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. Inthis Data Descriptor, we present county-level electricity outage estimates at 15-minute intervals

from 2014 to 2022. By 2022 92% of customers in the 50 US States, Washington DC, and Puerto Rico

. arerepresented. These data have been produced by the Environment for Analysis of Geo-Located
Energy Information (EAGLE-I™), a geographic information system and data visualization platform
created at Oak Ridge National Laboratory to map the population experiencing electricity outages every

 15minutes at the county level. Although these data do not cover every US customer, they represent

: the most comprehensive outage information ever compiled for the United States. The rate of coverage
increases through time between 2014 and 2022. We present a quantitative Data Quality Index for these
data for the years 2018-2022 to demonstrate temporal changes in customer coverage rates by FEMA
region and indicators of data collection gaps or other errors.

Background & Summary
The 2003 Northeast blackout was an acute failure of the US-Canada electric power system. The outage left over
: 50 million people without power for up to four days and was initially sparked by electrical faults occurring when
. high voltage power lines sagged into tree branches. These initial faults cascaded into the largest power outage
. in North America, in a context in which inadequate situational awareness was described as the second of four
: major causes of the event!. It is believed that the event’s cascading consequences could have been averted or
° mitigated if utilities had visibility and situational awareness of their surrounding utility partners. It took several
. hours to estimate that the event left over 50 million people without electricity. This event motivated the U.S.
. Department of Energy (DOE) to create a wide-area situational awareness and visualization capability? which
came to be known as Environment for Analysis of Geo-Located Energy Information (EAGLE-I™).
EAGLE-I (https://eagle-i.doe.gov) is a geographic information system, data visualization, and situational
awareness platform created to monitor electric utility customer outages from data gathered from public sources®.
. EAGLE-I reports electricity service outages at 15-minute intervals for 3,044 out of 3,226 US counties and county
. equivalents by 2022, starting from 2,152 in 2014. EAGLE-I is a critical mission support function for the U.S.
. Department of Energy’s Office of Cybersecurity, Energy Security, and Emergency Response (CESER) and pro-
. vides authoritative information on energy impacts to other federal and coordinating agencies including the
Executive Office of the President, the National Security Council, the Department of Homeland Security (DHS),
. the Federal Emergency Management Agency (FEMA), the Federal Energy Regulatory Commission (FERC),
. and the North American Electric Reliability Corporation (NERC). Federal, regional, state, and local planners,
utilities and emergency responders use EAGLE-I for situational awareness and decision making, especially while
addressing major disasters such as hurricane Ian (2022), winter storm Uri (2021), and the Camp Fire (2018).
* Figure 1 shows maximum outages for winter storm Uri. In addition to providing critical situational awareness,
. this platform is building a long-term record of electricity disruptions. Like records of past weather events, records
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Fig. 1 County level EAGLE-I power outage data during winter storm Uri. For each county, we show the
maximum percentage of customers that simultaneously experienced an outage for all of the 15-minute
collection intervals between February 12 and 19, 2021. These outages did not occur simultaneously during this
week, this map represents the circumstances that were “as bad as it ever was” in the focal period.

of climate driven infrastructure service disruptions are important for understanding characteristics of the cou-
pled infrastructure-climate system in order to better anticipate the consequences of future climate events*-.

In this data descriptor, we present a complete set of validated historic EAGLE-I records, including eight years
of county level power outage information from 2014 to 2022 at 15-minute intervals, and county-level estimates
of electricity customer population. We also present five years of Data Quality Statistics for the 10 FEMA Regions
(2018-2022). Although these data do not cover all US customers, they represent the most comprehensive out-
age information ever compiled for the United States. The coverage rate increases through time between 2014
and 2022. Precise data quality statistics became available in 2018. In 2018, outage data was collected from 339
individual electrical utilities, which account for 137 million (86%) electric utility customers. By 2022, our outage
data covers 456 individual electrical utilities, which account for 146 million (92%) electric utility customers.
These data include all US states, the District of Columbia, and some territories. Puerto Rico and the Virgin
Islands are included, while Guam, the American Samoa, and the Northern Mariana Islands are not included.
The remaining 8% of customers belong to utilities which do not report outage information publicly in near-real
time in a format that is currently accessible to EAGLE-I parsers. These are most typically small, rural, municipal
utilities which lack robust information technology infrastructure.

Historic electricity outages can be inferred from a range of different sources. Researchers have collaborated
with electric utilities to access high resolution outage data for limited scope and duration'’. Satellite imagery
such as Night Time Lights has been used in disaster response circumstances for assessing outage intensity and
spatial characteristics®'!. Social media posts®'? and automatic pings by internet enabled devices have also been
used to assess outages'®, typically for specific adverse events or in limited contexts.

The most significant large scale data sources on electricity outages results from the DOE Office of Electricity’s
required reporting on Electricity Disturbances, through form OE417'*-"7. These data are compiled from federally
required reporting, provide comprehensive coverage for large outages, and also include some information on the
cause of the disturbance. OE417 data are reported at the county or state level, and so do not always disaggregate
outages across counties. The OE417 data are comprehensive for outages affecting more than 50,000 customers
or 300 MW. There are three key dimensions through with EAGLE-I data are more precise than the OE417 data.
EAGLE-I data systematically include smaller outages. EAGLE-I data are processes to provide county scale outage
estimates. EAGLE-I data report customers out in 15 minute increments, while OE417 data are event based, report-
ing only a start and end time for the event. Fundamentally, the OE417 data and EAGLE-I data are complementary:
EAGLE-T’s underlying data source is information made available to the public in real-time including both small
and large outages, and has processed to create uniform spatial scale estimates, while OE417’s basis is mandated
reports about specific events.

The EAGLE-I data may be useful for assessing the consequences of adverse weather events on electricity
infrastructure, determining geographic, environmental, heterogeneity in electricity service vulnerability, or
validating power systems models. For example, these data could be used to quantify differences in grid resil-
ience across different balancing authorities, across states, or in different climate zones. These data could be
used to explore changes in grid resilience or robustness over time, by different seasons, or as associated with
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macroeconomic conditions. They could be used to explore the macroeconomic consequences of experiencing
long term or repeated outages.

These data represent a large share of customers, and a large share of outages, but there are gaps. Outages with
a duration less than 15 minutes are not reliably captured. Outages within small, rural, or independent electric
utilities are not as reliably captured as outages within larger utilities or electricity conglomerates. Over long time
periods, or large spatial scales, changes in utility population and inconsistencies in data quality may influence
relative data accuracy and precision. Our associated Data Quality Index provides an indicator of the times and
locations through which we estimate the outage data is most accurate and complete.

Methods

There are an estimated 3,000 electric utilities in the United States, but their sizes vary widely. In 2021, Duke
Energy was the largest electric utility in the United States and served just over 8 million customers, while half
of the utilities in the US serve less than 10,000 customers, with a collective customer population of 2.8 million
customers (1.5% of total)'®. Many utilities collect and publicize real-time outage information for their customers
and service area on institutional websites. For identified utilities which do so, we collect, parse, aggregate, and
validate these self-reported outages directly from utility websites.

There are no requirements on the format of real-time outage reports, although the Outage Data Initiative
Nationwide (ODIN)!® encourages utilities to follow either the CIM IEC 61968-3 or MultiSpeak standard.
Additionally, website technology and uptime are dynamic. As a result, maintaining active parsers for each
included utility requires substantial continuous maintenance and has required significant investment in checks
and validation. We have achieved widespread coverage of electric outages by focusing initially on large utilities
and subsequently on geographic areas with sparse coverage. We use a wide range of web parsing techniques to
systematically collect near real-time outage information from several hundred of the United States’ large electric
utilities and utility conglomerates, which are entities that report electric outages from a collection of electric
utilities.

The EAGLE-I outage data represents 80% to 90% of utility customers nationally, with higher coverage rates
later in our dataset. The coverage extent increased as additional parsing capabilities were developed and as
data sharing agreements with other response agencies and utilities were formalized. If an electric utility is not
included in EAGLE-I monitoring, that utility is omitted from EAGLE-I data calculations. If a county has no
covered electric customers because all utilities (one or more) associated with that county are not monitored
by EAGLE-I, then that county is omitted from EAGLE-I reports and data calculations. In 2014, 1,072 counties
had no outage data collected, while in 2022, only 182 counties had no outage data collected, out of 3,222 total
counties and county equivalents.

Defining & estimating total customers per county. It is important to recognize that our estimate of
utility customers cannot be directly translated to population. Utilities define “customers” in a range of different
ways, most typically the electric meter, a building, or a facility. In residential locations, a customer might be a
household, while in a commercial location, a customer may be a business or a facility.

These parsed data report the estimated number of customers experiencing an outage, but the number of cus-
tomers by geographical region is not always provided. To present a geographically consistent measure of outage
severity, we also need to generate an estimate of total customers for each utility for each county in the EAGLE-I
monitoring process.

We estimate the total number of customers by county using county population, customer totals from each
utility, and the coverage area of each utility. County population is derived from LandScan USA (https://land-
scan.ornl.gov/) using the average of daytime and nighttime population®*?!, information on utility customer
totals is collected from the Energy Information Administration’s form 861 (EIA-861) (https://www.eia.gov/elec-
tricity/data/eia861/), and Electric Retail Service Territories geospatial coverage data is drawn from Homeland
Infrastructure Foundation-Level Data (HIFLD) (https://hifld-geoplatform.opendata.arcgis.com/).

The total count of electric utility customers is proportionally allocated to daytime and nighttime population
totals within the utility service area, based on the utility’s service area’s ratio of customers to population.

When C is total customers in the service area, P is total population in the service area, p; is population in
county i within the service area, ¢; customers in county i is calculated as

C
G=p x5

Collecting outage data. Our customer outage data collection process [or extract, translate, and load (ETL)]
monitors public electric utility customer outage websites every 15 minutes and updates the growing dataset. The
outage information posted by utilities is highly variable, encompassing a range of spatial resolutions, ancillary
data, and data production methods. Sometimes, the total number of customers served is provided by the utility, in
other cases it is based upon our modelled estimate of customers in each county??. Outage websites feed automat-
ically from the utility’s outage management system, with manual updating used in cases when a utility’s outage
management system fails. We additionally employ a suite of strategies in near real time to address errors and gaps
in reported outages.

Our overall data production process aims to synthesize, systematize, and adjust for variance in utility outage
reporting statistics to the greatest extent possible. However, these data are fundamentally dependent upon what
is reported publicly by electrical utilities. The wide variety in reporting mechanisms between utilities is carried

SCIENTIFIC DATA | (2024) 11:271 | https://doi.org/10.1038/s41597-024-03095-5 3


https://doi.org/10.1038/s41597-024-03095-5
https://landscan.ornl.gov/
https://landscan.ornl.gov/
https://www.eia.gov/electricity/data/eia861/
https://www.eia.gov/electricity/data/eia861/
https://hifld-geoplatform.opendata.arcgis.com/

www.nature.com/scientificdata/

Utility Count Data Format
125 JSON_Parsers
95 eBill

60 Custom Parser
40 IFactor

33 XML_Parsers
24 MilSoft

24 OutageEntry
18 HTML_Parsers
11 json_byfeatures
7 State_Coverage
5 PolyIFactor

Table 1. Distribution of utilities whose data is collected through each parser type used in EAGLE-I data
collections of January 2023.

forward to into our aggregated data, and also introduces unavoidable temporal inconsistencies into our data. In
general, automated data reporting extent and reliability improved between 2014 and 2022.

The 15-minute return period was selected to balance data recency and precision with computational cost.
Fifteen minutes is also the duration threshold for federal electricity disturbance reporting. This return period
mean that outages with a duration of less than 15 minutes are only captured if they happen to be represented at
the moment when the web-parsers extract data from the utility’s website: 10 minute outages have a 2/3 chance of
being represented, while 5 minute outages have a 1/3 chance of being represented.

Web-parsing strategy. Utilities use many different mapping platforms to report outages. The data formats
we encounter most often are JSON, ebill, and IFactor. The EAGLE-I data team has created dozens of parser types
and individual scripts that collect reported outage information. Table 1 shows the number of utilities covered by
each parser type. Once a collection pathway has been implemented for a utility, it is included in our collection run.
Each collection run starts at the 15-, 30-, 45-, and 60-minute mark of each hour. Each run takes less than 5 min-
utes to parse all outage maps.

Parser maintenance. The maintenance of the EAGLE-I data collection pipeline is managed by a team which
monitors error reports daily. The EAGLE-I Utility Error Count report is produced daily and details the number
and type of errors experienced by each utility. Bugs are created for these errors and two releases per week go out
to the ETL pipeline to ensure the utility parser collects accurate outage information in a timely manner. This is
the process that often identifies when a utility has updated their map URL, a new county is added to a utility’s
coverage, or a map has changed the format of the outage data reported.

Each week, a data team member will do a series of additional, broader checks to identify other potential
issues that will affect the quality of the outage data. First, the Utility Repeated Outages report is checked to see if
a utility has reported the same number of outages for more than four days. If this occurs, the utility is manually
checked by the data team to ensure (1) the number collected matches the outage map and (2) the outage map
is still the best source of information for the utility. Often, we find a utility creates a new outage map and leaves
the old URL functional with outdated outage information — which appears as repeated outages. Second, the
Utility Data Quality report is used to identify utilities that have not reported an outage within the past week.
The parser is run manually, and outage numbers are visually compared to the outage map for that utility. If there
is a mismatch, a bug is created for the data team to get this parser reporting correct outages quickly. If, based
on the best available map for that utility, it appears no outages have occurred, this utility is added to a task that
weekly monitors utilities without recent outages to ensure everything is working as expected.

Conglomerate feeds are a method to reduce required EAGLE-I maintenance. Certain states, such as Illinois
and Iowa, have electricity cooperatives which collect outage information from multiple utilities and present all
outages in one conglomerate map. This decreases the maintenance needed for utility parsers in this state, as we
may need to only update and monitor one website instead of thirty. For example, the Iowa Association of Electric
Cooperatives reports outages from 39 different distribution utilities throughout the state of Iowa, which we parse
through a single map interface.

Synthesizing to consistent geographies. After parsing the raw data, we implement a geographic nor-
malization procedure to create county level records. Aggregating outages to the county level presents utility out-
age data at a consistent, standardized resolution. While most outage maps provide information at the county level,
we often see outage data provided at resolutions of point, polygon, and zip code. Table 2 reports the raw spatial
resolution of reported information for the utilities in our collection.

For parsed records with a raw spatial scale smaller than the county, such as points, we aggregate results to the
county. There is no standardization of the significance of point representations of outages. For example, one point
on an outage map could indicate a substation, a centroid of an area experiencing outages, or it could be one meter
without power. Aggregating point level outages to the county level resolves some of the potential conflicting
interpretations of this data. We assume point data represents outages exclusively within the containing county.
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Utility Count | Resolution

210 County

191 Point

36 Zip code

10 Non-standard Polygon

Table 2. Distribution of Spatial Resolutions.

Error Count | Parent Type Specific Type

500,026 Scraper PARSER_ERROR
268,487 Connection CONNECTION_ERROR
133,409 Unknown UNKNOWN_ERROR
117,523 Location INVALID_LOCATION
60,001 System Failure TIMEOUT

13,074 Sub-Utility INVALID_SUBUTILITY
1,370 Database CACHE_ERROR

1,122 System Failure RUNTIME_ERROR

160 Scraper WEBDRIVER_ERROR

2 System Failure SCHEDULER_ERROR

Table 3. The total number of each collection error type ranked by frequency encountered from 2017-2022,
across all utility parsers. These errors occur in the context of over 70 million unique visits from our web-parsers
to utility websites.

This could induce errors if the point represents the centroid of an affected area that in fact crosses county
boundaries.

For parsed records which cross county borders (i.e., some zip codes and polygons), we proportionally allo-
cate customers to the intersecting counties based on the share of polygon area in each county. Outages reported
by polygon have varying levels of granularity, as these polygons are not consistent across outage maps. For exam-
ple, outages reported in a polygon could indicate a neighborhood block all the way up to the service territory
of the utility itself. If outages are reported in a polygon that represents the service territory, we collect this data
only if the entire utility falls within the boundaries of one county. Polygons that cross county lines have outages
divided into counties based on proportion of geometry overlap. Because of the coarseness of this approach that
does not currently consider population, we collect outage data by county and by point whenever possible.

Collection errors.  The EAGLE-I system records the type of collection errors encountered by each parser with
each 15-minute run. The web parser system has scraped approximately 400 websites every 15 minutes for 8 years.
For the most recent five years, we have recorded the types of errors that are commonly encountered with our
collection process, in the context of over 70 million unique visits (Table 3). Parser errors and connection errors
are the most common, as these are the error types commonly flagged when a map URL is no longer operating as
expected. Since these error types will be flagged within 15 minutes of detecting a change in the map’s URL behav-
iour, we are notified in near real-time of the need to update our outage data source to ensure we minimize the gap
in collected outages. Invalid location errors are the least consequential, as this typically indicates a county or state
should be added to the coverage or when utilities report county names differently than the EAGLE-I designation,
as an outage was reported in a geographic area not currently linked to the utility. We still collect and record all
outage information for all counties currently linked to that utility, but we are notified of a new area that we can
now add to the coverage. This is typically seen when a county expands their coverage and adds a new customer
outside of their typical service territory range, and this error helps us stay up to date on service territory changes
in between EIA-861 annual updates. This error can also occur if a utility outage map reports outages with invalid
coordinates, such as an accidental swap of the latitude and longitude values. A timeout error is typically seen
when an outage map has a high number of outages or a high amount of traffic, such as during an extreme weather
event. When this occurs, our collection process will hit the maximum time allowed waiting for an individual map
to load and will move on to the next utility map to avoid hanging up our ETL process on one map. Outages not
recorded due to a timeout error are typically captured in the next 15 minute interval, when the parser comes back
to that website. The collection error types in which we do not collect any outages for that run for that utility are
parser, connection, timeout, runtime, cache, and scheduler. The error types that still collect some outages but miss
partial data are location, sub-utility, and webdriver errors.

Near real-time error correction. The EAGLE-I platform has an active user base of state and federal emer-
gency responders and other government agencies. These users frequently make use of the platforms “bug report”
feature to point out issues such as a map URL temporarily out of order, producing a gap in coverage. Similarly,
utilities occasionally display incorrect or out of date outage estimates, sometimes maintaining a record of out-
ages after they have been resolved on the ground. When these issues are reported, we correct the dataset in near
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fips_code | county state customers_out | run_start_time
01005 Barbour | Alabama 4 1/1/22 0:00
01009 Blount Alabama 160 1/1/22 0:00
01051 Elmore Alabama 3 1/1/22 0:00
01055 Etowah Alabama 4 1/1/22 0:00
01057 Fayette Alabama 4 1/1/22 0:00
01061 Geneva Alabama 4 1/1/22 0:00

Table 4. Example of EAGLE-I Outage Data.

real time based on the best available information. The outage values used to correct these errors come from
diverse sources, potentially including first or second-hand reports from emergency responders, or provided by
the utility itself in an alternative format such as social media posts when their map URL is not functioning. In the
data provided here, these near real time corrections are included without identification. EAGLE-I also enables
select privileged users, such as FEMA Regional Coordinators, to manually overwrite parsed data based on their
local situational awareness and expertise. This is most typically used in the case of large outage events, such as
in response to hurricanes or wildfires. Finally, we actively seek feedback from our user base. Our user base is
frequently interested in using the historic outages provided by EAGLE-I to evaluate a past event response, under-
stand the typical distribution of outages in their area based on certain event types, and similar types of analysis.
When these users notice gaps, sharp spikes, or drop offs in outages, we may use this observation to review the
historic outages and investigate an error in the parser for that utility.

Focused coverage expansion. The percentage of US electric customers for which EAGLE-I reports outage
data has increased over time, particularly focusing on areas of the country with relatively low representation in
the EAGLE-I data. There are many strategies to identify potential outage maps to include. Our primary source
of new utility information is form EIA-861, an annual survey of electric utilities. This allows us to identify large
utilities in states with low coverage. Using the utility names provided in form EIA-861, we match outage map
URL patterns within the Google search engine. Additionally, users send in requests for utilities in their area that
they would like to have included in the EAGLE-I outage data, often providing the map URL. Finally, large utilities
(over 20,000 customers) not currently included in EAGLE-I coverage are evaluated for potential addition during
our annual census of EAGLE-I utilities.

Data Records
The core of the provided dataset includes eight years of power outage information at the county level from 2014
to 2022 at 15-minute intervals collected from utility’s public outage maps on their websites by the EAGLE-I pro-
gram at ORNL. Data are available in the Figshare repository at https://doi.org/10.6084/m9.figshare.24237376%.
There are twelve data files in this repository: nine outage data files and three supplementary data files. The
outage data files follow the naming convention eaglei_outages_YEAR.csv and contain outages for each included
calendar year. The file coverage_history.csv includes the modeled customer coverage rate of each state from
2018-2022. The file MCC.csv provides the modeled number of electric customers per county as of 2022. The file
DQI.csv presents our Data Quality Index and the four sub-components by year by FEMA Region for 2018-2022.
Below is a complete list of the files included in the dataset, detailing the size of the files and the number of
rows:

o eaglei_outages_2014.csv (78.1 MB) (1,689,461 rows)

o eaglei_outages_2015.csv (599 MB) (12,939,158 rows)

o eaglei_outages_2016.csv (619.8 MB) (13,306,025 rows)
o eaglei_outages_2017.csv (698.8 MB) (15,078,365 rows)
o eaglei_outages_2018.csv (999.2 MB) (21,776,807 rows)
o eaglei_outages_2019.csv (1.1 GB) (24,074,123 rows)

o eaglei_outages_2020.csv (1.17 GB) (25,545,518 rows)

o eaglei_outages_2021.csv (1.14 GB) (24,826,103 rows)

o eaglei_outages_2022.csv (1.2 GB) (25,796,466 rows)

e MCC.csv (41 KB) (3,235 rows)

o coverage_history.csv (12 KB) (280 rows)

« DQI.csv (6 KB) (50 rows)

Outage data. Table 4 provides a small sample of the EAGLE-I outage data. The provided outage data does
not include zero outages/customers out. Missing entries are either a customer outage value of zero or a gap in data
collection; we do not distinguish between these cases. All data in EAGLE-I is presented in Coordinated Universal
Time (UTC). The information contained in each column is defined as follows:

o Fips code: The FIPS code of the county in which the power outages occurred, for example “12011”

SCIENTIFIC DATA | (2024) 11:271 | https://doi.org/10.1038/s41597-024-03095-5 6


https://doi.org/10.1038/s41597-024-03095-5
https://doi.org/10.6084/m9.figshare.24237376

www.nature.com/scientificdata/

year state total_customers | min_covered | max_covered | min_pct_covered | max_pct_covered
1/1/18 AK 340543 229424 229424 0.67 0.67
1/1/19 AK 340543 217506 229424 0.64 0.67
1/1/20 AK 328964 158477 224243 0.48 0.68
1/1/21 AK 331443 224243 226079 0.68 0.68
1/1/22 AK 364614 226079 258830 0.62 0.71

Table 5. Example of coverage history. Our coverage extent and estimates of total customers changes through
time based on reporting to the EIA, as well as changes in how utilities present their outages data in public-
facing websites. As a result, coverage gaps occur when a utility changes its name, website, or reporting process.
Coverage expansions occur when new utilities are added to the EAGLE-I data collection process.

County_FIPS | Customers
01001 24619
01003 195253
01005 12400
01007 11037
01009 27074

Table 6. Example MCC Data.

+ County: The county name in which the power outages occurred spelled out in text, for example “Broward”

o  State: The state in which the power outage occurred, spelled out in full in text format.

o Customers Out: The total number of customers without power for that county at that timestamp. This num-
ber is always an integer. Entries with 0 customers without power are not included in this dataset.

o Run_ start time: Date and timestamp provided in UTC in the format “MM/DD/YY 00:00”. This timestamp
marks the beginning of the collection run.

Coverage history. Table 5 presents a small sample of the coverage data. Below is a description of all the col-
umns included in the dataset for coverage history:

o Year: The date used to derive the coverage for the given year. For example, the entry “1/1/2019” means all
following information in the row is based on the date of Jan 1, 2019.

« State: Postal Service two-character state abbreviation, for example “AL” for Alabama.

o Total Customers: The total number of utility customers in the state on that given date. Customers are derived
from the closest EIA-861 customer number updates to the provided date.

o Min covered: The minimum number of utility customers covered by EAGLE-I in a given calendar year, as
reported by EIA-861

o Max covered: The maximum number of utility customers covered by EAGLE-I in a given calendar year, as
reported by EIA-861

o Min pct covered: The minimum percentage of coverage for the state seen in a given year

o Max pct covered: The maximum percentage of coverage for the state seen in a given year

Increases and decreases in the minimum coverage rate and maximum coverage rate can occur as utilities are
dropped from the EAGLE-I data collection process due to changes in their outage reporting, or newly incorpo-
rated into the data collection process. In row three of Table 5, for example, we may have stopped collecting data
from a single large utility for some period of the calendar year. The maximum customer coverage number in
2020 is the minimum coverage number for 2021, suggesting that the coverage drop was temporary, and rectified
within the calendar year.

Modeled county customers. Table 6 provides a small sample of the modeled county customer dataset. The
modeled county customer dataset was created to enable estimations of the percent of customers without power
by county, with full methods described in Moehl et al.?*. Below is a description of all the columns included in the
dataset for modeled county customers:

o County_FIPS: The FIPS code for each county for which we have modelled county customers. If a FIPS code is
missing from this list, we are missing information in EAGLE-I for utilities that have customers in this county.
o Customers: The modelled result for the number of electric utility customers living in this county

Data quality index. The Data Quality Index (DQI) data was created to quantify our best estimate of the
comparative quality of our historic outage data. These data include records between 2018 and 2022, at the FEMA
region for each year. Below is a description of all the columns included in this file:
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Fig. 2 United States FEMA Regions.

o fema: The Federal Emergency Management Agency (FEMA) region.

o year: calendar year

o success_rate: The Success Rate component of the DQI

o percent_enabled: The Percent Enabled component of the DQI

« spatial_precision: The Spatial Precision component of the DQI

« cust_coverage: The Customer Coverage component of the DQI

« max_covered: The maximum number of customers covered in this region/year.
« total_customers: The estimated total number of customers in this region/year

o DQI: the final data quality index, as defined in Eq. 1.

Technical Validation
In December 2022, EAGLE-I outage data covers 456 utilities and conglomerates. We assess data accuracy, com-
prehensiveness, and quality using three main strategies including:

1) We assess the comprehensiveness of these data in comparison to the entire population of US utilities by
comparing our utility meta-data to the U.S. Energy Information Administration’s Annual Electric Power
Industry Report with each annual EIA-861 release'.

2) We ensure that our collected data are consistent with our listed population of included utilities by perform-
ing an annual census of included utilities to catch silent failures or errors in the data parsing process.

3) Finally, we estimate the external validity of our collected data through a normalized data quality index for
each utility. Our annual census and cross-checking with EIA-861 releases serve as our core verification
strategy, ensuring that the data reported is as consistent as possible with what is publicly known about util-
ity location, customer population, and outage histories. The data quality index serves our core validation
strategy.

Figure 2 presents FEMA regions across the US. We have aggregated our data quality metrics to the FEMA
region in this paper for two reasons: (1) to avoid releasing data quality information about individual utilities and
(2) alarge portion of the EAGLE-I user base works with FEMA regions frequently, so this is a common way that
we view our data.

Data comprehensiveness. The U.S. Energy Information Administration (EIA) produces an Annual
Electric Power Industry Report (form EIA-861). This report describes the number of electric utility customers
for each US utility and the counties served by each utility. We assess our records of covered utilities against each
annual EIA-861 release for two key pieces of information: changes in customer populations and changes in the
utility-county relationship. In both cases, we identify inconsistencies between our utility data and that reported
by the EIA and assess the most likely real-world condition.

The most critical use of form EIA-861 is to maintain up-to-date measures of customer populations. These
are used to calculate outage percentages by state or utility, evaluate our coverage rates nationally and by state,
and assess the plausibility of reported outages. We annually update utility, state, and our modelled county level
customer populations based on form EIA-861. We assess large or unexpected changes in customer populations
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on a case-by-case basis. In some instances, we find a utility is no longer covered by the EIA-861 data but in fact
still exists and is still reporting outages. This update also flags new utilities (large increases in coverage), utilities
that have dissolved (large decreases in coverage), and other potential errors in our records of state coverage or
customer populations.

Changes in the utility-county relationship occur when new utilities are created, existing utilities expand their
service area, or when utilities close, merge, or contract their service area. When new utilities are added to form
EIA-861, we update our state level customer estimates to maintain accurate representation of our coverage rate.
We also assess the feasibility of including the new utility in our population of covered utilities. When utilities
expand their coverage area, there can be a lag between when we observe outages in a new geography, and when
the expanded service area is included in an EIA report. This means that we sometimes observe service area
expansions well before this information is included in form EIA-861. We review all discrepancies between EIA
county and state coverage with our records of past outages, and if the utility has collected outages from an area
within the past year, we continue to include it in our coverage list for that utility. Utility name changes are a good
signifier of mergers. When we identify a utility merger, we review the utility information from public data to
ensure customers, URL information, name, and all metadata are updated to reflect this merger. Utility mergers
are most often identified through our comparison of significant changes in utility names between sequential
EIA-861 releases.

When a utility is reported as closing, merging, or reducing its’ service area in EIA-861, we manually deter-
mine whether this reduction in scope appears consistent with the utility’s self-reported outage information.
We check historic outages for the utility within the past year. If recent outages are found, no changes are made
to the database, and the county remains included in the utility’s service area. However, if no recent outages are
recorded, we examine the utility’s website. Through coverage territory maps, lists of covered areas, or the outline
of the outage map territory, we assess whether the area is indeed no longer served by the utility. In rare cases,
utilities maintain operation but stop reporting data to the EIA. We identify these cases by comparing year over
year EIA-861 forms. Upon examination of utility websites for those which drop out of the EIA-861 data, if we
find no evidence that it has merged and do find evidence that it is still operating, we track the utility through
manual assessments of its website and other public information until it is included in EIA-861 again.

This process is crucial to strike a balance between accurately representing the areas served by each utility and
avoiding the inclusion of counties that EAGLE-I does not cover. It is imperative not to collect outages from states
or counties not listed as covered by a utility in the database. Any location errors flagged by the parser respon-
sible for collecting outage information can be rectified, but during this change, there is a risk of missing out on
recording outages. Conversely, if coverage areas are incorrectly included, the accuracy of outage percentages may
be compromised, misrepresenting the severity of outages when the total customer denominator is inaccurate.

Annual census of EAGLE-I utilities for verification. In advance of the North Atlantic hurricane season,
we perform an annual census of utilities included in the EAGLE-I data outage records with the goal of identifying
silent failures and errors. There are many ways we might incorrectly collect data from a utility and not immedi-
ately notice; this workflow ensures that each utility is thoroughly examined at least annually. This labour-intensive
process typically takes two months.

In the annual census, for each utility, we ensure that:

The outage map URL on record is the most up-to-date outage map available.

Recent outages are being reported on our interface. At the beginning of the census process, if a utility has
not had an outage within the most recent month, we monitor the utility for another month or until an out-
age occurs. If two months pass with no outages, we assess whether the outage map is no longer updating,
the parser has failed, or some other failure has occurred.

3. Weare collecting the finest spatial resolution data available. If we identify a source with higher resolution
data (for example from county to point), we change the parser to incorporate that higher resolution data.
The outage numbers reported by our parser are consistent with the outage map on the utility’s website.
Our collection process accurately divides and assigns outages to each county.

Coverage territory for each utility matches the area in the outage map.

Recent reported outage histories are realistic. For example, if we observe long-term recurring outages, or
wild discontinuities in outage numbers over the course of a few hours, we investigate the outage map and
parser to identify and correct any potential errors.

N —

NI

When gaps, errors, or inconsistencies are identified in the outage data during the annual census, we correct
them - going forward- to the greatest extent possible. For each of the seven validation steps encompassed in the
annual census, if errors are discovered they are corrected in the data going forward. In step one, outage maps
are updated to the most update outage map available. Step two assures that outage maps are genuinely updating
and takes corrective action if one is not. Step three increases the spatial resolution of our data, when it becomes
available. Step four verifies that our code is reproducing the utility reported data correctly. Steps five and six
ensure that outages are allocated to the appropriate counties. Step seven assesses reported outages against their
real-world plausibility. In this process, we also update utility names and acronyms, and we disable collection for
utilities that are no longer operating. Overall, this annual census ensures that our records of historic outages are
consistent with that reported by utilities and represent plausible outage events.

Data quality index. We produce a Data Quality Index (DQI) which synthesizes four key characteristics of
the reported outage data:
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Fig. 3 The four sub-components of the Data Quality Index, displayed by FEMA Region and year. Note the
four y-axes do not share the same limits, although each metric is bounded between 0 and 100 by definition.
Meaningful increases in the success rate and customer coverage metrics contribute to the overall improvements
in Data Quality during the study period.

1. Success Rate (S): The customer-weighted share of utility-level collection periods for which our parsers
finished without error in each year.

2. Percent Enabled (E): The customer-weighted share of utility-level collection periods parser was enabled
and seeking data in each year.

3. Customer Coverage (C): Total number of customers covered by EAGLE-I captured utilities, over total
number of customers in the FEMA region as reported by EIA in each year.

4. Spatial Precision (P): Qualitative index of input data precision, bounded from 0 (lowest precision) to 100
(highest precision). Data reported at the county level receives a score of 100, point information a score of
75, zip code level data receives a score of 50, and any non-standard polygon receives a score of 25.

DQI components S, E, and P are recorded at the utility level. The annual FEMA region measure for each
component is the customer-weighted average of utility-level data. DQI component 3 (customer coverage) is
directly calculated as a rate for the FEMA region. Thus, X, standing in for S;, E;, and P;, is estimated as:

— ZueiXutht
W, (1)

1

X

it

Where Xut is the data quality component for each utility in year ¢, w,, is the number of customers per utility per
year, and W, is the total number of customers in FEMA region i in year ¢.

Figure 3 shows the annual customer weighted average for each component for each FEMA region by year.
The FEMA region numbering scheme begins with I in the Northeast, and generally moves from North to South
and East to West. Longer wavelength colours (reds and oranges) are in the US east, and short wavelength colours
(blue and violet) are in the western US.

The DQI is a weighted sum of each of the four DQI components after they have been rescaled to range from
0 to 100:

DQI,; = 0.4, + 0.3E, + 0.2C; + 0.1P, @)

where i indexes the 10 FEMA regions and ¢ indexes the year. The four components have unequal weights because
the Success Rate and Percent Enabled metrics are viewed as being the most significant indicators of how well the
data represents real world outage conditions.
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Fig. 4 Overall Data Quality Index (DQI). The DQI is comprised of a weighted mean of four data
subcomponents, and estimated at the by FEMA Region and year.

Unfortunately, we lack formal records of data quality between 2014 and 2017, so the DQI is produced from
2018-2022 only.

These data indicate the overall increase in data quality during the assessed period. Figure 3A shows a con-
sistent increase in the share of parser runs that complete without error through time, for every FEMA Region.
In Fig. 3B, the significant drop in Percent Enabled in 2020 for FEMA Region I is due to a change in how outage
data were reported. One large utility was subsumed into an even broader utility aggregator, leaving both utilities
showing partial year coverage, even though the customers were covered by some utilities for greater than 99% of
the year. We lack a systematic way to track these transfers of coverage, so coverage expansion and transfers can
be associated with decreases in the percent enabled metric.

Figure 3C shows the estimated percent customer coverage seen each year aggregated to the FEMA region
from 2018-2022. Utilities can be added or dropped from EAGLE-I coverage any time in the year; we present the
annual maximum customer coverage rate. In 2022, FEMA Regions I, II, and III each have coverage rates above
97%, while regions IV, V, VI, and IX have coverage between 90 and 95%. All FEMA regions show increasing
coverage rates over time. We see a 10-percentage point jump in FEMA region II with the addition of Puerto Rico
in 2021. FEMA Region VIII jumped from 70% Coverage in 2018 to 80% Coverage in 2022. The one year drop in
coverage rates in FEMA region VI is due to changes in estimated total customer population in Texas.

The 2019 declines in spatial precision metrics shown in Fig. 3D are associated with a handful of large utilities
that changed their reported data from county to a non-standard polygon.

Figure 4 presents the full Data Quality Index results. We can see significant improvements in overall data
quality. This is driven by increases in each metric, but most significantly in the Success Rate metric.
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The code used to curate the EAGLE-I data for this article is available within the Figshare data repository: https://
doi.org/10.6084/m9.figshare.24237376%2.
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