynaptic neurons will vanish due to the heterosynaptic
term. In our model, these weights can vanish only in moments of dis-
inhibition, when the inhibitory control over excitatory plasticity is
minimum.

For our analysis, we consider that all neurons of the network have
nearly stationary firing rates without strong fluctuations. Therefore,
the spike trains can be rewritten as average firing rates:

&), =V (34)
and the traces from the spike trains become:
CHOIER A7 (35)

where v;is the average firing rate of neuron,. The same is valid for the
postsynaptic neuron’s firing rate as well as all other traces.

We consider the outcome of the excitatory plasticity rulewhen LTD
isnot present, A 1, = 0, whichinforms us on steady state for excitatory
currents as acompetition between LTP and heterosynaptic plasticity
only. Moreover, we assume that the postsynaptic firing rate, v, is
proportional to the total NMDA current:

Vpost = V" (% ZEH) - “’l{i}ﬂ

JjeE 1

(36)

where (v;) and (w,) are the population average firing rate and weight of
inhibitory afferents, respectively,and v*, E*and w?are parameters that
depend onthe neuron model (see the Supplementary Modeling Note
for details). In this case, the steady state of the system is given by:

— 5(1_ (v,)(u{,))
2 viwy
A p=0
By @)\ Ay,
+ [_(1_M>] + A Ee
2 viwy Anet Typost V*

Thisis also the maximum value for excitatory currents forwhen LTD is
present, as LTD can only decrease synaptic weights. To arrive in equa-
tion (37), we set equation (33) to zero and summed over j assuming
weak correlations between presynaptic and postsynaptic spikes so
that (xH(OF;(0)Spost (1)) = (X7 (D) (Ej(0) {Spost (D)), (see the Supplementary
Model’ing Note for dettailsi. Notice that this fixed pointdepends onthe
presynaptic firing rates and the model parameters. For very low post-
synaptic firing rates and weak excitatory weights, assuming two con-
secutive postsynaptic spikesand, thus, setting y;, = 1(ratherthanan
average ()F VpostTypost < 1), we find athreshold for which thelearn-

)=
post
ing rate of heterosynaptic plasticity induces vanishing of synapses:

L

JeE

(37)

ALTP v <vj>T+ Typost

E* [1 + Typost (V* - —<V[foi>)]

1

Apet = (38)

Forarecurrent network, we can assume that v;= v, and thus:

_max,rec

ALeT.
E — JLTPT+

= V). (39)
A het Typost J

Notice that the maximum excitatory current onto aneuronembedded
inarecurrent network isindependent on firing rate of presynapticand
postsynaptic neurons.

InFig.3e-g, wesimulated the co-dependent excitatory plasticity
model with non-zero Ay, Ap and A, but without inhibitory control.
Eachexcitatory input was simulated with a constant presynaptic firing
rate, 0 <v;<18 Hz, uniformly distributed, while the firing rate of all
presynaptic inhibitory neurons was set to 18 Hz (details below). For
each corresponding value in the x axis of Fig. 3e-g, we simulated 40
trials (one point per trial is plotted). We separated these 40 trials into
four combinations of the parameters o and 7 (10 trials per parameter
set) to confirm the independence of the steady state on these param-
eters: 0=10 and 7:=1,000 ms; 6=1,000 and 7. =10 ms; and 0 =1,000
and 7; =1,000 ms. In Fig. 3e-g, we plotted the theory as equation (37).
InFig.3e, we plotted the learning rate for which weights may vanish as
adashed vertical line (equation (38)). The parameters from equation
(36) were fitted by varying excitatory and inhibitory weights without
any plasticity (see the Supplementary Modeling Note for details). Extra
postsynaptic spikes were manually added to the plasticity rule imple-
mentation (equation (6)) at1 Hz (Poisson process) to enforce plasticity
when excitatory inputs were too weak (compared to inhibitory inputs)
to elicit postsynaptic response. To test the effect of input firing rate and
LTD withweight dependency, we also simulated asimilar protocol (asin
Fig.3e) withdifferentlevels of excitatory input (all presynaptic neurons
with the same firing rate), LTD and inhibitory gating (Supplementary
Fig. 4). These simulations show that the excitatory input levels had
minimal effect on the fixed point of excitatory currents.

Applying the same idea to the co-dependent inhibitory synaptic
plasticity model, we get the following average dynamics for the jth
inhibitory weight:

(e

> = <AISP£}(t) [Ej(t) - a’(t)] [ypost(t)sj(t) + xj(t)spost(t)bt (40)
t

< duw;() @)

i >t ~ AISPE[E - ai] [2TistDP Vi Vpost | »

where I = ((t)),, and E(t) is the same for every inhibitory synapse con-
nected onto the postsynaptic neuron (equation (23)) so that
E= (E;(D),, E(D) = Ex(0), ¥, k . From equation (41), we can calculate the
steady state for the inhibitory learning rule, which results in the balance
between excitation and inhibition given by a:

(42)

~ilm

Synaptic changes for simple spike patterns and fixed excitatory
and inhibitory input levels. From equation (24) and equation (28),
we calculated changesin excitatory and inhibitory synapses for simple
spike patterns (Extended Data Fig. 1). We considered fixed excitatory
and inhibitory inputs and calculated changes in a given excitatory
synapse as:
Awg = [ALTP exp (— ?) E — Ape eXp (—%) E?
: ’ 3)

oo (-222) oo (1.

where At 1, is the interval between presynaptic and postsynaptic
spikes (pre-before-post); At, . is the interval between two consecutive
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postsynaptic spikes; and A¢, 1 is the interval between postsynaptic and
presynaptic spikes (post-before-pre). Inasimilar fashion, we calculated
changes at a giveninhibitory synapse as:

Aw, = AgpE (E — al)exp (-%) , (44)
1

where Atistheinterval between presynaptic and postsynaptic spikes,
being positive for pre-before-post and negative for post-before-pre
spike patterns.

Inputs

Single output neuron (feedforward network). Presynaptic spike
trains for single neurons were implemented as follows. A spike of a
presynaptic neuronjoccurredin agiven timestep of duration At with
probability p(¢) if there was no spike elicited during the refractory
period beforehand; 7 for excitatory and rﬁef for inhibitory inputs,
respectively; and zero otherwise. Different simulation paradigms were
defined by the input statistics, which are described below.

- Constantfiringrate. In Figs. 2e,f, 3 and 4, Extended Data Figs.
2d-k and 3 and Supplementary Figs. 2 and 4, presynaptic neu-
rons fired spikes with a constant probability outside the refrac-
tory period. For a constant probability p(¢) = p;, the mean firing
rate, v, was therefore:

1 o /At
V=g P=p) (45)

InFigs. 2e,fand 3c,d, Extended Data Figs. 2d-k and 3¢,d and Sup-
plementary Figs. 2 and 4, the firing rate for external neurons is
indicatedinthe captions andlegends. In Fig. 3c,d (colored points)
and Fig. 3e-g, as well as Extended Data Fig. 3, the probability of
external excitatory spikes was synapse specific, uniformly distrib-
uted: 0 <p;<0.002, whereas the probability of external inhibitory
spikes was p;=0.002, resulting in 0 <v;S18.1Hz and v;~18.1 Hz,
respectively, considering a timestep At = 0.1 ms and refractory
periods 7t . = 5msand 7! . = 2.5 ms. In Fig. 3¢,d (gray points), the
probability of external excitatory spikes was p;= 0.001, whereas
the probability of externalinhibitory spikes was p;= 0.002, result-
ingin v;= 9 Hz and v;= 18.1 Hz, respectively. In Fig. 4 and Supple-
mentary Fig. 4, the probability of external excitatory and inhibitory
spikes was p;= 5 x107* and p; =107 for excitatory and inhibitory
afferents, resulting inv;~ 4.87 Hzand v;= 9.75 Hz, respectively.

« Variable firing rate (pathways). In Figs. 5 and 6, Extended Data
Figs. 4-7 and Supplementary Fig. 3, presynaptic neurons fired
spikes according to an inhomogeneous Poisson process.

For the receptive field plasticity simulations (Fig. 5, Extended
DataFigs. 4 and 5 and Supplementary Fig. 3), we simulated eight
input pathways. We defined a pathway as a group of 100
excitatory and 25 inhibitory afferents (spike trains of presynap-
tic neurons) with two components: a constant background firing
rate and a fluctuating firing rate taken from an Ornstein-Uhlen-
beck (OU) process as described below. The background firing
rate for all 800 excitatory and 200 inhibitory afferents was given
by a probability of p° = 2 x 10-* for excitatory and pjl.’g =4x10"*
for inhibitory afferents, with respective background firing rates
of v ~ 198 Hzand v® ~ 3.96 Hz for excitatory and inhibitory
presynaptic neurons, respectively, considering a timestep
At=0.1ms and refractory periods of Tfef =5msand #ef =2.5ms.
The fluctuating firing rate of the pathway u was created from an
OU process. We used an auxiliary variable, y,(¢), that followed
stochastic dynamics given by:

YO 30
dt = Tou

+ §u(0), (46)

where 14 is the time constant of the OU process, and §,(t) isaran-
dom variable drawn from a Gaussian distribution with zero mean
and unitary standard deviation. The fluctuating probability was
then defined as:

LAGES HIRGIR 47)

where p*=0.025 is the amplitude of the fluctuations, and [-1, is
arectifying function. The probability of a presynaptic afferent
Jjbelonging to pathway u to spike due to both background and
fluctuating firing rate was given by:

pi6) =Pl +pE. 48)

InFig.5and Extended DataFig. 5, we implemented two learning
windows: first to learn the initial receptive field profile (Fig. 5b
and Extended Data Figs. 5a,d; see Extended Data Fig. 4a) and
later tolearn the new configuration of the receptive field profile
(Fig. 5cand Extended Data Fig. 5b,e; see Extended Data Fig. 4b).
During both learning periods, which lasted 700 ms, we set the fir-
ingrate of allinhibitory neurons to background firing rate (con-
stant) and the excitatory pathways as follows. During the first
500 ms, we set the probability of all excitatory neurons to spike
at background levels (constant). During the last 200 ms, we set
the probability of all excitatory neurons in each excitatory path-
way as o,p,.e With g representing the pathway index, 0 < a, <1
and p,.ive = 0.005. In the first learning period (Extended Data
Fig. 4a), we used a,=0.8, a;=a,=0.6, &, = ag= 0.4, a; = 0.3,
a,=0.2 and a, = 0.15. In the second learning period (Extended
Data Fig. 4b), we used a,=0.8, a;=a;=0.6, a, = a,= 0.4,
a,=a,=0.3and ag= 0.2.To explore the clustering effect on den-
driticcompartmentsin Fig. 6 and Extended Data Figs. 6 and 7, we
divided the input spikes in pathways to have co-active or inde-
pendent presynaptic afferents. We used the same implementa-
tion as for the receptive field simulations (described above), but
we changed the number of afferents per group inboth excitatory
and inhibitory presynaptic inputs. A dendritic compartment
received 32 excitatory and 16 inhibitory afferents. In Fig. 6e,f
and Extended Data Figs. 6 and 7, we used two conditions: inde-
pendent E &I and matching E & I. In both cases, the number of
excitatory afferents following the same fluctuating firing rate was
increased from1(0% co-active group size) to 32 (100% co-active
group size), whereas the remaining excitatory afferents had
independent fluctuating firing rates. For independent excita-
tory and inhibitory inputs (independent E &), all 16 inhibitory
afferents followed independent fluctuating firing rates. For
matching excitatory and inhibitory inputs (matching E & I), eight
inhibitory afferents followed the same fluctuationsin firing rate
as the co-active excitatory group (of different sizes), whereas
the other eight inhibitory afferents were independent.Details
of the learning period for Supplementary Fig. 3 can be found in
the Supplementary Modeling Note.

Recurrent network. The simulation with the recurrent network
had two parts: a learning period with both excitatory and
inhibitory plasticity active and a recall period without plasticity
mechanisms active.

Learning period. During the beginning of the learning period of
T=10 h, wekept the network receiving a minimum of external input
toavoidinactivity. Theimplementation of the external presynaptic
spike trains was as follows. Inthe beginning of the simulation (first
5 min of simulated time), each excitatory neuron of the network
received a spike train from one external source with constant prob-
ability p = 0.01 (timestep At = 0.1 ms) to mimic 100 presynaptic
afferents firing at 1 Hz. We decreased the probability to p =0.001
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foranother 5 min of simulated time and then set it top = 0.0001 for
the rest of the simulation.

Recall period. Toelicit transient amplification, we selected specific
neurons to receive external input based on the resulted weight
matrix and the neurons’ baseline firing rate. Before and after stimu-
lation, no external input was implemented, meaning that the net-
work wasinastate of self-sustained activity. During the stimulation
period, network neurons were stimulated with presynaptic spikes
with a constant firing rate with different amplitudes for each of the
five conditions (stimulus patterns) shown in Fig. 8. We ordered
excitatory and inhibitory neurons according to their baseline firing
rate multiplied by total output weight (from maximum to minimum
values), vj'?g > w;for excitatory neurons and vj'?g ¥ wyforinhibi-
tory neurons, where NV, is the total number of excitatory neurons
intherecurrent network. We assumed that the bigger the baseline
firing rate multiplied by the output weight, the bigger the neuron’s
influence on the rest of the network. Considering the order of
maximal influence to minimal influence, we used the following
patterns of stimulation. For stimulus 1, external firing rates were
decreased from pj? =0.5to ij = 0 for excitatory neurons and
increased from p]'. =0to pj‘. = 0.25for inhibitory neurons. For stimuli
2-4,25% of excitatory and inhibitory neurons (chosen randomly
from a uniform distribution) had the same external input as for
stimulus 1, whereas the remaining 75% had a random probability
ij =[0,0.5]and pj'. =[0,0.4]drawn fromauniformdistribution. For
stimulus ‘R., external firing rates had a random probability
ij =[0,0.5]and pj‘. =[0,0.4]for excitatory and inhibitory neurons,
respectively. Notice thatinthe pattern of stimulation that activated
excitatory neurons with large and inhibitory neurons with small
impact on the network (stimulus 1), amplification was the largest
among the stimulus patterns, and, when the pattern of stimulation
was random (stimulus ‘R.), the resulting network dynamics had
minimum amplification (Fig. 8a,b).

Clustering index for dendritic dynamics (Fig. 6e,f)
We defined the clustering index as:

<wco—active> - <windependent> (49)

Cctuser <wco—active> + <windependent> '
where (we,_.cive) 1S the average of the weights from the co-active excita-
tory group, and (Wingependent) iS the average of the weights fromallinde-
pendent groups after learning (see individual weight dynamics in
Extended DataFig. 7). When c..r = 1, the excitatory weights from the
co-active group survived after learning and independent ones van-
ished, whereas, for ¢, = —1, the opposite happened. Both co-active
and independent groups survived after learning when ¢ geer = O.

Training an output to draw complex patterns
To confirmwhether the dynamics of the recurrent network were capa-
ble of generating rich output dynamics, we connected all excitatory
neurons of our recurrent network to two linear readouts, x'and ), with
discrete timestep ¢, given by:

xt= Zj’.vz‘l air; +Xo + &

(50)
Y= Zj{vil bj’; +JYo + ‘5}

where & and ¢ are noise sources taken froma uniform distributionin
theinterval[-0.02, 0.02]. Thereadouts represented movementin the
horizontal and vertical directions of atwo-dimensional (2D) plane. The
parametersa;, b;, x,andy, were optimized to minimize the errorinboth
xandycoordinates:

(S

where e} and ) are the errorsin the horizontal and vertical directions,
respectively, and -1 < < 1and -1 < J' < 1are the coordinates of one
of four complex patterns. To calculate r/‘ we filtered the spike trains of
thejthneuron with a Gaussian filter with standard deviation o,=10 ms:

(kaTy’
50 exp |-
= Fi(t+ kAT, AT) ————————, (52)
S Y T 50 @n
2i=-s50 €XP | =

where F;(t, AT)is the jth neuron’s normalized firing rate deviation from
baseline (averaged over trials) in the time bin betweentand ¢t + AT
(AT=20ms):

1 1000 .t+AT , b
[0 Zier S Sievde ] -

i
J

7(t,AT) = , (53)

where rj'?g isthejthneuron’sbaseline firingrate. The timecourse of the
simulation was divided into 88 bins, and the period after the stimulus
offset was used to train the output weights to draw four complex pat-
ternsfor the four different stimuli from Fig. 8 that resulted fromdistinct
patterns of stimulation. Each training epoch (single pattern presenta-
tion) was simulated with the average firing rate of 1,000 trials and noise.
We used the same activity patterns fed to the two readouts, rj tocom-
pute the principal components shown in Fig. 8c. Figure 8d shows 10
trajectories for each pattern. We did not perform any benchmark test
asthisis beyond the scope of this study.

Spike-based and voltage-based plasticity models

In Fig. 4c, we combined excitatory’ and inhibitory’ spike-based
plasticity rules to show how they can destructively compete when
their firing rate setpoints do not match. In Fig. 4d, we combined
an excitatory spike-based plasticity rule’ with the co-dependent
inhibitory synaptic plasticity rule to show how the competition is
not present when the plasticity rules dynamics follow fixed points
for different quantities—here, ESP imposes a firing rate setpoint
while ISP imposes an input currents setpoint. In Extended Data
Fig. 2b,c,f,g,j,k, we compared the co-dependent excitatory plasticity
rule with spike based’ and voltage based® for the frequency-dependent
STDP protocol® with additional external inputs. In Supplementary
Fig. 3, we implemented spike-based**'** and voltage-based® mod-
els in a receptive field plasticity paradigm. The spike-based and
voltage-based plasticity models are described in the Supplementary
Modeling Note.

Simulations and analyses

All simulations were run with Intel Fortran 19.0.1.144. Parameters
used in simulations are defined in Supplementary Tables 1-9. Prin-
cipal component analysis of the recurrent network activity was per-
formed with MATLAB 2020b. Data collection and analysis were not
performedblinded to the conditions of the experiments. No data were
excluded.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Spike-timing-dependent plasticity data (ref. 15and ref. 16) are publicly
available from http://plasticity.muhc.mcgill.ca/page8.html.

Code availability
Relevant code for simulations reported in this study is available at
https://github.com/ejagnes/codependent_plasticity.

Nature Neuroscience


http://www.nature.com/natureneuroscience
http://plasticity.muhc.mcgill.ca/page8.html
https://github.com/ejagnes/codependent_plasticity

Article

https://doi.org/10.1038/s41593-024-01597-4

References

58. Wilmes, K. A., Sprekeler, H. & Schreiber, S. Inhibition as a binary
switch for excitatory plasticity in pyramidal neurons. PLoS
Computat. Biol. 12, e1004768 (2016).

59. VanRossum, M. C. W., Bi, G. Q. & Turrigiano, G. G. Stable Hebbian
learning from spike timing-dependent plasticity. J. Neurosci. 20,
8812-8821(2000).

Acknowledgements

We thank C. Currin, B. Podlaski and the members of the Vogels group
for fruitful discussions. E.J.A. and T.PV. were supported by a Research
Project Grant from the Leverhulme Trust (RPG-2016-446; TPV), a Sir
Henry Dale Fellowship from the Wellcome Trust and the Royal Society
(WT100000; T.PV.), a Wellcome Trust Senior Research Fellowship
(214316/2/18/Z; T.PV.) and a European Research Council Consolidator
Grant (SYNAPSEEK, 819603; T.PV.). For the purpose of open access,
the authors have applied a CC BY public copyright license to any
author accepted manuscript version arising from this submission.

Author contributions
E.J.A. and T.PV. designed the research. E.J.A. carried out the
simulations and analyses. E.J.A. and T.PV. wrote the manuscript.

Funding

Open access funding provided by University of Basel.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41593-024-01597-4.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41593-024-01597-4.

Correspondence and requests for materials should be addressed to
Everton J. Agnes.

Peer review information Nature Neuroscience thanks the anonymous
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01597-4
https://doi.org/10.1038/s41593-024-01597-4
https://doi.org/10.1038/s41593-024-01597-4
https://doi.org/10.1038/s41593-024-01597-4
http://www.nature.com/reprints

Article

https://doi.org/10.1038/s41593-024-01597-4

Excitation (a.u.)

a Triplet: post-pre-post AtLTp =10ms; At =5s At 1p = 10 ms; At,; = 500 ms
Pre | Awe
* :: *
Post | | L
Atyrp i Atygp § 300 0
Athet : 2
£
Time -
500 1000 500 1000
Excitation (a.u.) Excitation (a.u.)
b Doublet: post-pre Atrp=2ms Atrp =20 ms
Pre l 600 AWE
+ : ; +
Post | S
Atyrp .5 300 b 0
o
Time z
£
0 T T -
0 500 1000 0 500 1000
Excitation (a.u.) Excitation (a.u.)
c Burst: post-post Atpet = 10 ms At = 500 ms
Pre 600 AWE
* ’; +
Post | | S
Aty § 300 g 0
ie)
Time z
£
0 B -
0 500 1000 0 500 1000
Excitation (a.u.) Excitation (a.u.)
d Doublet: pre-post At=+3 ms At=+30 ms
Pre l 600 AW|
x 3 *
Post | &
AN B S - -
i : S 300 0
= 2
Time g
0 E -
0 500 1000 0 500 1000

Excitation (a.u.)

Extended Data Fig. 1| Contribution of spike times, excitation, and inhibition
to weight changes for the codependent synaptic plasticity model.

a-c, Schematics of the sequence of spikes (left), and the resulting weight

change for two different spike patterns (middle and left) for codependent
excitatory synaptic plasticity model as a function of the levels of excitation and
inhibition during plasticity. a, Spike triplet: post-pre-post sequence with fixed

pre-before-post spike interval, A¢,;p, and two examples for intervals between

two consecutive postsynaptic spikes, At ... b, Doublet: post-before-pre spike
pattern with two differentintervals, Aty ¢, Postsynaptic burst with two spikes at
differentinterspike intervals, At,.. d, Same as panel b for codependent inhibitory
synaptic plasticity model.
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Extended Data Fig. 2| Comparison between synaptic plasticity models using
the frequency-dependent STDP protocol. a-c, Relevant variables at the
moment of synaptic plasticity induction as a function of the frequency of spike
pairs with pre-before-post (top; At = +10 ms) and post-before-pre (bottom;
At=-10ms). Synaptic plasticity isinduced at the moment of either a
postsynaptic spike, £, (Or [Sgsl)’ or apresynapticspike, t,re. a, Average of the
traces of NMDA currents (left; £(¢,,,)), presynaptic spikes (right; x;re (£p05)), and
postsynaptic spikes (right; ygost (£p0s) and Loost (tpre))- b, Same as panel a, right, for
the spike-based triplet STDP model. ¢, Average of the traces of presynaptic spikes
(left; tore (£5F.)) and postsynaptic membrane potential (right; u(ehe. ), u” (60 ),
andu* (tpre)). Dashed and continuous lines show averages for zero (w.,= 0) and
non-zero (W, = w) synaptic weights. d-g, Plasticity inducing protocol for

Frequency (Hz) Frequency (Hz)

different models with pairs of pre-before-post (At = + 10 ms) and post-before-pre
(At =-10ms) for varying spiking frequencies, and different firing-rates of
neighbouring excitatory and inhibitory afferents (colour coded). Plots show
changes in synaptic weight of a single connection while the other two (excitatory
and inhibitory) are kept fixed. Spike-based triplet spike-timing-dependent
plasticity model fromref. 5 and voltage-based plasticity model from ref. 6.

h-k, Weight change as a function of neighbouring synapses’ input frequency
(y-axis), and frequency of spike pairs (x-axis). Arrows indicate external
frequencies used in panels d-g. Plots from panels d and h are also shown in

Fig. 2e,f. Error bars indicate SEM. Experimental data in panels d-g was adapted
with permission from ref. 15 (we refer to ref. 15 for information about sample sizes
and statistical analysis).
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Extended Data Fig. 3 | See next page for caption.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-024-01597-4

Extended Data Fig. 3| Effect of distance dependence for excitatory current
and weight stability. a, Firing-rate of a single postsynaptic neuron as a function
ofthe total NMDA current for three different inhibitory weights. Points from
simulations and lines from fitting the points to Eq. (36). b, Average NMDA
currents (red open circles; same plot from Fig. 3b) and average filtered NMDA
currents (variable F) divided by the number of excitatory synapses, N; (pink
filled circles) for 7. =10 ms. ¢, Standard deviation of the NMDA currents (red open
circles; same plot from Fig. 3b) and standard deviation of the filtered NMDA
currents (variable F) divided by the number of excitatory synapses, N (pink filled
circles) for 7;=10 ms. Arrows indicate which values were used in the plots from
panelsdtof.d, Top: Temporal average of the NMDA currents after learning for
each excitatory synapse as a function of the presynaptic firing-rate for distinct
values of o (see arrows in panel b, right). Bottom: Distribution of the NMDA

currents after learning (from plots above). Arrowheads indicate the mean.

e, Same as panel d for the filtered NMDA currents (variable £) divided by the
number of excitatory synapses, N;. Notice that for large o, E/N; becomes
independent of the input firing-rate. f, Same as panel d for the synaptic
weights. g, Influence of synapses on the excitatory synaptic plasticity. Dashed
and continuous lines correspond to the first and middle synapsein our 1D
lineimplementation (see Fig. 3b). Each colour corresponds to a different
number of excitatory synapses, N; (legend). Left: Percentage of influence of the
synapse undergoing plasticity (synapse’s own NMDA current contribution) to
its plasticity. Right: Percentage of influence from the neighbouring synapses
(contribution of neighbouring NMDA currents only, without accounting for the
synapse’sown NMDA currents).
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Extended Data Fig. 4 | Raster plot of inhibitory (top) and excitatory (bottom) the initial receptive field profile (Fig. 5b and Extended Data Fig. 5a,d).
neurons used in the receptive field plasticity simulation (Fig. 5 and Extended b, Sequence of input spikes for the modification of the initial receptive field
DataFig. 5a). a, Input spike patterns before (left) and during (right) learning of profile (Fig. 5c and Extended Data Fig. 5b,e).
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Extended Data Fig. 5| Fastinhibitory plasticity or weak inhibitory control
over excitatory plasticity prevents the stable formation of receptive fields.
aandb, Same simulation protocol used in Fig. 5a,b, but with larger learning rate
of inhibitory plasticity (increased by 50-fold). Evolution of excitatory (top) and
inhibitory (bottom) weights. The shaded area (*) indicates the learning window,
when allinhibitory afferents are down-regulated. Excitatory input groups are
activated for receptive-field formation during the learning window (Extended

DataFig.4). ¢, Snapshots of the average synaptic weights for the different
pathways at the moments indicated by the x symbolsin panelsaandb.dand e,
Same as panels a and b, but with weak inhibitory control over excitatory plasticity
rather than fast inhibitory plasticity. f, Snapshots of the average synaptic weights
for the different pathways at the moments indicated by the » symbols in panels d
ande.
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Extended Data Fig. 6 | Correlation between postsynaptic spike times and
the maininput pathway connected to a dendritic compartment. Pearson
correlation between filtered postsynaptic spike times (low-pass filter witha
100-ms time constant) and main input pathway as a function of electroctonic
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indicates the co-active group size (see legend) forindependent (left) and
matching (right) excitatory and inhibitory inputs.
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Extended Data Fig. 7 | Evolution of synaptic weights connected to dendritic
compartments for matched and independent E & I. a, Weights of co-active
(green) and uncorrelated (grey) excitatory inputs with size of co-active excitatory
group and distance of dendritic compartment from the somaindicated by ‘group
size’and ‘d’ respectively. b, Weights of co-active (green; same activity pattern as
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co-active excitatory group) and uncorrelated (grey) inhibitory inputs. Size of the
co-active inhibitory group was kept fixed at half of the inhibitory population.
¢, Same as panel a, but when inhibitory inputs are independent of excitatory

ones.d, Same as in panel b, but with no correlation between excitatory and
inhibitory inputs.
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Extended Data Fig. 8 | Characterisation of the recurrent network dynamics d, Histogram of the average effective membrane time constant for all excitatory
before and after learning. a, Histogram of the membrane potential of all neurons. Effective membrane time constant of a neuron is defined as the neuron’s
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Extended Data Fig. 9 | Development of the recurrent connectivity structure
for different balancing parameters. a, Sum of input excitatory connections
onto each excitatory neuron of the network, ordered from the strongest to the
weakest connection sum. b, Sum of output excitatory connections per excitatory
neuron, following the same order from panel a. ¢, Sum of input inhibitory
connections onto each excitatory neuron of the network, following the same
order from panel a. d, Total excitatory (red) and inhibitory (blue) currents onto a

given excitatory neuron of the recurrent network during the learning period.

e, Firing-rate of two excitatory neurons in the recurrent network at different time
bins (of size1second). f, Average membrane potential (calculated in al-second
time bin) of the two neurons from panel b. Each row shows plots of simulations
withadifferentbalancing term, a (Eq. (2)). Panels a-cin the middle row (a=1.2)
arethesameasinFig. 7f-h.
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panel a, but for the naive network (before learning) without background input
(baseline firing-rate is zero for all neurons). ¢, Same as panels aand b, but fora

network after learning with a = 0.9.d, Same as panels aand b, but for a network
afterlearning witha=1.4.

Extended Data Fig.10 | Recurrent network response to external inputs before
and after learning with different El balance set-points. a, Dynamics of the
naive network (before learning). Norm, i.e., £,-norm of the firing-rate deviations
from baseline (left), and average firing-rate (right) of excitatory neurons for

the five stimulation patterns. Dynamics used in Fig. 8c,d (‘before’). b, Same as
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