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The dynamic state of a prefrontal–
hypothalamic–midbrain circuit  
commands behavioral transitions

Changwan Chen1,2,7, Mahsa Altafi    3,7, Mihaela-Anca Corbu    1,2, 
Aleksandra Trenk    1,4, Hanna van den Munkhof1,2, Kristin Weineck    5, 
Franziska Bender5, Marta Carus-Cadavieco1,5, Alisa Bakhareva    2, 
Tatiana Korotkova    1,2,6,7  & Alexey Ponomarenko    3,5,7 

Innate behaviors meet multiple needs adaptively and in a serial order, 
suggesting the existence of a hitherto elusive brain dynamics that brings 
together representations of upcoming behaviors during their selection. Here 
we show that during behavioral transitions, possible upcoming behaviors 
are encoded by specific signatures of neuronal populations in the lateral 
hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic 
recruitment of intrahypothalamic inhibition at this phase eliminates 
behavioral transitions. We show that transitions are elicited by beta-rhythmic 
inputs from the prefrontal cortex that spontaneously synchronize with 
LH ‘transition cells’ encoding multiple behaviors. Downstream of the LH, 
dopamine neurons increase firing during beta oscillations and also encode 
behavioral transitions. Thus, a hypothalamic transition state signals 
alternative future behaviors, encodes the one most likely to be selected and 
enables rapid coordination with cognitive and reward-processing circuitries, 
commanding adaptive social contact and eating behaviors.

In humans and other mammals, hypothalamic neurons change  
their activity during innate behaviors1,2, which can be elicited or 
inhibited by the activation of genetically identified hypothalamic 
cell populations1,3–6. The lateral hypothalamus (LH) features particu-
larly strong efferent and afferent connections with multiple forebrain 
regions compared to other hypothalamic outputs7. Afferents from the 
forebrain, which transmit information about sensory cues, previous 
experience and brain state, are thought to interact with metabolic, 
visceral and hormonal signals in the hypothalamus, resulting in the 
selection of a hypothalamic cellular activity output that is congruent 

with the adaptively relevant behavior8. These computations closely 
resemble the brain control mechanism for switching to a new instinc-
tive behavior proposed in seminal ethological studies9. However, the 
neurodynamic underpinnings of hypothalamic information processing 
during behavioral transitions remain unknown.

At timescales of milliseconds to tens of milliseconds, hypo-
thalamic cells fire with varying probabilities depending on the phase 
of network oscillations10,11. In sensory, associative cortical areas and the 
hippocampus, oscillations enable the separate signaling of different 
sensory or behavioral events at distinct times of oscillation cycles, a 
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(Fig. 1a and Extended Data Fig. 1a,b). As reported previously1,17,  
individual LH neurons increased or, less often, decreased their  
firing rate during episodes of each of the three behaviors compared 
to other recording epochs (Fig. 1a,b and Extended Data Fig. 1c).  
The changes in firing rate were estimated as a match score, computed 
for each cell and behavior, with higher match scores corresponding  
to an increase of the firing rate relative to time-shuffled epochs  
(Fig. 1a,c).

Across behaviors, the LH local field potential (LFP) displayed fast 
oscillations, with the leading frequency in the beta band (15–30 Hz) for 
approximately 26% of the recording time (Fig. 1d,e and Extended Data 
Fig. 1d). Beta oscillations are part of the synchronization repertoire of 
cortical and basal ganglia networks where they are thought to support 
sensory, motor and short-term memory processing in different brain 
circuits15,18–20. While beta oscillation episodes lasting 202 ± 3 ms (n = 8 
mice) occurred at a similar rate around behavioral transitions and had 
similar amplitudes across behaviors (Extended Data Fig. 1e,f), they 
were associated with marked changes in the firing of LH neurons. The 
firing probability of LH neurons increased around the times when the 
amplitude of beta oscillations was the highest (Extended Data Fig. 1g). 
A substantial fraction of LH neurons was entrained by beta oscillations 
(21%, Rayleigh test); most were phase-locked to oscillation troughs 
(Extended Data Fig. 1h).

phenomenon known as phase coding12–14. This form of temporal coding 
is thought to facilitate the communication between cells firing together 
and strengthen their influence in neural circuits involved in memory 
acquisition and retrieval, as well as sensory processing15,16.

In this study, we show that the activity of neuronal populations 
in the LH at specific phases of beta (15–30 Hz) oscillations encodes 
transitions to innate behaviors, namely feeding (F), social contact (S) 
or exploration of a new object (E). We found that the neuronal discharge 
in the LH and the lateral preoptic area (LPO) is coordinated with a phase 
offset from transition populations. An optogenetic manipulation 
of this offset, changing the timing of LPO inhibition of the LH, elimi-
nated behavioral transitions. We further show that the regulation of LH 
neuronal activity by inputs from the medial prefrontal cortex (mPFC) 
promotes behavioral transitions and demonstrate that beta oscillations 
contribute to signaling between the LH and the ventral tegmental area 
(VTA), where putative dopaminergic cells display behavior-specific 
activity during transitions between innate behaviors.

Results
Firing rate of LH neurons and beta oscillations in a free-choice 
model
Using movable silicon probes, we recorded the firing of 2,417 LH  
neurons while mice were engaging in F, S or E in a free-choice model  
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Fig. 1 | Representations of innate behaviors during beta oscillations in the 
LH. a, Examples of behavior-dependent firing rate changes in LH cells. Increasing 
(high match score cells) or decreasing (low match score cells) firing rate during 
feeding (F), social contact (S) and new object exploration (E). The gray shading 
represents the respective behaviors. b, Feeding-dependent changes in the 
firing rate of LH cells. Feeding onset is represented by the white dashed line. The 
duration of the episodes was uniformly scaled; n = 1,589 cells from seven mice. 
c, Distribution of the firing rate match scores of LH cells for F, S and E; n = 1,363 
cells from seven mice. d, Representative traces of LFP beta oscillations in the LH 
(top, 1–100 Hz band pass) and their wavelet spectrograms (bottom, scalograms) 
in freely moving mice (see Extended Data Fig. 1d for further traces, recorded 

during transitions to individual behaviors). e, An average power spectrum of beta 
oscillations detected in a representative LFP recording in the LH; mean ± s.e.m. of 
2,059 oscillation envelopes. The shaded area represents the beta frequency band. 
a.u., arbitrary unit. f, Phase signatures during transitions to behaviors (bootstrap) 
and during 1,000 shuffled sets of control epochs excluding these transitions; 
mean ± 95% confidence interval (CI); polynomial fits. The columns represent the 
behavioral phase signatures related to F (φF), S (φS) and E (φE). The rows represent 
the transition to: F, n = 110 cells; S, n = 420 cells; and E, n = 292 cells from five mice. 
Peak neighborhood phases are defined as four bins (72°) flanking the oscillation 
peak (ivory shade); the dashed sine curve represents the reference cycle. See also 
Supplementary Information for the statistical information related to a–c.
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To estimate the time frame of the information processing 
involved in behavioral transitions, we analyzed behavioral sequences 
using Markov chain models. The modeling revealed that account-
ing for preceding behaviors did not improve predictions about the 
upcoming one (Extended Data Fig. 2a). This suggested that behaviors 
(and transitions between them) are independent, and that neural 
dyna mics driving transitions probably unfold close to the initiation 
of a new behavior. A specific time frame of transitions was further 
estimated using unsupervised motion segmentation (MoSeq21) in 
experiments separately testing each of the three behaviors (Extended 
Data Fig. 2b).

We reasoned that neural events driving transitions may be at 
least to some extent accompanied by concurrent changes of motion 
patterns. To reveal them, we analyzed the latency of the closest to 
the transition time stamps local minima or maxima in the occurrence 
of individual behavioral syllables. The occurrence of syllables was 
modified on average at 1.6, 1.7 and 2.0 s before food, social contact, 
and new object exploration, respectively (Extended Data Fig. 2c,d), 
suggesting that this might be a critical time window for a selection of a 
subsequent behavior. We next analyzed transitions in the free-choice 
task using manually scored ethograms. Their robustness and the 
precision of transition detection were validated by comparisons 
with an automatic scoring using markerless pose estimation22 and 
across observers (Extended Data Fig. 2e–h). In approximately 5% of 
transitions, F, S and E immediately followed one of the scored innate 
behaviors (Extended Data Fig. 2i,j). However, most times one of the 
three innate behaviors was preceded by locomotion and unspecific 
postural changes lasting approximately 2 s (Extended Data Fig. 2k). 
The subsequent neuronal analysis focused on 2-s epochs ending 
with the initiation of a new behavior, further referred to as transition 
epochs or transitions.

Beta phase-dependent LH activity signals transitions
To investigate phase coding of behavioral transitions, we consid-
ered that neuronal signaling during beta oscillations is largely deter-
mined by cells most active at a given oscillation phase. We studied 
behavior-related information signaled at a certain beta oscillation 
phase using a parameter referred to henceforth as a phase signature 
related to a particular behavior (Extended Data Fig. 3a). Phase sig-
natures related to feeding (φF), social contact (φS) and new object 
exploration (φE) were computed for the population of neurons most 
active at a given phase as the ratio of cells with match scores above and 
below 0.5, thus including all cells (Fig. 1f and Extended Data Fig. 3b); in 
a separate analysis, we considered only neurons with a high behavioral 
specificity (match scores above 0.9 or below 0.1; Extended Data Fig. 3b). 
Thus, a higher amplitude of the phase signature related, for instance, 
to feeding would indicate an increased output from feeding-related 
LH neurons at a certain beta oscillation phase. Surprisingly, phase 
signatures related to individual behaviors had consistently higher 
amplitudes near beta oscillation peaks (±72°, the peak neighborhood) 
during transition epochs compared to random nontransition control 
epochs of the same duration (Fig. 1f). This also held true for a population 
of neurons with high behavioral specificity (Extended Data Fig. 3b) or 
when phase signatures related to different behaviors were computed 
using the same subset of cells (Extended Data Fig. 3c), indicating the 
robustness against subsampling. In contrast, LH gamma oscillations 
(faster than 30 Hz), previously implicated in food-seeking10, did not 
feature the phase-coordinated signatures related to F, S and E during 
behavioral transitions (Extended Data Fig. 3d–f).

Next, we tested whether phase signatures related to individual 
behaviors could reliably differentiate between transition and con-
trol epochs. Support vector machine (SVM) classifiers were trained  
and tested separately in each phase bin in the peak neighborhood on 

Control
Transition

SVM

SVM SVMSVM

Control
Transition

SVM

SVM SVMSVM

Control
Transition

a d

φEφSφF

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

–7
2

–5
4

–3
6 –18 72543618

LH beta phase (°)

Transition to F Transition to S Transition to E
Ac

cu
ra

cy

*
*

NS *

*
***

*
**

*
Ac

cu
ra

cy

Ac
cu

ra
cy

All All All
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SVM

SVM SVMSVM

e

b c

0.4
0.4 0.6 0.8 1.0

0.6

0.8

1.0

Accuracy, original

Ac
cu

ra
cy

, p
ha

se
-s

hu
�l

ed

0.5 0.7 0.9

0.5

0.7

0.9

φEφSφF φEφSφF

φEφSφF φEφSφF φEφSφF

φEφSφF

Fig. 2 | Encoding of behavioral transitions by beta phase signatures of LH 
neuronal populations. a–c, Schematics and bar charts showing the decoding of 
transitions to feeding (a), social contact (b) and new object exploration (c) versus 
control epochs using the phase signatures related to individual behaviors (top, 
violet, purple and peach) or their combination (right, yellow; ‘All’ bar) in SVMs 
computed separately for each phase bin in the peak neighborhood. Each data 
point represents the accuracy (mean of 1,000 cross-validations) in an individual 
phase bin; n = 110, 420 and 292 cells for the three types of transitions. *P < 0.0167, 
**P < 0.001, ***P < 0.0001, NS, not significant P = 0.02; adjusted α = 0.0167; paired 
t-test; the dashed line represents the chance level. Data are presented as the 
mean ± s.e.m. d, Accuracies of decoding transitions to different behaviors using 

original and phase-shuffled datasets. For each dataset, SVM-classified transition 
versus control epochs are shown. Each data point represents the accuracy for 
the original dataset (x axis) and the mean of accuracies across 1,000 phase-
shuffled datasets (y axis). Randomization tests: P = 0.0009, 0.0019 and 0.0009, 
for transitions to F, S and E, respectively. The dotted line represents the chance 
level. e, Accuracies of decoding transitions to different behaviors versus control 
epochs using a combination of phase signatures related to individual behaviors 
in each SVM. Each element of the matrix represents the accuracy (mean of 1,000 
cross-validations) in an individual phase bin, labeled according to the lag from 
the beta oscillation peak. See also Supplementary Information for the statistical 
information related to a–e.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | May 2024 | 952–963 955

Article https://doi.org/10.1038/s41593-024-01598-3

1,000 bootstrapped phase signatures from transition epochs versus  
the same number of phase signatures from time-shuffled control 
epochs. The decoding was performed using complete populations of 
highly active neurons as shown in Fig. 1f; as noted above, their phase 
signatures were similar to those of smaller subsets of highly behav-
iorally specific cells. Strikingly, transition to each behavior could be 
reliably decoded by individual phase signatures related to any of the 
three behaviors (Fig. 2a–c, statistical information in Supplementary 
Information and Extended Data Fig. 4a–c), suggesting that these 
phase-dependent neuronal populations signal a transition state. Impor-
tantly, the accuracy of decoding transition versus control epochs was 
markedly higher in the original than in the phase-shuffled data (Fig. 2d 
and Extended Data Fig. 4d,e).

To explore encoding of transitions by a combination of phase 
signatures related to individual behaviors, we next decoded the  
transition versus control epochs by including the phase signatures  

of all three behaviors in one model (Fig. 2a–c; ‘All’ SVMs). The approx-
imate 80% accuracy of the models based on multiple behaviors  
exceeded the performance of almost all individual behavior-based  
models for the three types of behavioral transitions (Fig. 2a–c, Extended 
Data Fig. 4f–h and statistical information in Supplementary Infor-
mation). In contrast to individual behavior-based models (Extended  
Data Fig. 4a, inset), the models using the phase signatures of all  
three behaviors predicted transitions more consistently across phase 
bins (Fig. 2e). Taken together, the LH population phase signatures 
related to different behaviors signaled transitions more reliably jointly 
than individually.

To address possible differences in the encoding of transitions 
depending on the entrainment of cells by beta oscillations, we com-
pared the performance of SVMs (as in Fig. 2a–c), which included either 
modulated or nonmodulated neurons. Both populations signaled 
transitions with similar accuracies and also most accurately using 
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of decoding upcoming versus current behaviors using phase signatures related 
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64 cells, respectively, from three mice; **P = 0.003, ***P = 0.0007, α = 0.0167; 
paired t-test. g, Accuracies of decoding upcoming versus current behaviors using 
a combination of phase signatures related to individual behaviors, using models 
from d (green) and e (brown); n = 88 and 64 cells, respectively, from three mice; 
****P < 0.0001; paired t-test. Each data point in f and g represents accuracy (mean 
of 1,000 cross-validations) in an individual phase bin. Data are presented as the 
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Information for the statistical information for b,c,f,g.
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a combination of phase signatures related to individual behaviors 
(Extended Data Fig. 4i,j), suggesting that the encoding of transi-
tions is not limited to neuronal populations of cells with strongly 
beta-rhythmic responses.

Phase signatures are better at encoding future than current 
behavior
To study the encoding of ongoing behaviors by the collective  
neuronal activity in the LH during beta oscillations, we first compared 
phase signatures before, during and after transitions, that is, during 
the initial epochs of ensuing behaviors. Upon behavior onset, phase 
signatures sharply changed their pattern, becoming nearly antiphase 
with phase signatures during transitions (Fig. 3a and Extended  
Data Fig. 5a). Accordingly, the peak:trough ratio of a phase signature 
was greater than 1 during transitions compared to lower than 1 upon 
behavior onset and approximately 1, that is, phase-uniform, when  
preceding transitions (Fig. 3b).

We next examined whether the phase signatures of individual 
behaviors not only characterize behavioral transitions (Fig. 2a–c), but 
also predict the type of upcoming behaviors. To this end, we first per-
formed linear discriminant analysis to evaluate the pattern of phase 
signatures during transitions to different behaviors and during those 
behaviors. Phase signatures related to an individual behavior sub-
stantially differed between transitions, depending on the type of the 
upcoming behavior (Fig. 3c and Extended Data Fig. 5b). In contrast, phase 
signatures were conspicuously similar during the three behaviors (Fig. 3c  
and Extended Data Fig. 5b). These observations were consistent with SVM 
classifications of phase signatures, which predicted upcoming F, S or E 
with a high accuracy of approximately 85% (statistical information in Sup-
plementary Information for Fig. 3c and Extended Data Fig. 5b). Decoding 
of upcoming behaviors using phase signatures in individual beta phase 
bins was robust but less accurate than using all the bins near oscillation 
peaks (approximately 53%; chance level = 33.3%; Fig. 3f). In contrast, 
current behaviors were predicted with accuracies marginally above the 
chance level (Fig. 3e–g and Extended Data Fig. 5c,d). Furthermore, like 
the decoding of transitions versus control epochs (Fig. 2a–c), during 
transitions phase signatures related to different behaviors decoded 
upcoming behaviors approximately 21% more accurately jointly than 
individually (Fig. 3f,g). Conversely, decoding current behaviors using 
multiple phase signatures did not differ from decoding using phase 
signatures related to individual behaviors (Fig. 3f,g). Thus, the activity 
of behavior-related LH neuronal populations during beta oscillations 
more reliably predicted upcoming than current behaviors.

Phase-specific LH activity is necessary for transitions
To investigate the necessity of phase-specific activity in the LH  
for behavioral transitions, we used dual-site electrophysiological 
recordings to first characterize the timing of neuronal activity in the 
LH and its main intrahypothalamic inhibitory input, the LPO (Fig. 4a). 
GABAergic projections from the ventrolateral preoptic area to the 

caudal parts of the lateral zone of the hypothalamus were among the 
first identified intrahypothalamic circuits implicated in the regulation 
of innate behaviors, specifically in the regulation of the sleep–waking 
cycle23. More recent studies demonstrated the role of the preoptic area 
in general and the LPO in particular in social behaviors5. Prominent  
inhibitory connections between the LPO and LH make the recurrent  
LH–LPO circuit suitable for manipulating the timing of rhythmic  
activity in the LH. Neuronal activity in the LH and LPO was increased 
and coordinated during beta oscillations (Extended Data Fig. 1g). In 
detail, LPO neurons fired with a phase offset in relation to the maxi-
mal discharge in the LH; the firing probability of LPO cells remained 
elevated during peaks of beta oscillations (Fig. 4a and Extended Data 
Fig. 1h). Thus, in the reciprocally connected LH–LPO circuit, LH and 
LPO afferents were synchronously active in a phase-offset fashion.

To mimic and strengthen this temporal offset and thus enhance 
inhibition of LH cells during oscillation peaks, we entrained beta oscil-
lations in the LH and LPO out of phase using a rhythmic optogenetic 
phase offset stimulation of inhibitory projections between both 
regions. For this purpose, we targeted a fast channelrhodopsin-2 (ChR2) 
variant ChETA to LH GABAergic cells and a red-shifted ChR2-variant 
ChRmine24 to LPO GABAergic cells in Vgat-cre mice (Fig. 4b). We then 
stimulated LH–LPO GABAergic projections at a beta frequency (20 Hz) 
out of phase with the stimulation of LPO–LH GABAergic projections 
(henceforth, out-of-phase stimulation; Fig. 4c and Extended Data  
Fig. 6a). This stimulation protocol offset the timing of inhibition  
to the LH by half a period of the optogenetically entrained LH beta  
oscillation (25 ms corresponding to 180°; Fig. 4c), that is, to the time of 
the transition-related activity in the LH (Fig. 1f). During the out-of-phase 
LH–LPO stimulation, the phase signatures of the three behaviors were 
uncoordinated, lacking the typical for behavioral transitions increase 
of their magnitude near oscillation peaks (Fig. 4d–f). As a control, in 
addition to mice that expressed a control construct without opsin 
(yellow fluorescent protein (YFP); Extended Data Fig. 6b), a nonrhyth-
mic optogenetic stimulation (Extended Data Fig. 6c), unidirectional 
LPO–LH stimulation (Extended Data Fig. 6d) or in-phase stimulation 
at the beta frequency (Extended Data Fig. 6e) were applied. These 
manipulations of the LH neurons discharge timing were not accom-
panied by confounding changes of the average firing rates in the LH 
and LPO (Extended Data Fig. 6f,g).

To study the role of phase signatures near beta peaks in behavio-
ral transitions, we applied out-of-phase stimulation during defined  
behaviors, prevalent in this task, that is, F, S or E, and quantified the 
latency to the next transition (that is, the duration of an ongoing  
behavior) compared to control stimulation protocols. This approach 
enabled the manipulation of the transition state in behaviorally 
defined conditions. Importantly, in spontaneous activity recordings 
during the final 2 s of the three behaviors, the phase signatures of LH 
neurons accurately predicted the upcoming transitions (Extended 
Data Fig. 6h). In separate experiments, optogenetic stimulation 
was applied in a free-choice model on a spontaneous onset of F, S 

Fig. 4 | Behavioral transitions are suppressed by phase-specific 
intrahypothalamic inhibition. a, Firing probability (scaled from minimum 
to maximum) during beta oscillations (n = 1,871 LH cells from eight mice; 
n = 167 LPO cells from two mice); distributions were not significantly different; 
P = 0.1955; Mardia test. b, Opsin expression in the LH and LPO (one of six mice). 
3V, third ventricle; ac, anterior commissure; ic, internal capsule. Scale bars, 
200 μm. c, Firing probability of 52 LH and 21 LPO cells (n = 2 mice) inhibited by 
the stimulation of GABAergic LPO and LH afferents, respectively, during their 
out-of-phase beta-rhythmic stimulation (blue bar: 473-nm light; orange: 589-nm 
light); distributions are different; P < 0.0001; Mardia test. d–f, Normalized phase 
signatures for F, S and E (bootstrap, polynomial fit) computed during the out-of-
phase stimulation (d), their average (e) and peak:trough preference (f); n = 193 
LH cells; peak:trough preference not different from 1; P = 0.84; bootstrap test. 
The ivory shade represents the peak neighborhood. g, Optogenetic stimulation 

in the LPO and LH for 5 s or 10 s contingently upon the spontaneous onset of F, S 
or E (in separate experiments for each behavior). h–m, Beta-rhythmic out-of-
phase stimulation eliminated the behavioral transitions. YFP, six mice expressing 
control constructs in LH (enhanced YFP (eYFP)) and LPO (mScarlet), beta out-of-
phase stimulation; six mice expressing opsins: stimulation, beta out-of-phase; 
control, nonrhythmic stimulation with parameters matching the out-of-phase  
protocol; in-phase, beta in-phase stimulation in mice expressing opsins.  
h,j,l, Latency to transition during a 10-s or 5-s stimulation during F (h), S (j) or E (l);  
YFP versus stimulation; ##P < 0.001, ###P < 0.0001; unpaired t-test with α 
correction. i,k,m, Difference of latency to transition between a 10-s and 5-s 
stimulation during F (i), S (k) and E (m); **P < 0.01, ***P < 0.001, ****P < 0.0001; 
unpaired t-test with α correction. Data are presented as the mean ± s.e.m. 
In d data are presented as the mean ± 95% CI across bootstraps. See also 
Supplementary Information for the statistical information for c,f,h–m.
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or E (Fig. 4g and Extended Data Fig. 6a–e,i). The beta out-of-phase 
stimulation eliminated behavioral transitions, thereby markedly  
extending ongoing innate behaviors proportionally to the duration 

of the stimulation (5 or 10 s) compared to a nonrhythmic optoge-
netic stimulation in the same mice and to the stimulation in 
mice expressing a control construct (Fig. 4h–m, Supplementary 
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Videos 1–3 and Extended Data Fig. 6j). Mice continued to engage 
in the behavior that they pursued immediately before the stimu-
lation onset, with no changes in locomotion (Extended Data  
Fig. 6k,l). A striking example of persistent behaviors during 
out-of-phase but not control stimulation was the inability of mice to 
discontinue nonreciprocal social contact leading to chasing an escap-
ing conspecific (Extended Data Fig. 6m and Supplementary Video 4). 
Similarly, transitions to the three behaviors, that is, F, S and E, were 
delayed by the out-of-phase stimulation (Extended Data Fig. 6n–p). 
Increased duration of feeding and social behaviors was also observed 
during the beta out-of-phase stimulation, which was not contingent 
on behaviors, compared to the unidirectional LPO–LH stimulation 
(Extended Data Fig. 6q,r), demonstrating the critical role of reciprocal 
intrahypothalamic inhibition in behavioral transitions.

To test whether the transition state could be further manipu-
lated by a different phase relationship in the LH–LPO circuit, we com-
puted the phase signatures of LH populations in relation to the three 
behaviors during in-phase LH–LPO stimulation. This stimulation was 
associated with a transition phase signature (near beta oscillations 
peaks) for feeding but not for social contact and new object exploration 
(Extended Data Fig. 7a). Accordingly, in-phase LH–LPO stimulation, 
initiated upon social contact, reduced the latency to feeding onset but 
not to new object exploration or new social contact episodes compared 
to the YFP group (Extended Data Fig. 7b–e). Furthermore, transitions 
from feeding were delayed by in-phase stimulation, in agreement with 
absent transition phase signatures for social contact and new object 
exploration during in-phase stimulation (Extended Data Fig. 7f–h). 
Together, these results indicate that manipulations of LH phase sig-
natures affect behavioral transitions.

LH ‘transition’ cells and mPFC coordination during transitions
A considerable population of LH cells increased their firing rate during 
each of the three studied innate behaviors (19% of LH cells). These mul-
timodal cells strongly contributed to phase signatures during transition 
to feeding and social contact. While during transitions they were active 
close to the beta oscillation peaks, during the control epochs they fired 
close to the oscillation troughs (Fig. 5a,b). In contrast, during transitions 
to a new object exploration, feeding and social contact transition cells 
retained their preferential activity in troughs (Extended Data Fig. 8a).

To explore the cognitive regulation of behavioral transitions by 
inputs to the LH, we studied the coordination of the feeding and social 
contact transition cells in the LH with the activity in the mPFC, the 
main cortical input of the LH and a key region for the cognitive con-
trol of innate behaviors10,25–28. Simultaneously recorded LFP in the 
LH and mPFC, but not in the basolateral and central amygdala, were 
conspicuously coherent at beta frequencies (Extended Data Fig. 8b–e). 
This coordination was accompanied by a beta-rhythmic discharge of 
mPFC neurons during LH beta oscillations (Fig. 5c and Extended Data  
Fig. 8f) and by the entrainment of approximately 11% of individual 
mPFC cells to LH beta oscillations with a preferred phase of approxi-
mately 270° (see Extended Data Fig. 8g for all mPFC cells). As a popula-
tion, mPFC cells fired according to the LH phase with several modes, 
both before transitions and during behavior (Extended Data Fig. 8h,j).  
During transitions (Extended Data Fig. 8i), firing of the mPFC popu-
lation increased at multiple phases, including oscillation peaks, 
becoming distinct from pre-transition or behavioral epochs. Next, we  
analyzed the firing of simultaneously recorded pairs of mPFC and LH 
cells. LH ‘transition’ cells and mPFC cells fired in synchrony, close to 
LH beta oscillation peaks, selectively during transitions to feeding and 
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Fig. 5 | LH ‘transition’ cells are coordinated with mPFC neurons during 
behavioral transitions. a, Left: firing probability of LH multimodal cells (high 
match scores for all three behaviors) according to the LH beta oscillation 
phase during transition to feeding, and control epochs excluding transitions 
to any behaviors, scaled between zero and one; n = 59 cells from four mice; 
mean ± s.e.m.; polynomial fit. The ivory shade represents the peak neighborhood. 
Right: peak:trough preference of the discharge during transition versus control 
epochs; P < 0.0001; t-test. b, Left: firing probability of LH multimodal cells 
according to the oscillation phase during transition to social contact and control 
epochs; n = 141 cells from five mice; mean ± s.e.m.; polynomial fit. The ivory 
shade represents the peak neighborhood. Right: peak:trough preference of the 

discharge during transition versus control epochs; P < 0.0001; t-test. c, Schematic 
of the dual-site recordings in the LH and mPFC using movable silicon probes. 
d,e, Co-firing probability of simultaneously recorded LH and mPFC cells during 
LH beta oscillations. Histogram (normalized and convolved) showing the count 
of the LH and mPFC cell pairs with mean discharge phases in individual phase 
bins; high co-firing indicates increased count in the main diagonal (white dashed 
line); the black crosses indicate the mean phases of the bivariate distributions. 
d, Distributions from transitions to feeding versus control epochs; n = 351 cell 
pairs; P < 0.0001; bivariate likelihood ratio test. e, Transitions to social contact 
versus control epochs; n = 1,451 cell pairs; P < 0.0001. See also Supplementary 
Information for the statistical information for a,b,d,e.
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social contact, but not during nontransition control epochs (Fig. 5d,e 
and Extended Data Fig. 8k).

Beta-rhythmic mPFC inputs facilitate behavioral transitions
To address the causal role of mPFC–LH projections in transitions 
between innate behaviors, we targeted AAVdj-hSyn-NpHR-TS-p2A-hCh
R2(H134R)-eYFP (eNPAC2.0), an opsin variant for opposing control  
of neuronal excitability10, to mPFC neurons and stimulated or inhib-
ited their projections in the LH or LPO, or delivered light of the same  
wavelengths and patterns in YFP controls (Fig. 6a–d and Extended 
Data Fig. 9a–c). To mimic a more prominent input from the mPFC 
across phases, observed during behavioral transition (Extended Data  
Fig. 8i), mPFC–LH projections were stimulated at a beta frequency 
(20 Hz) without a specific phase relationship to LH oscillations. The 
stimulation applied in the same behavior-contingent fashion as  
LH–LPO stimulation during F, S or E, in separate experiments, shortened 
the latency to behavioral transitions (Fig. 6e–g and Supplementary 
Videos 5 and 6). In contrast, a nonrhythmic (Extended Data Fig. 9d)  
or a theta frequency (9-Hz) stimulation applied during social contact 
did not influence the latency to transition (Fig. 6f). Stimulation of 
mPFC–LH projections at a beta frequency (20 Hz) did not affect loco-
motion (Extended Data Fig. 9e,f). The inhibition of mPFC projections to 
the LH increased the latency of behavioral transitions for social contact 

(Extended Data Fig. 9g) and new object exploration (Extended Data  
Fig. 9h), but not for feeding (Extended Data Fig. 9i). Together, these 
results suggest that social contact and new object exploration are regu-
lated by the mPFC–LH pathway, while food intake can be terminated 
by mPFC signals to the LH and by further pathways.

Considering the close LH–LPO interactions and the innervation 
of the LPO by the mPFC, we explored the behavioral functions of the 
mPFC projections to the LPO. The beta frequency stimulation of the 
mPFC–LPO projections did not affect the latency of the transitions 
during social contact, but it facilitated transitions during feeding 
and new object exploration (Fig. 6h–j). The average running speed 
and path length did not change upon stimulation (Extended Data  
Fig. 9j,k). Conversely to the effect of PFC–LH pathway inhibition, inhi-
bition of the mPFC–LPO projections during social contact and new 
object exploration did not affect latency to transition (Extended Data  
Fig. 9l,m), whereas increased latency of transitions was observed for feed-
ing behavior (Extended Data Fig. 9n). Thus, during F, S and E, prefrontal 
projections to the LH and LPO have complementary behavior-specific 
roles in transitions and together support their whole spectrum.

Beta oscillations organize hypothalamic output to the VTA
Next, we investigated the coordination of the hypothalamic transi-
tion dynamics with the neuronal activity in the VTA, the main lateral 
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Fig. 6 | Beta-rhythmic mPFC–hypothalamic signaling promotes behavioral 
transitions. a–c, Optogenetic stimulation of mPFC–LH and mPFC–LPO 
projections. a, eNPAC2.0 expression in the mPFC (representative images; total 
n = 9 opsin mice). b,c, Left: optic fiber tracks above the LH and LPO. Right: 
magnification of a fragment # of b and ## of c (left). Scale bars, 200 μm (a), 
250 μm (b,c). d, Beta-frequency stimulation of mPFC–hypothalamic projections 
on F, S or E. e–g, Optogenetic excitation of mPFC–LH projections reduced the 
latency to behavioral transitions. e, Feeding: blue light beta-frequency (20-Hz) 
stimulation, YFP, 20 Hz, six mice; control, eNPAC2.0, nonrhythmic stimulation 
with parameters matching the beta-frequency protocol, eight mice; stimulation, 
eNPAC2.0, 20 Hz, six mice. YFP versus stimulation, P = 0.0048; control versus 
stimulation, P < 0.0001; adjusted α = 0.025; unpaired t-test. f, Social contact: 
YFP, six mice; control, eight mice; theta, eNPAC2.0, theta frequency (9-Hz) 
stimulation, eight mice; stimulation, nine mice. YFP versus stimulation, 
P = 0.0004; control versus stimulation, P = 0.0006; theta versus stimulation, 

P = 0.0002; adjusted α = 0.0167; unpaired t-test; g, New object exploration: YFP, 
six mice; control, eight mice; stimulation, eight mice. YFP versus stimulation, 
P = 0.015; control versus stimulation, P = 0.0042; adjusted α = 0.025; unpaired 
t-test. h–j, Effects of optogenetic excitation of mPFC–LPO projections on the 
latency to behavioral transitions. h, Feeding: YFP, six mice; control, eight mice; 
stimulation, seven mice; YFP versus stimulation, P < 0.0001; control versus 
stimulation, P < 0.0001; adjusted α = 0.025; unpaired t-test. i, Social contact: 
YFP, six mice; control, eight mice; stimulation, nine mice; YFP versus stimulation, 
P = 0.98; control versus stimulation, P = 0.64; adjusted α = 0.025; unpaired t-test. 
j, New object exploration: YFP, six mice; control, eight mice; stimulation, nine 
mice; YFP versus stimulation, P = 0.018; control versus stimulation, P = 0.026; 
adjusted α = 0.025; unpaired t-test. Data are presented as the mean ± s.e.m.  
*P < α, **P < 0.01, ***P < 0.001. See also Supplementary Information for the 
statistical information for e–j.
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hypothalamic output region integral to multiple vital motivated 
behaviors. Beta oscillations were identified in approximately 22% of 
the recorded VTA signal. Multisite LFP recordings from the LPO, LH 
and VTA revealed oscillations of the highest amplitude in the LPO, 
closely followed by the LH and of approximately 30% lower amplitude 
in the VTA (Fig. 7a–c and Extended Data Fig. 10a,b). Beta oscillations 
were markedly coherent across regions (Fig. 7d) and modulated the 
discharge of putative dopaminergic neurons (Fig. 7e and Extended 
Data Fig. 10c,d). During beta oscillations, burst discharge of dopamine 
neurons (interspike intervals shorter than 80 ms (ref. 29) was more 
prominently elevated than tonic firing (Fig. 7f).

Like the phase signatures of LH neurons, the phase signatures 
of dopamine neurons during transitions to social contact and new 
object exploration featured an elevated amplitude close to the beta 

oscillation peaks (Fig. 7g). In striking contrast to our findings in the 
LH, in the VTA, the highest amplitude of phase signatures related to 
feeding was found in the oscillation troughs (Fig. 7g). A visualization of 
the phase signatures for all phase bins revealed their distinct features 
during transitions compared to control behavioral epochs (Fig. 7h).  
To validate these observations, we trained decoders to classify  
transition versus control epochs using the behavioral signatures of 
dopamine neurons at all phases in the same model, to account for their 
possible phase offsets in relation to the LH (Fig. 7i). High decoding 
accuracies for each phase signature were obtained (Fig. 7j and Extended 
Data Fig. 10e). Taken together, VTA dopamine neurons showed an 
increased activity during beta oscillations when their behavior-specific 
populations exhibited the periodic activity either in phase or out of 
phase with LH populations and predicted behavioral transitions.
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dopaminergic neurons. a, Simultaneous recordings of LFP in the LPO, LH 
and VTA. b, LFP signal traces showing coordinated beta oscillations (1–100 Hz 
band pass) in the LPO, LH and VTA during social contact, and spectrogram 
of the VTA trace. c, Beta oscillation amplitude during behavioral transitions, 
normalized to the amplitude in the LPO; n = 4 mice; LPO versus LH, P = 0.002; 
LPO versus VTA, P < 0.0001; LH versus VTA, P = 0.0004. **P < 0.01, ***P < 0.001, 
****P < 0.0001; adjusted α = 0.0167; unpaired t-test. d, Beta oscillation coherence 
during transitions to F, S and E; n = 4 mice; ‘behavior’, P = 0.9; analysis of 
variance (ANOVA). e, Top: burst discharge of a presumed VTA dopamine neuron 
during beta oscillations (1 Hz–10 kHz band pass signals). Bottom: dual-site 
VTA and LH recordings using movable silicon probes. f, Probability of tonic 
and burst discharge (interspike intervals greater than 170 and smaller than 
80 ms, respectively) of putative dopamine neurons in relation to the maximum 

amplitude of VTA beta envelopes; n = 308 cells from three mice; tonic versus 
burst firing probability, P < 0.0001; paired t-test. g, Phase signatures of putative 
dopamine neurons during combined transitions to F, S and E and during 1,000 
shuffled sets of control epochs excluding these transitions; mean ± 95% CI; n = 40 
cells; polynomial fits. h, Phase signatures for F, S and E shown in g visualized 
according to their first two principal components. The contours represent the 
probability density estimated for each cluster. i, Decoding transitions to F, S or E 
(combined) versus control epochs using VTAdopamine population phase signatures 
in all phase bins related to individual behaviors. j, Decoding transitions versus 
control epochs by VTAdopamine cells during beta oscillations; box outline, center 
line, median and quartiles of 1,000 cross-validations; the whiskers represent 
1.5 × the interquartile range; P < 0.0001; permutation tests of classifications; the 
dashed line represents the chance level. See also Supplementary Information for 
the statistical information for c,d,f,g,j.
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Discussion
In this work, we combined neuronal and LFP recordings in a free- 
choice model across the mPFC → (LPO↔LH) → VTA circuit, correla-
tive and neural decoding approaches and optogenetics to explore the  
neuronal dynamics underpinning transitions between innate behaviors. 
We revealed a dynamic state preceding behavioral transitions, which is 
characterized in the LH by signaling of possible upcoming behaviors 
close to the peaks of previously unknown hypothalamic and VTA beta 
oscillations. The transition state accurately predicted the timing and 
order of innate behaviors and was necessary for transitions between 
them. We found that during transitions, phase-dependent population 
coding in the hypothalamus is coordinated with the beta-rhythmic 
firing in the mPFC, projections of which to the LH and LPO jointly 
regulate F, S and E. The transition state involves the VTA, where dopa-
mine neurons increase firing and collectively signal transitions during  
beta oscillations.

Cortical beta oscillations have been implicated in sensory  
processing, movement control and short-term memory18,19, and involve 
inhibitory interneurons, including fast spiking and low-threshold cells, 
excitatory cells, communication between cortical layers, gap junctions 
and cholinergic modulation19,30. While the role of these mechanisms in 
oscillatory properties of the hypothalamic and VTA networks remains 
to be established, entrainment of the neuronal discharge indicates 
that beta oscillations coordinate the timing of neuronal activity within 
and across the regions studied in this work, that is, the LH, LPO, VTA 
and mPFC.

The finding of the phase-coordinated population signatures 
agrees with earlier computational modeling predicting robust tempo-
ral coding supported by feedback inhibition during beta oscillations19. 
In contrast to cell ensembles associated with gamma oscillations31, 
whose stability is strongly influenced by competing inputs32, beta 
oscillations in the cortex maintain sensorimotor and cognitive states20. 
The information processing advantages of beta oscillations, as demon-
strated by modeling studies, include the resistance of phase-specific 
neuronal populations to fluctuations in excitability caused by external 
inputs. In turn, this results in the firing of additional spikes within cell 
ensembles without destabilizing them, thereby allowing new com-
putations19. Transition phase signatures could be eliminated using a 
phase-specific recruitment of inhibition to the LH via LHVGAT–LPOVGAT 
out-of-phase stimulation or partially mimicked by in-phase stimulation. 
Recurrent in-phase LHVGAT–LPOVGAT stimulation most probably influ-
enced feeding-inducing LHVGAT cells1,10 with greater temporal precision 
than other, non-VGAT, LH cells involved in social contact and explora-
tion (for example, orexin (hypocretin) neurons33), and thus produced 
a feeding-related LH transition phase signature.

Different innate behaviors evoked by electrical stimulation of  
the LH34 have previously been linked to the activation of partially  
overlapping cell populations involved in feeding, sleep, social and 
exploratory behavior, and appetitive motivation1,6,34. The present 
results indicate that cells with strongly conjunctive firing profiles, 
referred to in this study as ‘transition’ cells to emphasize their 
phase-shifted firing during transitions, coalesce with less conjunctive 
and with single behavior-preferring LH cells, forming phase-dependent 
representations of alternative upcoming behaviors, allowing their 
selection during transitions. Further research is required to elucidate 
possible transformations of phase-specific patterns into firing rate 
changes known to generate and maintain behavioral output1,3–6.

Learned behaviors, the execution of which is controlled by the 
mPFC, often include innate patterns prioritized by the hypothalamus. 
The importance of functional interactions between the mPFC and 
hypothalamus is further underscored by prominent projections of 
mPFC areas to the LH and by the involvement of the mPFC in feeding, 
social and novelty-driven behaviors35. By processing different sets 
(visceral-metabolic and sensory-mnemonic) of signals, both regions 
have a central role in providing an adaptive bias during behavior 

selection28,36. The present results suggest that the underlying transition 
dynamics entails the influence of prefrontal afferents on the LH. Con-
junctive ‘transition’ LH cells are coordinated with mPFC inputs, which 
signal multidimensional population representations of adaptive behav-
ior37. The representations of behavioral decision variables38, including 
the encoding of feeding and social interaction, by individual neurons 
in another frontal cortical LH input region, the orbitofrontal cortex, 
may influence innate behavior-selective LH cells during transitions.

Motivations driving innate behaviors are generated in the hypo-
thalamus34. Both LPO and LH GABA neurons send direct projections to 
the VTA5,6,39 and influence the activity of VTA dopaminergic neurons8, 
which encode reward contingencies40 and diverse sensory, motor 
and cognitive variables41, and are indispensable for vital motivated 
behaviors42. Optogenetic activation of the LPO, and of LHGABA–VTA 
projections, promotes appetitive behaviors43,44, including sucrose 
seeking6, social interaction and new object exploration45, suggesting 
involvement of these pathways in the regulation of multiple innate 
behaviors. Activation of LHGABA projections to the VTA at beta frequen-
cies induced both feeding and intracranial self-stimulation, in contrast 
to stimulation at lower or higher frequencies, which either induced 
feeding or self-stimulation, respectively44.

Our results extend the repertoire of network rhythms organizing 
neuronal activity in the VTA46 and indicate that oscillations coordinate 
the communication from the hypothalamus to the VTA during epochs 
of an increased discharge of dopamine neurons. While the phase signa-
tures of innate behaviors were coordinated between the LH and VTA via 
coherent beta oscillations, they were distinct between these regions. 
In contrast to the LH, the phase signatures of VTA cells for feeding and 
social contact versus new object exploration were observed approxi-
mately 25 ms apart (out of phase in the 20-Hz cycle). This delay could be 
due to the distinct properties (GABAergic versus glutamatergic cells) 
and connectivity (targeting dopaminergic versus GABAergic VTA cells) 
of the LH cells that are preferentially involved in one of the three behav-
iors. Dopamine neurons are also a heterogenous population, the activity  
of which is highly dependent on behavior, predicting future rewards 
and specific behavioral variables, such as position, velocity, previous 
reward and response accuracy, as well as behavioral outcomes40,41,47,48 
and representing internal needs49. The present results suggest that 
during beta oscillations, the elevated and temporally separate activity 
of dopaminergic cells with distinct behavioral profiles differentially 
modulates efferent populations, thereby potentially contributing to 
the impact of lateral hypothalamic motivational signals on the planning 
and selection of action by the ventral striatum and prefrontal cortex50. 
Future studies will evaluate the influence of temporally coordinated 
lateral hypothalamic signals on VTA cells with distinct connectivity 
and electrophysiological properties.

Classical studies demonstrated preparatory activity in the sup-
plementary motor cortex, which precede by less than a second not only 
specific self-initiated actions (by approximately 0.8 s) but also aware-
ness about them (by approximately 0.5 s)51,52. In this study, we showed 
that a preparatory transition state emerges in the LH approximately 2 s 
before behavior onset as an oscillatory neuronal dynamics, which ena-
bles transitions between innate behaviors and encodes their selection.

Innate behaviors aiming at achieving basic needs, feeding and 
social interaction, are tightly interconnected in health and pathol-
ogy. Both humans and rodents consume more food in the presence 
of conspecifics and adopt food preferences from conspecifics53; food 
consumption is linked to social hierarchy54 and hunger reduces the pur-
suit of mating opportunities55. Neural circuits regulating feeding and 
social behaviors partly overlap56. Furthermore, multiple neuropsychi-
atric disorders involve changes in both behaviors: for example, eating 
disorders are frequently comorbid with social phobia57, whereas autism 
spectrum disorders are often accompanied by disrupted eating behav-
iors58. Responses to novelty are also tightly linked to feeding and to 
social interactions: exposure to a new environment suppresses feeding 
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behavior in mice59; animals spend more time with a new conspecific 
than with a familiar one60, suggesting overlapping circuits encoding 
those behaviors. All the three behaviors are goal-directed and can be 
cognitively regulated. In this study, we demonstrated that inputs from 
the PFC to the LH and LPO regulate transitions in a behavior-specific, 
complementary way, thus supporting the whole spectrum of tran-
sitions from those behaviors. Beta-rhythmic mPFC–LH signaling 
prompted transitions during all three studied behaviors. Inhibition 
experiments suggested that the activity of this pathway is necessary 
for timely transitions during social contact and new object explora-
tion, while termination of feeding in the free-choice model relies on 
the beta-rhythmic activity of the mPFC–LPO projections. Thus, the 
mPFC–LPO pathway supports cognitively controlled cessation of food 
intake, which is also regulated depending on external and metabolic 
stimuli by other circuits, including those entailing the LH61,62. Further 
studies investigating other innate behaviors, for example, innate fear 
or aggression, would shed light on joint and distinct neuronal mecha-
nisms of other behavioral transitions.

Collectively, our findings reveal a hypothalamic neuronal coding  
that underlies behavioral transitions. This dynamic transition  
state is supported by beta oscillations, which synchronize multiple 
hypothalamic behavioral codes. The hypothalamic transition state is 
coordinated with the VTA, the main output of the hypothalamus that 
is crucial for motivation and reward, and with the PFC, which promotes 
behavioral transitions. Disruptions of the transition state may contrib-
ute to diverse treatment-resistant behavioral dysfunctions common 
to psychiatric disorders, including eating disorders, and maladaptive 
social behaviors.
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Methods
Animals
All animal procedures were performed in accordance with national 
and international guidelines and were approved by the local health 
authority (Das Landesamt für Natur, Umwelt und Verbraucherschutz). 
For this study, 10–25-week-old Vgat-ires-cre knock-in mice (The Jackson 
Laboratory) and C57BL/6 male mice were used, except for studies using 
MoSeq, which involved female mice. Mice were housed under stand-
ard conditions (air temperature 20–24 °C, relative humidity 45–65%) 
in the animal facility and kept on a 12 h light–dark cycle. Before all 
experiments, mice were handled by the experimenter and habituated 
to the experimental enclosure for 3–5 days63. This habituation proce-
dure is important for minimizing the potential influence of unfamiliar 
experimental procedures or enclosure’s novelty on innate behav-
iors, for example, to ensure that animals consume food pellets in the 
experimental enclosure. Before the experiments with the optogenetic 
manipulations contingent on feeding, food was taken out from home 
cages for about 1 h; mice received water ad libitum.

Viral injections
Viral injections in the LH, LPO and mPFC were performed according to 
previously described protocols10,64. Mice were treated with buprenor-
phine (0.1 mg kg−1), anesthetized with isoflurane and placed in the 
stereotactic apparatus (David Kopf Instruments). A small hole was 
drilled in the skull with a dental drill for each virus injection site accord-
ing to the stereotactic coordinates. A sterile glass pipette made using 
a micropipette puller (Sutter Instruments) was mounted on a syringe 
(Hamilton CS-Chromatographie Service) to infuse viruses at a rate 
of 100 nl min−1; injection volume and speed were controlled with a 
micro-pump (Harvard Apparatus, Hugo Sachs Elektronik). After the 
injection, the injection pipette remained in the injection area for about 
10 min and then was slowly lifted before the incision was sutured. 
Optogenetic constructs were purchased from the University of North 
Carolina (UNC) Vector Core or provided by K. Deisseroth. For manipula-
tion of LH and LPO Vgat cells, Vgat-cre mice were injected bilaterally 
into the LPO (anterior-posterior (AP) 0 mm, mediolateral (ML) ± 1 mm, 
dorsal-ventral (DV) −5 mm and −5.25 mm) with 0.3 μl per injection site 
of AAV8-Ef1a-DIO-ChRmine-mScarlet (provided by K. Deisseroth, titer 
5 × 1012 vg ml−1) or 0.3 μl per injection site of AAV8-Ef1a-DIO-mScarlet 
(provided by K. Deisseroth, titer 5 × 1012 vg ml−1). In the LH (AP −1.7 mm, 
ML ± 1 mm, DV −5 mm and −5.25 mm), 0.3 μl per injection site of 
AAV2-Ef1a-DIO-ChETA-eYFP (UNC Vector Core, titer 3.5 × 1012 vg ml−1) 
or 0.3 μl per injection site of AAV2-EF1a-DIO-eYFP (UNC Vector Core, 
titer 4.5 × 1012 vg ml−1) were injected bilaterally. For manipulations of 
the mPFC–LH or mPFC–LPO projections, C57BL/6 mice were injected 
bilaterally in the mPFC (AP 1.7 mm, ML ± 0.3 mm, DV −2.4 mm and 
−2.8 mm) with 0.2 μl per injection site of eNPAC2.0 (provided by K. 
Deisseroth, titer 1.84 × 1013 vg ml−1) or AAV5-hSyn-eYFP (UNC Vector 
Core, titer 3.3 × 1012 vg ml−1).

Implantation of optic fibers and electrodes
Optic fiber implants were manufactured from 100-μm diameter 
multi mode optic fiber (numerical aperture 0.22) and zirconia fer-
rules (Thorlabs). For optogenetic manipulations of signaling between 
the LH and LPO, mice were implanted with optic fibers in the LH (AP 
−1.7 mm, ML 1 mm at a 21.8° angle, ML −1 mm, DV −4.7 mm) and in the 
LPO (AP 0 mm, ML −1 mm at a 21.8° angle, ML 1 mm, DV −4.7 mm). For 
the optogenetic manipulations of the mPFC–LH projections, mice 
were implanted bilaterally with optic fibers in the LH (AP −1.7 mm, ML 
1 mm at a 21.8° angle, ML −1 mm, DV −4.7 mm). For the optogenetic 
manipulations of the mPFC–LPO projections, mice were implanted 
bilaterally with optic fibers in the LPO (AP 0 mm, ML 1 mm at a 21.8° 
angle, ML −1 mm, DV −4.7 mm). For the extracellular neuronal and 
LFP recordings, silicon probes (B32, NeuroNexus Technologies) were 
mounted on custom-made microdrives and implanted as described 

previously10,64,65. For the mPFC and LH simultaneous recordings, the 
following implantation coordinates were used: mPFC (AP 1.7 mm, ML 
0.2 mm, medial shank, DV −2.4 mm) and LH (AP −1.58 mm, ML 0.8 mm, 
medial shank, DV −4.9 mm). For the LH and LPO recordings, the follow-
ing implantation coordinates were used: LH (AP −1.58 mm, ML 0.8 mm, 
medial shank, DV −5 mm) and LPO (AP 0 mm, ML 0.5 mm, medial shank, 
DV −5 mm) combined with optic fibers implanted at a 21.8° angle in 
the LH (AP −1.7 mm, ML 1 mm, DV −4.7 mm) and the LPO (AP 0 mm, ML 
1 mm, DV −4.7 mm). For the VTA recordings, the following implantation 
coordinates were used: VTA (AP −3.1 mm, rostral shank, ML 0.4 mm,  
DV −4.2 mm). For simultaneous LFP recordings from the LH, LPO and 
VTA, a custom stationary probe (four recording sites × eight shanks, 
NeuroNexus Technologies; Fig. 7a) was implanted along the line 
defined by the following coordinates: first shank (AP 0 mm, ML 1 mm, 
DV 5.4 mm) and last shank (AP −3.8 mm, ML 0.5 mm, DV 4.8 mm).

Data acquisition
The recording setup was a custom-made enclosure10 (length/width/
height 50 × 30 × 20 cm) with two interconnected compartments 
(25 × 30 × 20 cm each). Water presented in a water cup, food provided 
in a food cup and a new object from Lego or similar toy sets were placed 
in three corners of the enclosure. Mice were freely moving in the enclo-
sure during the recordings. During the recordings, silicon probes were 
connected to a preamplifier (NeuraLynx) to eliminate cable movement 
artifacts. Signals were differentially amplified and band-pass-filtered 
(1 Hz–8 kHz) and acquired continuously at 32 kHz (Digital Lynx, Neu-
raLynx). Synchronization with the acquisition of electrophysiological 
data recording of the animals’ behavior was performed from different 
angles by four cameras at 25 Hz (Motif, Loopbio). A light-emitting diode 
was attached to the headset to track the animal’s position at 25 Hz 
using a top-mounted camera. For pose estimation using DeepLabCut, 
the behavior of pairs of mice in the enclosure was recorded at 15 Hz. 
For behavioral motion segmentation (MoSeq21), female mice were 
recorded for 20 min while they were freely exploring an arena (length/
width/height 45 × 25 × 40 cm) with a female conspecific and either a 
new object (piece of Lego) or (high-fat) food behind a mesh (length/
width/height 8 × 8 × 7 cm) on the left and right sides, respectively. 
Behavior in these experiments was captured at 30 Hz with a depth 
camera (Kinect for Windows v.2, Microsoft) positioned 65 cm above 
the floor of the arena.

Optogenetic stimulation
All mice used in the behavioral assays were allowed to recover after the 
fiber implantation for at least 1 week. Mice were randomly assigned to 
the experimental conditions. For optogenetic manipulation, 473 nm 
and 589 nm diode-pumped solid-state lasers (Laserglow Technologies) 
were used. For the stimulation of projections of LPO cells express-
ing ChRmine, a light delivery from a 589-nm laser was controlled by 
a shutter (Doric Lenses). Stimulation protocols were implemented 
using a stimulus generator (Multi Channel Systems). One side of the 
patch cord was connected to the implanted optical fiber with a zirconia 
sleeve (components from Thorlabs) and the other side was connected 
to the laser with an FC/PC adapter. The optogenetic experiments were 
performed in the test enclosure described above, once for each type 
of the stimulation and 14 ± 7 times for different types of optogenetic 
experiments lasting approximately 20 min each. During the electro-
physiological recordings (38 ± 5 sessions per mouse), time stamps of 
laser pulses were acquired synchronously with neuronal signals and 
video frames. The behavior of mice was recorded from different angles 
by four cameras at 25 Hz (Motif, Loopbio).

Optogenetic manipulations of the LH–LPO circuit
For a closed-loop optogenetic manipulation of the LH–LPO circuit in 
mice expressing ChRmine-mScarlet in LPO Vgat cells and ChETA-eYFP 
in LH Vgat cells, beta out-of-phase, nonrhythmic or beta in-phase 
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stimulation was applied unilaterally (Extended Data Fig. 6a–e). A sepa-
rate control group of mice expressing mScarlet in LPO Vgat cells and 
eYFP in LH Vgat cells, without optogenetic actuators, also received 
closed-loop stimulation with the beta out-of-phase protocol. Beta 
out-of-phase stimulation consisted of 5-ms 589-nm light pulses in 
the LH and 5-ms 473-nm light pulses in the LPO at 20 Hz with a 25-ms 
offset between brain regions. During nonrhythmic stimulation, the 
amount of light irradiation was matched to a 10% duty cycle of the 
beta out-of-phase and in-phase protocols: 20 pulses, 5 ms each, were 
randomly assigned times outside the beta band (mean interpulse 
interval 5 ms) during 200-ms epochs of each 1-s window. These 200-ms 
epochs of the 589-nm stimulation in the LH and 473 nm in the LPO 
did not overlap. The light power output was 1–4 mW during the light 
pulses measured at the tip of each of the two patch cords using an 
optical power meter (Thorlabs). Beta out-of-phase, nonrhythmic or 
beta in-phase stimulation was started when an animal spontaneously 
initiated F, S or E, in separate experiments, and lasted for 5 or 10 s for 
each manipulated behavioral episode during four corresponding 
5-min parts of a 20-min session (Extended Data Fig. 6i). The stimulation 
was repeated each time when an animal engaged in the investigated 
behavior. The time elapsed from stimulation onset to the end of the 
behavioral episode was defined as the latency to behavioral transition.

Noncontingent on the animals’ behavior, either beta out-of-phase 
or unidirectional LPO–LH stimulation (Extended Data Fig. 6d) was 
applied for 20 min in repeated blocks of 10-s stimulation alternating 
with 20-s breaks.

Optogenetic manipulations of mPFC–LH and mPFC–LPO 
projections
In mice expressing eNPAC2.0-eYFP or eYFP in the mPFC, stimulation 
was performed in the LH or in the LPO. Each experimental session 
lasted for 20 min. Pulses of 473-nm light for 5 ms at 20 Hz, a light power 
output of 10–15 mW from the tip of the patch cord or 589-nm light for 
10 s continuously and a light power output of 20 mW from the tip of 
the patch cord were applied in the optogenetic excitation or inhibition 
experiments, respectively. The closed-loop optogenetic stimulation 
was triggered by the spontaneous initiation of behaviors and lasted for 
10 s for each manipulated behavioral episode. For the social behavior 
tests, stimulation at theta frequency (9 Hz: 11-ms light-on, 100-ms 
light-off phases for 10 s in each stimulation episode) and nonrhythmic 
stimulation with light intensity matched to the beta frequency protocol 
(as described for the LH–LPO circuit stimulation) were performed.

Brain dissection and imaging
After completion of the experiments, mice were deeply anesthetized 
and electrolytic lesions at selected recording sites were performed 
to visualize the locations of the recording electrodes. Mice were per-
fused with 4% paraformaldehyde in PBS. Brains were fixed overnight 
in paraformaldehyde, placed for cryoprotection in 30% sucrose at 4 °C 
for 24 h and then coronally or sagittally sectioned into 40-μm slices 
on a cryostat (CM1900, Leica Biosytems). To visualize the electrolytic 
lesions and silicon probe tracks, brain sections were imaged using a 
widefield Axio Imager M2 microscope (ZEISS). To visualize the pro-
jections and control viral expression, sections were imaged using a 
confocal microscope (Leica SP8, Leica Biosytems).

Behavioral analysis
Behavioral scoring. Ethograms were obtained using a frame-by-frame 
scoring of behaviors using Adobe Premiere Pro (v.2020) (Adobe) in 
multiangle synchronized video recordings66. Frames when a resident 
mouse (implanted with electrodes or optic fibers) was consuming 
food pellets were scored as feeding. Social contact was defined as 
sniffing or following an intruder mouse. During the stimulation of the 
LH–LPO circuit, the latter behavior evolved into a prolonged chasing, 
defined as uninterrupted pursuing of an intruder for longer than 2 s. 

New object exploration was defined as sniffing, gnawing, touching or 
climbing a new object.

DeepLabCut. Markerless pose estimation was performed with the 
DeepLabCut toolbox (v.2.2.0.2)22. First, k-means clustering and manual 
selection were performed to select frames from each video across 
behaviors. Six key points (snout, left ear, right ear, left side (middle-left 
part of body), right side (middle-right part of body) and tail base) of 
each animal were localized on each frame. In total, 610 labeled frames 
were selected across eight video recordings and used to train a multi-
scale deep learning model DLCR-Net_ms5. Randomly assigned 95% of 
the data were used for training and the rest for testing. The network 
was trained for 120,000 iterations until cross-entropy loss plateaued. 
The estimated coordinates of key points in each frame were used to 
define behaviors67: animal in the food zone (the distance between the 
food zone center and the snout or an ear was less than the radius of food 
zone, 3.6 cm); feeding (snout and both ears in the food zone for at least 
1.3 s); mouse in the water zone (the distance between the water zone 
center and the snout or an ear was less than the radius of the water zone, 
3 cm); drinking (snout in the water zone for at least 1.5 s); social contact 
(snout or an ear inside or on the edge of the polygon area defined by 
the six key points of an intruder mouse); new object exploration (the 
distance between the new object zone and the snout or an ear was less 
than 1.3 cm); rearing (the snout was at least 2.2 cm over the enclosure 
wall or the snout was at least 0.7 cm over the middle separator wall and 
the length of a vector between the snout and the tail base was less than 
10.3 cm); and immobility (the coordinates of each of the six key points 
changed less than 0.5 cm s−1). Frames with pose patterns not meeting 
any of these criteria were classified as behaviorally undefined.

Behavioral motion segmentation. Using custom Python scripts 
(adapted from MoSeq (v.1)21 by R. Ung from the G. Stuber’s laboratory), 
depth images and frame time stamps were converted into a binary 
format for further analysis. Region-of-interest polygons delimiting 
the boundaries of the arena and two-dimensional images to inspect 
the behavioral syllables after analyses were acquired simultaneously.

MoSeq was performed in a Debian GNU/Linux 8 virtual environ-
ment running on a Linux (Ubuntu 16.94.3 LTS) compute cluster. Behav-
ior was classified using MoSeq v.1 (ref. 21). Briefly, depth mouse images 
were cropped along the arena boundaries, extracted from the arena 
background, parallax-corrected and orientated along the spine axis. 
Time series data were subjected to wavelet transformation and dimen-
sionally compressed using principal component analysis. To classify 
the behavioral syllables, an autoregressive hidden Markov model was 
applied to the first ten principal components. A template-matching 
procedure ensured that only repeated principal component trajec-
tories (that is, meaningful ones) were selected as syllables. One of the 
model parameters, the self-transition bias kappa, was set to match the 
median syllable duration with the median approximate change point 
of each dataset identified using a filtered derivative algorithm (κ = 5). 
To qualitatively verify behavioral syllables, we manually assessed the 
visualizations of each syllable using the two-dimensional recordings.

Analyses of syllable usage were performed in Python v.2.7. A nar-
row zone of 10 × 5 cm before the mesh with food, conspecific or new 
object was defined as a contact zone. The 4-s periods just before enter-
ing the zone (with the center of the head), with a minimum zone visit 
duration of 333 ms and a minimum zone visit interval of 2 s, was divided 
into eight 0.5-s bins (hence, for example, ‘−2 s’ corresponds to the 
period from 2 s to 1.5 s before social contact). Frames corresponding 
to the previous zone visit were excluded from the transition periods. 
For the calculation of syllable usage during contact, all frames inside 
the contact zone were included. The probability of syllable usage dur-
ing randomly selected 2-s epochs and repeated 1,000 times, equal or 
greater than the usage during the transition epochs, was computed 
and normalized across bins.
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Electrophysiological data analysis
Spike sorting and unit characterization. Electrophysiological signals 
were preprocessed using NDManager (http://neurosuite.sourceforge.
net/)68 and analyzed using custom-written MATLAB v.2014b algorithms 
(MathWorks) as described previously64. Action potentials (spikes) were 
detected in a high-pass filtered signal and spike waveforms were repre-
sented by the first three principal components and by the amplitudes 
of the action potentials. Spike sorting was performed automatically69 
(https://github.com/klusta-team/klustakwik) followed by manual 
cluster adjustment based on auto-correlations and cross-correlations 
of spikes trains, the Mahalanobis distance between pairs of clusters 
and the visual comparison of waveform profiles across channels68 
(Extended Data Fig. 1b). Isolation distance69 was computed for the 
sorted units: LH = 62.5 ± 0.9, n = 2,417 cells; LPO = 63.8 ± 2.0, n = 415 
cells; mPFC = 66.9 ± 1.1, n = 2,374 cells; VTA = 82.0 ± 3.2, n = 308 puta-
tive dopamine cells.

For individual behaviors, we computed the firing rate of cells. A 
surrogate distribution of 1,000 firing rate values was obtained for each 
cell by 2–4-min offsets of the behavior time stamps. For each behavior, 
the match score was calculated as the percentile of the firing rate during 
the behavior in the surrogate distribution. Multimodal LH cells were 
defined as units with a firing rate preference in the upper quartile for 
each of the three behaviors.

LFP analysis. The LFP was obtained by downsampling the wide band 
signal to 1,250 Hz using NDManager68. High-resolution time frequency 
analysis was performed using a continuous Morlet wavelet transform. 
The multitaper method (NW = 3, window length of 1,024) was used 
to compute power spectral density and coherence according to the 
ethogram times. Beta oscillations were detected in the 15–30 Hz 
band-pass-filtered, rectified and smoothed signal. Events with ampli-
tudes exceeding 2 s.d. above the noise mean for at least 80 ms were 
detected. The beginning and the end of the oscillatory epochs were 
designated at times when the amplitude fell below 1 s.d.

Discharge phases. Spikes fired during the detected oscillation epi-
sodes were assigned beta oscillation phases, computed using the 
Hilbert transform of the 15–30 Hz filtered signal. Histograms of 
spike counts in 20 phase bins were convolved with a Gaussian kernel 
(size = 0.65 s.d.) and normalized by the total number of spikes in the 
histogram65. This approach was also used to compute the discharge 
phases during the gamma oscillations (30–60 Hz, minimum duration 
of 25 ms (ref. 10).

To examine the timing of neuronal discharge in the LH and LPO 
during beta out-of-phase stimulation, we used a linear approximation 
of the 20-Hz sinewave as a reference for the spike phase assignment. 
The times of blue light pulses stimulating projections of LH cells in the 
LPO and of red light pulses stimulating projections of LPO cells in the 
LH defined the period of the stimulation rhythm for the assignment of 
phases to the spikes of LH and LPO cells, respectively. As we optoge-
netically stimulated the inhibitory inputs from the LH to the LPO and 
from the LPO to the LH, we evaluated the proportion of units inhibited 
by the optogenetic stimulation. For this purpose, we summed the 
normalized binned firing probability within the first 7 ms after pulse 
termination and the normalized binned firing probability within the 
following 7 ms. We calculated the ratio of these sums and detected any 
outlier units defined as more than three scaled median absolute devia-
tions away from the median. Units falling below the 30th percentile in 
the ratio distribution were defined as inhibited units, the population 
firing probability of which was summarized in stimulation phase his-
tograms. The onset of the first stimulation pulse was assigned as phase 
π and the onset of every second pulse was assigned as phase −π. Every 
mid-interpulse interval was assigned as phase 0 radian. Other phases 
were linearly interpolated at 20 kHz (the sampling rate of spike trains). 
Each spike was assigned a corresponding beta phase in the stimulation 

cycle. The obtained phases were offset by π for the LH spike strains (that 
is, stimulation of the LH cell projections at 0° and 360°) and by 3 π for 
the LPO spike trains (that is, stimulation of the LPO cell projections at 
180° and 520°) according to the out-of-phase timing of the pulses in 
this stimulation protocol. The spike phase distribution of each unit 
was binned into 20 bins per beta cycle.

Machine learning modeling
Phase signatures. Firing probability versus beta oscillation phase 
histograms were computed for individual LH and VTA cells using the 
spikes fired during 2 s before transition to F, S and E separately for 
each behavior for control or behavior epochs of the same duration. 
Control epochs excluded transitions to the aforementioned behaviors. 
In a separate analysis, transition and control epochs were additionally 
selected for the same behavioral state, locomotion and posture change.

Cells with histograms containing at least 20 (168 ± 15) spikes for 
the LH cells and at least 10 (29 ± 3) spikes for the presumed dopamine 
cells (VTA cells with a spike width greater than 0.3 ms (ref. 29) and firing 
rate lower than 10 Hz (ref. 47) were used for the subsequent decoding 
of behavioral transitions. For each of the 20 phase bins, the population 
distribution of firing probabilities was estimated; cells with the firing 
probability in the upper quartile of the distribution, that is, ‘highly 
active cells’ at a given phase, were selected. A phase signature was 
defined through an asymmetry of individual behavior match scores’ 
distribution in a population of highly active cells in each phase bin as:

φ ∶= c
N − c

where c = |{m ∈ D ∶ m > 0.5}| and D is a set of match scores m of N cells.
Phase signatures were computed based on match scores for F, S 

and E during transitions to these three behaviors resulting in three 
behavior-specific phase signatures for each of the three types of transi-
tions or, if specified, for a combination of different types of transitions. 
To account for the variability of the phase signatures in each phase 
bin, the distribution of match scores in the set of highly active cells at 
a given phase was bootstrapped with replacement 1,000 times to derive 
the datasets for the modeling70. To generate the control sets, the time 
stamps of the transitions were randomly offset, excluding overlaps with 
the transition epochs from native ethograms. The first 1,000 offset tri-
als with the number of spikes that were sufficient for the estimation of 
firing probability and the phase histograms were selected.

Support vector classifications. SVM models were implemented 
using the Python package Scikit-learn (v.1.2.2)71. Phase signatures 
from either individual or multiple phase bins were the inputs to  
one SVM. The classes and input datasets for the SVMs are described 
below (see also the design description of the SVM model in Supple-
mentary Information).

Models 1 and 2 in Fig. 2a–c aimed to classify transition (2-s epochs) 
versus control epochs (2 s, excluding transitions to the three behaviors) 
within individual phase bins (eight bins) in the peak neighborhood 
(peak ± 72°). To do so, an SVM was trained and tested with tenfold 
cross-validation. Model 1 was trained and tested on phase signatures 
related to individual behaviors (F, S and E), while model 2 used the phase 
signatures of all three behaviors in one SVM.

Model 3 in Fig. 2d assessed the phase signatures (related to F, S  
and E) in transition versus control epochs across phases near the  
peaks of beta oscillations. To generate the phase-shuffled datasets, 
the phase of each spike was jittered by a random offset from a uniform 
distribution. Then all spikes of all cells were additionally offset by  
the same random phase between 2.5 radian (the width of the peak 
neighborhood) and π using different random offsets for control and 
transition epochs. Separate SVMs were computed on phase signatures 
(related to F, S and E) from the original and phase-shuffled datasets 
to classify transition versus control epochs. Training was done on 
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the data from the phase bin with the highest (in the entire oscillation 
cycle) difference of phase signature amplitude between transition 
and control. Training was performed this way in the original and in the 
phase-shuffled data. Subsequently, the SVM trained on the original 
dataset was tested on individual phase bins in the peak neighborhood 
in the original dataset, excluding the bin used for training. Testing in 
that bin was performed using a separate SVM, trained on the phase 
bin with the second highest (in the entire oscillation cycle) amplitude 
phase signature. Testing of the SVM trained on phase-shuffled data was 
performed on the phase-shuffled data from the bin, in which the origi-
nal dataset could be decoded with the highest accuracy. The resulting 
decoding accuracy in the phase-shuffled data was close to the chance 
level, which was typical for phase-shuffled data also in other phase bins.

Model 4 in the statistical information in Supplementary Informa-
tion for Fig. 3c and Extended Data Fig. 5b classified three upcoming 
behaviors (F, S and E) using in one SVM phase signatures from all eight 
phase bins in the peak neighborhood during transitions. The SVMs were  
trained and tested on the phase signatures of individual behaviors  
(F, S and E) with tenfold cross-validation.

Model 5 in the statistical information in Supplementary Infor-
mation for Fig. 3c and Extended Data Fig. 5b was similar to model 4 
except that, instead of upcoming behaviors, it classified three current 
behaviors (F, S and E) using the phase signatures during random 2-s 
epochs of behaviors.

Models 6 and 7 in Fig. 3d were similar to models 1 and 2, respec-
tively, but they classified three upcoming behaviors (F, S and E) using 
the phase signatures in individual phase bins in the peak neighborhood 
during transitions.

Models 8 and 9 in Fig. 3e were similar to models 1 and 2, respec-
tively, but they classified three current behaviors (F, S and E) using the 
phase signatures in individual phase bins in the peak neighborhood. 
These SVMs were trained and tested on phase signatures during ran-
dom 2-s epochs of behaviors (F, S and E).

Model 10 in Fig. 7i classified transition (2-s epochs) versus control 
epochs (2 s, excluding transitions to the above behaviors) using in 
one SVM the phase signatures from all phase bins in the entire cycle to 
account for the phase offset of dopamine cell discharge in relation to 
the LH (LH in Fig. 4a; VTAdopamine in Extended Data Fig. 10d).

Models 11 and 12 in Extended Data Fig. 4d,e were similar to model 
3 except that they classified pooled transitions (2-s epochs preceding 
any of the three behaviors, that is, F, S and E) versus control epochs 
(2 s, excluding transitions to the three behaviors), either using the 
data from all mice pooled (model 11) or separately from individual 
mice (model 12).

In the LH recordings, as described above, two-class and three-class 
(one-versus-rest multiclass classification72) models were computed 
using a nonlinear radial basis or linear kernel (depending on the dimen-
sionality of the feature space). Linear SVMs were used to classify the 
population activity of putative dopamine cells. To minimize overfitting, 
training and testing were done on different data subsets. Except for 
models 3, 11 and 12, which were designed to be trained and tested on 
different phase bins, a stratified tenfold cross-validation procedure was 
used: each training set was randomly divided into ten subsamples with 
the same proportion of samples from each class as in the complete set. 
One subsample was then retained for testing the model, while the other 
nine subsamples were used for training, with this procedure repeated 
using all ten subsamples so that each subsample was used only once 
to evaluate the performance of the model. Decoding accuracies were 
initially averaged within tenfold cross-validation trials and the result-
ing accuracies were averaged across 1,000 repeated cross-validations.

The significance of classifications was assessed using permuta-
tion tests. We randomly permuted the labels and then used the same 
decoding approach as for decoding the original labels, except for 
using the stratified tenfold cross-validation once (instead of 1,000 
times) for each model. The permutation of labels was repeated 1,000 

times to assess the chance performance of a classifier computed as 
the average of accuracies across permuted sets. The performance of 
a classifier was considered significant when it fell in the 5% upper tail 
of its chance performance distribution.

Statistical analyses
Statistical analyses were performed using MATLAB v.2014b (Math-
Works), Python v.3 (https://www.python.org/) or Prism 9 (GraphPad 
Software). The level of significance and the number of neurons and 
mice are indicated in the figure legends. A likelihood ratio test73 was 
used to compare bivariate circular distributions (see the statistical 
information related to Fig. 5d,e). All statistical tests were two-tailed 
unless indicated otherwise; permutation and randomization tests 
were right-tailed. Two-group comparisons were performed using a 
t-test, Mann–Whitney U-test or Wilcoxon matched-pairs test depend-
ing on the normality of a distribution. Multiple group comparisons 
were performed using an ANOVA or multiple two-group tests with α 
correction, adjusting for multiple comparisons. The Grubbs’ test was 
used to exclude outlier points from behavioral datasets. A median abso-
lute deviation outlier test was used to exclude outlier points from the 
analysis of optogenetic entrainment. No further data points or animals 
were excluded. Sample size was determined according to the accepted 
practice for the applied assays. No statistical methods were used to 
predetermine sample sizes; sample sizes are similar to those reported 
in previous publications38,49,54,66. Data analysis was performed blindly 
using automatic selection of data from a database. The full description 
of the statistical analyses corresponding to each dataset is provided in 
the statistical information in Supplementary Information. Unless speci-
fied otherwise, descriptive statistics are reported as the mean ± s.e.m.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Source data for Figs. 1–7 and Extended Data Figs. 1–10 are provided in the 
paper. Spike trains recorded in the LH, mPFC, VTA and the time stamps 
of beta oscillations have been made available via Figshare (https://
doi.org/10.6084/m9.figshare.22317091). Further datasets generated  
during the current study are available from corresponding authors 
upon reasonable request. Source data are provided with this paper.

Code availability
All code used in the current study is available via GitHub (https://
github.com/NeuroAnalyz/SpikeTrains-LFP) or from the correspond-
ing authors upon reasonable request.
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Extended Data Fig. 1 | Neuronal discharge and beta oscillations in the LH.  
a, Top: enclosure with a free access to food, water, novel object and a freely 
moving conspecific. Middle: chronic recordings in the LH using a movable silicon 
probe. Bottom: a representative histological section showing a probe track in the 
LH. White arrow, localization of an electrolytic lesion. Dashed vertical line, the 
3rd ventricle. Scale bar, 200 μm. b, Representative single units sorted in silicon 
probe recordings from the LH. Average spike waveforms from eight channels of 
the probe’s shank (scale bars, 1 ms), ACGs (black, firing rate and isolation distance 
are indicated for each unit) and CCGs (grey) of the shown units recorded by the 
same shank (columns). Bin width 1 ms. c, Behavior-dependent changes of LH 
cells’ firing rate. Behavior onset: dashed line, episodes’ duration is uniformly 
scaled. Top: social contact, n = 2064 cells from eight mice; bottom: obj.expl. 
(novel object exploration), n = 1583 cells from eight mice. d, Representative 

traces of LFP beta oscillations (scale bars: 50 ms; 0.5 mV) in the LH (1 - 100 Hz 
band-pass) during transitions to feeding, social contact and obj.expl., and 
their wavelet spectrograms. e, CCGs between beta oscillation times (maximal 
amplitude of envelopes) and onsets of feeding, N = 7 mice, social contact and 
obj.expl., N = 8 mice. f, The amplitude of beta oscillations during each behavior 
normalized to the amplitude during control epochs not including the respective 
behavior, feeding vs. control, N = 7 mice, p = 0.09, social vs. control, N = 8 mice, 
p = 0.8, obj.expl. vs. control, N = 8 mice, p = 0.7, t-test. g, The probability of LH 
(n = 2417 cells from eight mice) and LPO (n = 415 cells from three mice) neuronal 
discharge in relation to the maximum amplitude of LH beta oscillation envelopes. 
h, Histogram of preferred LH beta oscillation phases for significantly modulated 
LH cells, n = 384 cells from eight mice. Data are presented as mean ± SEM. See also 
Supplementary Information for the statistical information for c, e, f.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | The organization of behavioral transitions. a, Markov 
chain models of all scored behaviors (pictograms, example sequences) featured 
the lowest Bayesian information criterion parameter for the model with order 0 
(top row), N = 8 mice. b, Depth camera recordings in a free choice paradigm with 
food or a novel object and a conspecific behind a mesh. Mouse depth images were 
decomposed into syllables using MoSeq. c, Usage of syllables, sorted according 
to the time of the change in usage trends (peaks or troughs, whichever is closer 
to the transition point) over the period of 4 s before transitions to social contact. 
Colour bar: the probability in a set of 1000 shuffled epochs, normalized within 
and averaged across 9 mice. d, Average lag of syllables’ usage change (peaks and 
troughs, whichever is closer to the transition point) for transitions to feeding 
(n = 25 syllables), social contact (n = 29) and novel object exploration (n = 23, 
not different between syllables, p = 0.12, ANOVA), box outlines and center line, 
median and quartiles; whiskers, 1.5 x IQR. e, f, Markerless pose estimation using 

DeepLabCut (DLC). e, Trajectory of a resident (one of eight resident mice) and an 
intruder for an example epoch shown in f. f, Changes of the estimated position 
of the resident and the intruder during behaviors. g, Ethograms generated using 
DLC and manual behavioral scoring, representative mouse. h, CCGs of transition 
times, obtained by DLC-derived (reference) and manual scoring (Observer, Obs., 
1) and between ethograms independently generated by different observers 
(Obs. 1, reference, vs. Obs. 2) in six mice. Cross-ethogram match: the difference 
between a CCG and a reference series ACG. i, j, Contribution of locomotion, 
unspecific postural changes vs. specific innate behaviors (i) and of individual 
behaviors (j, mean ± SEM) to combined transitions to feeding, social and novel 
object exploration, N = 8 mice. k, The duration of the dominant behavioral 
state preceding transition times – locomotion and unspecific postural changes, 
median ± IQR, N = 8 mice. See also Supplementary Information for the statistical 
information for a, d, i.
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Extended Data Fig. 3 | Phase signatures of LH neuronal discharge during 
transitions and behaviors. a, Definition of phase signatures for a population 
of LH cells. Ratios of high (c) to low match score (N-c) cells for each of the three 
behaviors are computed for sets of highly active cells, that is units with the  
firing probability in the upper quartile at each oscillation phase (binned).  
b, Beta phase signatures during transitions to feeding, social contact and 
novel object exploration (combined) and during 1000 shuffled sets of control 
epochs excluding these transitions for the complete LH population (see also 
normalized curves in Fig. 3a, n = 483 cells from six mice) and for a more selective 
LH population (match scores in lower or upper ten percentiles, n = 310 cells 
from six mice); Pearson correlation, phase signatures of complete vs. selective 
populations during transitions: φF: r = 0.82, p < 0.0001, φS: r = 0.58, p = 0.0071, 
φE: r = 0.43, p = 0.0525; complete populations during transition vs. control: 
φF: r = 0.25, p = 0.29, φS: r = 0.29, p = 0.20, φE: r = 0.02, p = 0.92. c, Beta phase 

signatures during transitions to behaviors and during 1000 shuffled sets using 
the same population of LH cells across behaviors, n = 88 cells from three mice. 
Columns: phase signatures for feeding (φF), social contact (φS) and novel object 
exploration (φE). d, Gamma (30-60 Hz) phase signatures during transitions to 
feeding, social contact and novel object exploration (combined) and during 1000 
shuffled sets (n = 439 cells from four mice). e, Average of gamma phase signatures 
shown in d. f, Peak:trough preference of the average gamma phase signature 
shown in e, during transition and 1000 sets of control epochs; transition, 
p = 0.42, control, p = 0.43, bootstrap test for peak:trough preference. Red line; 
phase-uniform firing distribution. Ivory shade, peak neighbourhood, four bins 
(72°) flanking the oscillation peak. Data are shown as mean ± 95% CI, bootstrap, 
polynomial fit. Dashed sine curve, reference cycle. See also Supplementary 
Information for the statistical information for b, f.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Decoding behavioral transitions by phase signatures 
of LH neuronal discharge. a, Left: Decoding transitions to different behaviors 
vs. control epochs by individual behavior phase signatures (populations of 
110, 420 and 292 cells). Mean of n = 1000 cross-validations for each phase bin, 
with different lags from the beta oscillation peak. Right: confusion matrices. 
T: transition; C: control. b, Average decoding accuracies of models using 
individual behavior phase signatures after random reshuffling of class labels for 
each of the eight phase bins in the peak neighbourhood. c, Permutation test’s 
p-values for each model in (b). d, Decoding transitions to different behaviors 
(combined) using original and phase-shuffled datasets. SVMs classified 
transition vs. control epochs. Data points, accuracy for the original dataset 
(x-axis) and the mean accuracy across 1000 phase-shuffled datasets (y-axis), 
p = 0.0009, randomization test. e, Decoding transitions to different behaviors 
(combined) using original and phase-shuffled datasets of 197, 333 and 128 cells 

in individual mice. Data points, as in (d). φF: p < 0.0001, φS: 0.035, φE: 0.0003, 
t-test. f, Confusion matrices of models shown in Fig. 2e, rows – transitions to 
different behaviors. T: transition; C: control. g, Average decoding accuracies of 
models using phase signatures of multiple behaviors derived otherwise as in (b). 
h, Permutation test’s p-values for models in (g). i, j, Decoding transitions to the 
three behaviors (combined) by phase signatures of 157 beta phase-locked vs. 514 
non-modulated cells from six mice (mean ± SEM across eight bins in the peak 
neighbourhood) φF: p = 0.33, φS: 0.17, φE: 0.23 and between models using phase 
signatures of multiple behaviors (‘All’), p = 0.32, t-test, paired between phase 
bins. Phase-locked cells: paired t-test, adjusted α = 0.0167, φF vs. All, p = 0.0465, 
φS vs. All, p = 0.0046, φE vs. All, p = 0.0007; non-modulated cells: φF vs. All, 
p = 0.0013, φS vs. All, p = 0.0005, φE vs. All, p = 0.0028. Dotted line, chance level. 
See also Supplementary Information for the statistical information for d, e, i, j.
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Extended Data Fig. 5 | Decoding behavioral transition outcomes by phase 
signatures of LH neuronal discharge. a, Average of the phase signatures of 
feeding, social contact and novel object exploration computed for 2-s epochs 
prior to the transitions to these behaviors (left, −4 s, n = 472 cells), during 
transitions (middle, n = 483 cells) and upon behavior onset (right, n = 205 cells) 
from six mice, mean ± 95% CI, bootstrap, polynomial fit; dashed sine  
curve, reference cycle. b, Phase signature of novel object exploration,  
φE (represented by the first two linear discriminants, LD1, LD2), computed  
in the peak neighbourhood during transitions to F (purple dots), S (orange) or 

E (blue), left plots, and during 2-s random epochs during these behaviors, right 
plots. Contours represent the probability density estimated for each cluster.  
c, Confusion matrices of models shown in Fig. 3g (left bar, transitions).  
d, Accuracies of decoding the current behavior using phase signatures of 
multiple behaviors in each phase bin; box outlines and center line, median and 
quartiles of 1000 cross-validations; whiskers, 1.5x interquartile range; n = 64 
cells, which fired during all the three behaviors, from three mice; dotted line, 
chance level. See also Supplementary Information for the statistical information 
for b.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Causal role of LPO-LH beta oscillations in behavioral 
transitions. a-e, Beta out-of-phase stimulation in mice expressing opsins (a) 
and control constructs (b), non-rhythmic (c), a unidirectional LPO-to-LH (d) and 
in-phase stimulation (e). f, g, Firing rate during baseline vs. in-phase (f, n = 44 LH 
cells, 1 mouse, p = 0.054, signed-rank test) or vs. out-of-phase and non-rhythmic 
stimulation (g, n = 255 LH and 106 LPO cells, 2 mice, p = 0.4, ANOVA). h, Decoding 
of transitions from F, S and E (combined) to various behaviors vs. non-transition 
epochs; n = 423 cells, 3 mice; p < 0.0001, permutation tests. Dotted line, chance 
level. i, Stimulation for 10 and 5 s upon onset of F, S or E (in separate experiments). 
j, Latency to transition from F, N = 6 (On), N = 5 (Off); S and E, N = 6 mice, during 
stimulation (10, 5 sec light on epochs combined) upon behaviors and light 
off epochs. k, l, Average speed during out-of-phase and non-rhythmic (Con.) 
stimulation. N = 5, Con., Stim. mice, p = 0.7, t-test (k) and path length, 5 Con., 
Stim. mice, p = 0.9, t-test (l). m, Chasing (fraction of S episodes) during 10 s 

stimulation upon onset of S, N = 6 YFP, Con., N = 5, Stim. mice. n, Latency to F, S 
or E during out-of-phase and control (YFP) stimulation upon S. N = 4, YFP N = 5, 
Stim., p = 0.0076, t-test. o, Empirical CDF (with kernel estimate) of the latencies 
to F, S and E during out-of-phase and non-rhythmic (Con.) stimulation in the 
absence of these behaviors. N = 6 mice, Stim. vs Con., p = 0.0002, two-sample  
KS-test. p, Latency to F, S or E during stimulation in the absence of these 
behaviors. N as in (o). q, r, Duration of behavior during LPO-to-LH or out-of- 
phase non-contingent on behavior stimulation. q, F, N = 6, LPO-LH, 5, Stim.  
mice, p = 0.0014. r, S, N = 6, LPO-LH, Stim. mice, p = 0.042, t-test. F, Feeding,  
S, social contact, E, novel object exploration. Data in bar plots, mean ± SEM.  
Box outlines and center line, median and quartiles; whiskers, 1.5x IQR. *, p < 0.05,  
**, p < 0.01, ****, p < 0.0001, #, p = 0.03, ##, p = 0.01, t-test. See also 
Supplementary Information for the statistical information for f–h, j–r.
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Extended Data Fig. 7 | Facilitation of transitions to feeding by in-phase 
LPO-LH stimulation. a, Normalized phase signatures (bootstrap) for feeding, 
social contact and novel object exploration computed during 20-s epochs of 
the in-phase stimulation, n = 44 cells, mean ± 95% CI, polynomial fits, dashed 
sine curve, reference cycle; ivory shade, peak neighbourhood. Comparison of 
peak:trough preference of phase signature for each behavior vs. 1 - a uniform 
phase signature: feeding, p < 0.0001, social contact and novel object exploration, 
p = 1, one-sample t-test (right tailed). b, Schematic, measurement of the latency 
to feeding, social contact or novel object exploration (Behav.) after the onset of 
in-phase LPO-LH or control (mScarlet/YFP) stimulation (initiated upon social 
behavior). c, Latency to feeding and the probability of feeding onset during. N = 6 
(YFP), 4 (In-phase) mice. YFP vs. In-phase, latency, p = 0.043; probability of onset, 
p = 0.0008, t-test. d, Latency to social contact. N = 5 (YFP), 5 (In-phase) mice. YFP 

vs. In-phase, latency, p = 0.6, t-test. e, Latency to novel object exploration. N = 6 
(YFP), 5 (In-phase) mice. YFP vs. In-phase, latency, p = 0.2, t-test. f, Schematic, 
measurement of the latency to transition from feeding, social contact or novel 
object exploration (Behav.) after the onset of stimulation initiated upon these 
behaviors. g, Latency to transition during 10 s or 5 s in-phase LPO-LH stimulation 
during feeding (F), social contact (S) and novel object exploration (E). N = 5 
mice. F vs. S, F vs. E, 0.0052 ≥ p ≥ 0.0002, F vs. S: p < 0.0001, t-tests, #, p < 0.01, 
##, p < 0.001. h, The difference of latency to transition between 10 s and 5 s 
stimulation during feeding, social contact and novel object exploration. N = 5 
mice. F vs. S: p = 0.015. F. vs. E: p = 0.017, t-tests. *, p < 0.05, ***, p < 0.001, t-test. 
Data are presented as mean ± SEM. See also Supplementary Information for the 
statistical information for a, c-e, g, h.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Beta-rhythmic mPFC-hypothalamic coordination 
during behavioral transitions. a, Left: firing probability of LH multimodal cells 
(scaled from 0 to 1) according to beta phase within 2 s prior to transition to E 
(n = 110 cells, 3 mice) and during control epochs in the whole recording sessions. 
Right: ratio of cumulative firing probabilities during peak phases to probabilities 
during trough phases during transition to E and control epochs, p = 0.59, t-test. 
b, Coherence of mPFC and LH LFP during transitions to innate behaviors and 
control epochs, N = 3 mice. c, Coherence of amygdala (BLA, basolateral, CeA, 
central nuclei) and LH LFP, complete recording sessions, N = 4 mice. d, Beta-band 
coherence, N = 3 (LH-mPFC), 4 (LH-BLA/CeA) mice, p = 0.0003, t-test. e, Dual-site 
recordings in mPFC and LH, brain sections showing silicon probes localization 
(arrows). Dashed lines, the anterior part of the anterior commissure (top) and 
the mammillothalamic tract (bottom). Scale bar, 200 μm. f, Probability of 
mPFC discharge in relation to the maximum amplitude of LH beta oscillation 

envelopes, n = 2374 cells, 3 mice (left), wavelet spectrograms of native (middle) 
and shuffled (right, shifting beta times by 10 sec) CCGs. g, Histogram of average 
LH beta phases for mPFC cells, n = 2374 cells, 3 mice. h-j, Firing probability of 
mPFC cells (scaled from 0 to 1) according to LH beta phase during 2-s epochs 
prior to transitions (−4 s) to the three combined behaviors (n = 552 cells) (h), 
during transitions (n = 556 cells) (i) and upon behavior onset (n = 334 cells) 
(j). N = 3 mice. k, Coherograms of six pairs of simultaneously recorded LH 
and mPFC cells. High co-firing corresponds to the diagonal of plots showing 
the joint firing probability of LH and mPFC cell pairs during transitions to F, 
shuffled transitions to F, transitions to S and shuffled transitions to S. Curves, 
firing probability distributions. Data are presented as mean ± SEM. Ivory shade, 
peak neighbourhood; fits, polynomial; grey shade (b, c), beta-band. See also 
Supplementary Information for the statistical information for a, b, d, h–j.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01598-3

Extended Data Fig. 9 | Causal role of the beta-rhythmic mPFC-hypothalamic 
signalling in behavioral transitions. a, Representative image showing  
eNPAC2.0 expression in the mPFC. Section coordinates: bregma +1.68 mm;  
scale bar, 200 μm (repeated in nine opsin mice). b, c, Representative images 
showing the projections of mPFC neurons in the LPO (b) and LH (c). Numbers 
on images - section coordinates, bregma. 3 V, third ventricle, ac, anterior 
commissure, ic, internal capsule. Scale bar, 150 μm (b), 250 μm (c) (repeated in 
nine opsin mice). d, Schematic of a non-rhythmic optogenetic stimulation (with 
light irradiation matched to the beta-rhythmic stimulation) of the mPFC-LH 
pathway. e, f, Locomotor activity during optogenetic excitation of mPFC-LH. 
e, Average speed, 6 (YFP), 9 (Stim.) mice, p = 0.07, t-test. f, Path length, 6 (YFP), 
9 (Stim.) mice, p = 0.2, t-test. g-i, Effects of optogenetic inhibition of mPFC-LH 

projections on the latency to behavioral transitions (normalized to YFP).  
g, Social contact, N = 6 (YFP), 9 (Inhib.) mice, p = 0.003, t-test. h, Novel object 
exploration, N = 7 (YFP), 9 (Inhib.) mice, p = 0.006, t-test. i, Feeding, N = 7 (YFP), 
8 (Inhib.) mice, p = 0.9, t-test. j, k, Locomotor activity during optogenetic 
excitation of mPFC-LPO projections. j, Average speed, 9 (Con.), 9 (Stim.) mice, 
p = 0.6, t-test. k, Path length: 6 (Con.), 9 (Stim.) mice, p = 0.08, t-test. l-n, Effects 
of optogenetic inhibition of mPFC-LPO projections on the latency to behavioral 
transitions (normalized to YFP). l, Social contact, N = 7 (YFP), 9 (Inhib.) mice, 
p = 0.9, t-test. m, Novel object exploration, N = 7 (YFP), 9 (Inhib.) mice, p = 0.09, 
t-test. n, Feeding, N = 5 (YFP), 9 (Inhib.) mice, p = 0.002, Mann-Whitney test. 
Data presented as mean ± SEM, *, p < 0.05, **, p < 0.01. See also Supplementary 
Information for the statistical information for e–n.
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Extended Data Fig. 10 | Beta oscillations and encoding of behavioral 
transitions in the VTA. a, Representative brain sections showing a silicon probe 
track in the VTA (black arrows, bottom section), LH (red arrows, bottom section) 
and LPO (blue arrows, upper section). b, Representative LFP traces showing 
simultaneously recorded beta oscillations during locomotion in the LPO, LH 
and VTA (1-100 Hz band-pass) and their respective spectrograms (wavelet 

scalograms). c, Firing probability of presumed dopamine cells according to the 
phase of VTA beta oscillation, n = 296 cells from three mice. d, Firing probability 
of presumed dopamine cells according to the phase of LH beta oscillations, 
n = 150 cells from two mice. e, Confusion matrices of models shown in Fig. 7j.  
Data presented as mean ± SEM. DA cells, dopamine cells.

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Neuralynx Cheetah Data Acquistion software for electrophysiological data, 

Motif video recording software for a part of behavioural data, 

Leica Application Suite X (LAS X) software for confocal imaging, 

Zeiss Imager microscope (Axio Imager M2 Microscope, Zeiss, Oberkochen, Germany) for wide-field imaging.

Data analysis GraphPad Prism 9 (GraphPad Software) for plotting figures and statistical analysis 

Fiji - ImageJ for analysing imaging 

Neurophysiological Data Manager (NDManager, http://neurosuite.sourceforge.net) for preprocessing of electrophysiological data 

Klustakwik (http://klusta-team.github.io/klustakwik/) for spike sorting 

Adobe Premiere Pro 2020 for video rendering 

Adobe Illustrator 2020 for assembling figures 

Matlab 2014b (Mathworks) for analysing electrophysiological data, statistical analysis and behaviors  

Python 3 for machine learning modelling data analysis and statistical analysis 

Scikit-learn package (version 1.2.2) 

DeepLabCut toolbox (version 2.2.0.2) 

All codes used in the current study are available via GitHub (https://github.com/NeuroAnalyz/SpikeTrains-LFP) or from corresponding authors 

upon reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Spike trains recorded in the LH, mPFC, VTA and timestamps of beta oscillations were made available via Figshare (https://doi.org/10.6084/m9.figshare.22317091). 

Further datasets generated during the current study are available from corresponding authors upon reasonable request.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was chosen using our experience and standards in the field (citations are included). Reported in Methods, Electrophysiological 

data analysis, Machine learning modelling and Statistical analysis.

Data exclusions  Grubbs’ test was used to exclude outlier points from behavioural datasets. Median absolute deviation outlier test was used to exclude outlier 

points from the analysis of optogenetic entrainment. Reported in Methods, Statistical analysis.

Replication All attempts at replication were successful. Reported in figure legends.

Randomization Animals were randomly assigned to control and experimental groups.

Blinding Computations were subsequently performed blindly using automatic selection of data from a database.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Vgat-ires-Cre knock-in mice (The Jackson Laboratory, Bar Harbour, USA) and C57BL/6 mice, 10 - 25 weeks old, were used.

Wild animals No wild animals were used this study.

Reporting on sex Male and female mice were used in this study.

Field-collected samples No field collected samples were used in this study.

Ethics oversight All animal procedures were performed in accordance with national and international guidelines and were approved by the local 

health authority (LANUV, Das Landesamt für Natur, Umwelt und Verbraucherschutz).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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