
1Scientific Data |          (2024) 11:355  | https://doi.org/10.1038/s41597-024-03187-2

www.nature.com/scientificdata

Single-cell RNa-sequencing of 
virus-specific cellular immune 
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Chronic hepatitis B (CHB) is a major global health challenge. CHB can be controlled by antivirals 
but a therapeutic cure is lacking. CHB is characterized by limited HBV-specific T cell reactivity and 
functionality and expression of inhibitory receptors. The mechanisms driving these T cell phenotypes 
are only partially understood. Here, we created a single-cell RNA-sequencing dataset of HBV immune 
responses in patients to contribute to a better understanding of the dysregulated immunity. Blood 
samples of a well-defined cohort of 21 CHB and 10 healthy controls, including a subset of 5 matched 
liver biopsies, were collected. scRNA-seq data of total immune cells (55,825) plus sorted HBV-specific 
(1,963), non-naive (32,773) and PD1+ T cells (96,631) was generated using the 10X Genomics platform 
(186,123 cells) or the full-length Smart-seq2 protocol (1,069 cells). The shared transcript count matrices 
of single-cells serve as a valuable resource describing transcriptional changes underlying dysfunctional 
HBV-related T cell responses in blood and liver tissue and offers the opportunity to identify targets or 
biomarkers for HBV-related immune exhaustion.

Background & Summary
Background. Hepatitis B virus (HBV) infection is a major global public health problem despite the existence 
of safe and effective preventative vaccines. More than 250 million people worldwide are living with chronic HBV. 
Patients carry a high risk of cirrhosis and hepatocellular carcinoma (HCC)1. Current treatments are based on 
direct antiviral agents which can only limit HBV replication without achieving a long-term HBV cure2. Ineffective 
immune responses are a key feature enabling chronic HBV infection but also contributing to hepatocytes injury 
and liver inflammation. Understanding the mechanisms behind this dysfunctional immune response and the 
switches towards a functional response resulting in viral cure will be key for the development of new HBV treat-
ments such as immunotherapies.

During acute infection a robust immune response involving HBV-specific antiviral CD8+ effector cells, 
CD4+ helper T cells and B cells producing HBV-specific antibodies leads to viral clearance and resolution of 
infection3–6.

However, during chronic HBV infection, immune responses show a number of dysregulated features 
including atypical B cells producing reduced antibody levels and T cell exhaustion, characterized by low lev-
els of HBV-specific T cells with a state of low functionality7–10. T cell exhaustion is defined by restricted pro-
liferation, progressively reduced cytotoxicity and cytokine production and increased expression of inhibitory 
receptors9,11–14.
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Chronic exposure to high antigen levels, extended duration of disease as well as suboptimal T cell priming 
and activation have been identified as some of the factors driving this dysfunctional immune response14–18.

Recently, it has become clear that exhausted T cells in chronic HBV infection are not representing a homo-
geneous cell population19–21.

Data from a small cohort of patients achieving HBV functional cure either spontaneously or after cessation 
of NUC treatment shows that induction of a sufficient immune response is possible even in a setting of chronic 
HBV infection22,23.

Many studies on immune responses in HBV patients have focused on the analysis of peripheral blood 
immune cells due to easier sample accessibility9,11,13,16. However, HBV is a purely hepatotropic virus and it has 
become clear that the cell composition and functional features of intrahepatic immune cells can differ substan-
tially from the ones in peripheral blood24–28.

Single-cell RNA-sequencing (scRNA-seq) is a breakthrough technology allowing for transcriptome analysis 
cell by cell. This technique has been widely used to assess immune cell profiles in chronic infectious diseases or 
cancers related to an immune exhaustion phenotype29–32. ScRNA-seq, as an unbiased transcriptome analysis, 
provides also a great opportunity to discover the underlying cellular and molecular mechanisms contributing to 
the dysfunctional immune response in chronic HBV infection.

So far, only few studies have explored the HBV immune landscape with scRNA-seq in human samples. 
Zheng et al. explored sorted T cells infiltrating HCC tumor tissue on an HBV background33. Zhang and col-
leagues focused on the liver immune cell infiltration during different phases of chronic HBV infection in an 
Asian patient cohort34. A pilot study from Genshaft et al. explored the technological feasibility of using fine 
needle aspirates for scRNA-seq comparing two different methods35 and the latest sc-RNAseq study in the HBV 
field investigated changes in the immune cell landscape during the progression from HBV infection to HBV 
cirrhosis and HBV-associated HCC36.

In this study, we established a scRNA-seq dataset of total immune cells and HBV-specific T cells from blood 
and liver of non-cirrhotic HBV patients without HCC (Fig. 1). We used both a droplet-based microfluidic 
scRNA-seq system (10X Genomics) and full-length scRNA-seq by Smart-seq2 to analyze total immune cells and 
HBV-specific T cells.

To the best of our knowledge, this dataset represents very comprehensive scRNA-seq data focusing on the 
complete immune compartments in blood and liver of non-cirrhotic HBV patients without HCC and is the only 
published dataset including full-length sequencing of sorted HBV-specific T cells.

Fig. 1 Schematic overview of the study workflow. 1. Blood samples from patients with chronic hepatitis B 
infection were collected. Matched liver biopsies were available for a subgroup of patients. Blood from healthy 
donors was used as control. 2. For liver biopsies, single cell suspensions were prepared by enzymatic digestion. 
PBMCs were isolated by density centrifugation. A subsample of whole blood was used in parallel with the liver 
cell suspension for magnetic bead isolation. 3. CD45+ cells were isolated using magnetic bead enrichment from 
both whole blood and liver cell suspensions. Specific T cell populations (Non-naive, PD1+ or HBV-specific T 
cells) were sorted from PBMCs via FACS sorting either in plates as single cells per well or as bulk populations 
in tubes. 4. Libraries for 3′ scRNA-seq were prepared from CD45+ cells and sorted T cell populations using the 
10X Genomics Chromium platform. Libraries for full-length RNA-sequencing using the Smart-seq2 protocol 
were prepared from plate-sorted T cells. 5. scRNA-seq was performed using the Illumina NovaSeq instrument. 
6. Sequencing reads were mapped to the human genome and a gene-by-cell count matrix was generated. 7. 
Sample quality was assessed and cell barcodes were filtered based on number of genes, read or UMI counts, and 
mitochondrial content. The gene-by-cell count matrix was normalized to counts per 10’000 (cp10k). 8. Highly 
variable genes were selected, principal components analysis was performed, nearest neighbors were identified, 
Leiden clustering and uniform manifold approximation projection (UMAP) were performed. 9. Signature 
enrichment scores were calculated to identify cell types.
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As such our data is a valuable resource for the scientific community to better understand the mechanisms 
underlying the dysfunctional immune response during chronic HBV infection contributing to the development 
of new treatment strategies for this disease.

Methods
Human clinical samples. Samples from two different groups of patients were included in the study. From 15 
NUC treated CHB patients (HBeAg negative, HBsAg positive, HBV DNA < 25 IU/mL, ALT < 1.5 × UNL) 100 mL 
of blood were taken. From 6 untreated CHB patients (HBeAg negative, HBsAg positive, HBV DNA > 2000 IU/
mL, ALT < 2x UNL) 100 mL blood as well as one matched liver biopsy for 5 of them was obtained. All patients 
were treated and followed at the Strasbourg University Hospital, France. Patient characteristics are shown in 
Table 1.

Exclusion criteria to the study were defined as (i) use of steroids or other immunosuppressive agent in 
the past 4 weeks; (ii) any disease or clinical test indicating the possibility of a disease or condition that could 
confound the study results (including, but not limited to: cancer, systemic lupus erythematosus, rheumatoid 
arthritis or other autoimmune disease); (iii) major surgery or traumatic injury (including blood transfusion) 
within the past 4 weeks; (iv) use of an investigational drug in the past 12 weeks; (v) HCV, HIV, HDV or HAV 
coinfection; (vi) significant acute infection such as influenza or other within the past 2 weeks; (vii) history of 
drug abuse in the past year; (viii) pregnancy or breastfeeding; (ix) patients with: (a) either a medical history or 
signs of cirrhosis demonstrated by a biopsy result or any other validated non-invasive test revealing cirrhosis, 
recorded in the patient’s medical file or (b) during the screening visit: a transient elastography value ≥ 10.5 kPa 
OR a Fibrotest®/Fibrosure® score ≥ 0.48 and an APRI (aspartate aminotransferase platelet ratio Index) score ≥ 1 
at screening; history of ascites, gastrointestinal bleeding and/or encephalopathy; any comorbidity likely to lead 
to liver damage (excessive alcohol consumption; hemochromatosis; Wilson’s disease; autoimmune hepatitis; 
inflammatory colitis, etc.).

All patients who participated in the study provided prior written informed consent. The study was approved 
by the French national ethics committee, Comité de Protection des Personnes Ile-de-France.

Blood samples from 10 healthy controls were provided by the Roche medical service. Patients gave informed 
consent and the blood collection was approved by the Ethikkommission Nordwest- und Zentralschweiz.

Sample collection and processing. Sample collection. Blood samples were collected in Vacutainer 
Sodium Heparin Tubes. Freshly taken liver biopsies were immediately stored in 5 mL of MACS® Tissue Storage 
Solution (Miltenyi Biotec). Shipment of samples was temperature controlled with blood samples shipped at room 
temperature (15–25 °C) and biopsies shipped cooled (2–8 °C). Samples were processed freshly on the same day.

Patient 
ID Age Sex Biopsy Fibrosis

ALT 
(IU/
mL)

AST 
(IU/
mL)

Total 
bilirubin 
(µmol/L) INR

Albumin 
(g/L)

platelets 
(G/L)

Disease 
duration 
(years)

HBV 
genotype

HBsAg 
(IU/mL)

HBV 
DNA 
(IU/ml)

Antiviral 
treatment

Duration 
antiviral 
treatment 
(years)

1 65 F no F0-F1 27 19 NA NA NA 242 7 NA 351.31 <10 TDF 7

2 44 M no F0-F1 96 60 16 1 45 251 15 NA 23547.07 265210 No NA

3 55 M no F0-F1 24 15 7.5 1 54 219 15 B 405.32 <10 ETV 13

4 26 M no F0-F1 32 23 18.7 1 54 203 25 NA 43715.09 <10 Yes, NA 6

6 39 M no F1-F2 26 26 12.5 NA 45 211 10 E 17581.84 <10 ETV 5

7 39 M no F0-F1 24 19 24.2 1.1 42 196 9 E 3448.37 <10 TDV 8

8 39 F no F0-F1 17 18 13.3 NA 44 285 18 NA 8836.84 <10 TDV 16

9 68 M no F0-F1 16 26 8.5 NA 45 251 23 NA 970 <10 TDV 19

10 40 F no F0-F2 29 41 NA NA NA 248 4 NA 24015.82 <10 TDV 1

11 35 M no F0-F1 19 19 7.2 1 40 ND 7 D 9717 <10 TDV 6

12 45 F no F0-F1 29 19 8.2 1 NA 384 24 NA 1980.26 <10 TDV 7

14 57 M no F2 82 47 NA NA NA ND 6 NA 256 <11 TDV 7

16 39 F no F0-F1 29 29 2.2 1 46 255 11 D 20991 <10 TDV 7

21 44 F yes F0 31 26 10.2 1 45 261 27 NA 1608 899100 No NA

26 21 M yes 0 58 42 14 1.2 NA 219 13 E 2896.87 11457 No NA

27 31 M no NA 33 31 10.2 NA 43 156 NA NA 1540.41 <10 ETV 10

28 54 M no F0-F1 21 21 14.3 1.2 46 194 33 D 2122 <10 ETV 11

34 23 M yes F0 84 24 14.9 1 51 211 2 NA 1109.93 11162 No NA

35 39 M yes F0 43 26 32.3 1 47 239 5 E 27138.56 40773 No NA

36 69 M no F0-F1 19 27 13.9 1.03 44 266 36 NA 2605 <10 ETV 7

37 24 M yes F0 224 114 16 1 46 306 4 NA 22740.11 349793 No NA

Table 1. Characteristics of the study cohort. Abbreviations: ALT - alanine aminotransferase, ETV – entecavir,  
F - female, M - male, NA - not available, TDF – tenofovir. Fibrosis data were obtained by liver biopsy or 
transient elastography.
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PBMC isolation. Isolation of PBMCs from fresh whole blood was performed through density centrifugation. In 
short, blood was diluted 1:3 with 1X PBS containing 2% heat inactivated FBS. In a 50 mL Leucosep tube (greiner, 
227290) 30 mL of diluted blood were layered onto 15 mL of Ficoll-Paque PLUS (GE Healthcare, 17-1440-03) and 
centrifuged at 800 g for 30′ at room temperature without brake. PBMCs were collected at the interphase, washed 
with 50 mL isolation buffer and counted for further processing. Freshly isolated PBMCs were either used directly 
for sorting or frozen in Cryostor CS10 (Stemcell, 07930) for later use.

Generally, all samples used for 10X processing were used freshly. Additionally, a few samples were processed 
from frozen PBMCs to match exactly the samples used for Smart-seq2 processing and facilitate data integration. 
Furthermore, in order to increase cell numbers for a few donors (VHB11, VHB34, HC8 and 9) frozen samples 
were added. The information on fresh vs. frozen processing is available in the metadata of the dataset.

Biopsies processing. For preparation of single cell suspensions from biopsy, the biopsy was cut in small pieces 
with a sterile scalpel and digested in RPMI medium containing 0.25 mg/mL collagenase (Sigma-Aldrich, 
C6885) and 0.2 mg/mL DNAse (Roche, 1010415900) at 37 °C for 40′ with constant slow shaking. Suspensions 
were filtered through a 70 μm filter and leftover pieces ground through the filter. The filter was then rinsed 
with RPMi + 10% FCS. Another filtering step through a 40 μm filter was performed and the filter rinsed with 
RPMI + 10% FCS.

Magnetic bead isolation. Magnetic bead isolation was used to isolate CD45+ immune cells from fresh 
biopsy-derived cell suspensions. The cell suspension was first centrifuged at 300 g for 10′. The cell pellet was then 
washed in 5 mL MACS buffer and pelleted again. CD45+ cells were isolated using human CD45 MicroBeads 
(Miltenyi, 130-045-801) for positive selection according to the manufacturer protocol using MS columns 
(Miltenyi Biotec, 130-042-201). After magnetic bead isolation cells were pelleted for 10′ at 300 g, supernatant was 
discarded and cells were resuspended in 40 μL PBS with 0.04% BSA and counted. All biopsy samples were used 
freshly.

Matched blood samples from biopsy donors were split into two parts with 80 mL used for standard PBMC 
isolation (see above) and 20 mL used for CD45+ magnetic bead isolation to match the isolation procedure 
of biopsy-derived immune cells. For bead isolation from whole blood StraightFrom Whole Blood CD45 
MicroBeads (Miltenyi Biotec, 130-090-872) and the Whole Blood Column Kit (Miltenyi Biotec, 130-093-545) 
were used according to manufacturer instructions.

Fluorescence-activated cell sorting (FACS). For cell staining 1 × 106 fresh or frozen PBMCs were used. 
First, viability staining was performed using 200 μL of a 1:1000 dilution of the Zombie NIR™ Fixable Viability 
dye (Biolegend, 423105) for 15′ at room temperature in the dark. Cells were washed with staining buffer (BD 
Pharmingen) and resuspended in 200 μL Fc-receptor blocking solution, after 5′ the staining mix of antibodies 
was added and cells were incubated for 20′ at 4 °C in the dark. Cells were then washed twice with CSB and filtered 
before resuspension to a maximum of 30 × 106/mL for FACS sorting.

For cell staining intended for HBV-specific T cell sorting 2 × 106 PBMCs from HLA-A*02:01+ donors were 
used and stained with 10 μL tetramer (PE-labelled, iTAG MHC Tetramer, FLPSDFFPSV, MBL International 
Corporation, #TB-0018-1) in 100 μL CSB for 30′ at room temperature in the dark prior to viability and antibody 
staining described above.

The used antibodies were BUV395-labelled anti-CD4 (BD Biosciences, SK3, #563550), BUV737-labelled 
anti-CD8 (BD Biosciences, SK1, #564629), BV421-labelled anti-PD-1 (Biolegend, EH12.2H7, #329920), 
BV510-labelled anti-CD3 (BD Biosciences, UCHT1, #563109), BV711-labelled anti-CD19 (Biolegend, HIB19, 
#302246), BV711-labelled anti-CD14 (Biolegend, M5E2, #301838), BV711-labelled anti-CD16 (Biolegend, 3G8, 
#302044), BV711-labelled anti-CD11B (Biolegend, ICRF44, #301344), FITC-labelled anti-CCR7 (Biolegend, 
G043H7, #353216), BB700-labelled anti-CD45 (BD Biosciences, HI30, #746090), PE-CF594-labelled anti-PD-1, 
BD Biosciences, EH12.1, #565024), PE-Cy7-labelled, anti-CD45RA (Biolegend, HI100, #304126), APC-labelled 
anti-CD45RA (Biolegend, HI100, #304112).

FACS sorting was performed on a BD Fusion instrument using BD FACSDiva software version 8.0.1.

Library preparation and sequencing (10X Genomics). For scRNA-seq employing the 10X Genomics 
Chromium platform cell suspensions were used for library preparation following the manufacturer instruc-
tions (Chromium Single Cell 3′ Reagent Kits v3 User Guide CG000183 Rev A). A cell recovery of 8000 cells was 
targeted.

Smart-seq2. For full-length scRNA-seq of T cells from three HLA-A*02:01+ donors, cells were sorted into 
96-well plates with one cell per well directly into lysis buffer containing dNTPs and oligo-dT primers. Smart-seq2 
library preparation was performed as originally published following the protocol from Picelli et al.37 using the 
Nextera XT DNA Library Preparation Kit (96 samples), Illumina, FC-131-1096. For all Smart-seq2 experiments 
frozen PBMCs were used.

Sequencing of 10X libraries. 10X Libraries were quantified using the Qubit dsDNA HS assay and aver-
age library size was calculated running Bioanalyzer DNA High Sensitivity protocol. Libraries were pooled in an 
equimolar manner and pools were diluted to 2.5 nM before loading into the sequencer. Illumina NovaSeq 6000 
instrument was used for sequencing using single-indexed paired-end parameters (28 cycles - 8 cycles - 91 cycles).

Sequencing of Smart-seq2 libraries. Dual-indexed Smart-seq2 libraries were pooled by equal volumes 
of library. Each library pool was quantified on a Qubit Fluorometer using the Qubit™ dsDNA HS kit (Thermo 
Fischer Scientific®). Library quality was assessed on a Bioanalyzer using the Agilent High Sensitivity DNA kit 
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(Agilent Technologies®). Library pools were diluted to 2 nM and sequenced for 2 × 101 cycles on a NovaSeq 6000 
instrument (Illumina Inc.).

Single cell RNA-sequencing data processing. In total, we sequenced 58 experiments on the 10X plat-
form (excluding feature barcoding experiments) and 3 experiments using the Smart-seq2 protocol. We excluded 
5 experiments:

One experiment due to inconclusive FACS staining for cell sorting (VHB5_PD1_10X_3p_blood), one 
experiment because of high mitochondrial gene count, low gene count and low UMI count (VHB17_
CD45_10X_3p_blood), three experiments that were re-sequenced because they contained very few cells 
(VHB34_CD45_10X_3p_blood, VHB27_PD1_10X_3p_blood, and VHB27_NN_10X_3p_blood).

10X data preprocessing. FASTQ files were generated using 10X Genomics cellranger 5.5.0 mkfastq. In order 
to estimate UMI counts and gene expression levels, reads were mapped to the human genome (hg38) utilizing 
10X Genomics cellranger 5.5.0 count. The gene-by-cell count matrix was further processed using Besca38 and 
Scanpy39.

10X data filtering. In order to achieve high quality data, only cells that expressed at least 800 and not more than 
6.000 genes; included at least 2.500 and not more than 50.000 UMIs; had not more than 15% of UMIs mapping 
to mitochondrial genes were kept. This resulted in 186,123 total cells.

10X data normalization. Normalization was performed using count depth scaling to 10,000 total counts per 
cell, resulting in the cp10k (counts per 10,000) unit. Count values were log-transformed using natural logarithm: 
ln(cp10k + 1).

Smart-seq2 experiments. In total, we sequenced 1,713 cells using the Smart-seq2 protocol37 from 9 experiments 
(3 donors × 3 conditions). Two cells were excluded, because the raw sequencing data (FASTQ files) were missing 
or corrupted (cells 771 and 1320).

Smart-seq2 data preprocessing. Base calling was performed with BCL to FASTQ file converter bcl2fastq 
v2.17.1.14 from Illumina (https://support.illumina.com/downloads.html). In order to estimate gene expression 
levels, paired-end RNA-Seq reads were mapped to the human genome (hg38) with STAR aligner version 2.5.2a 
using default mapping parameters40. Numbers of mapped reads for all Ensembl transcript variants of a gene 
(counts) were combined into a single value by featureCounts software41 and normalized as TPM (transcripts per 
million). The gene-by-count matrix was further processed using Besca38 and Scanpy39.

Smart-seq2 data filtering. In order to achieve high quality data, we kept only those cells that expressed at least 
800 and not more than 6,000 genes (same as for 10X data); had a percentage of UMIs mapping to mitochondrial 
genes not more than 15% (same as for 10X data). This resulted in 1,069 total cells.

Smart-seq2 data normalization. Normalization was performed using count depth scaling to 10,000 total counts 
per cell, resulting in the cp10k (counts per 10’000) unit. Count values were log-transformed using natural log-
arithm: ln(cp10k + 1).

Data Records
10X data. The gene-by-cell raw UMI count matrix and the processed data for the 10X single cell RNA-
sequencing experiments are available from Zenodo record 839940942. The raw count matrix is available in the 
MTX format (barcodes.tsv, genes.tsv, matrix.mtx) together with the corresponding metadata in the TSV format 
(metadata.tsv) within the gzip archive: raw.tar.gz. The matrix can be processed using Besca38. The processed data 
files are available from the gzip archive standard_workflow_besca2.tar.gz. It contains mainly human-readable 
text-files or tab-separated files, which can be opened by any text editor or spreadsheet software. The processed 
data is also available as an AnnData object in the h5ad format: standard_workflow_besca2.h5ad. It can be loaded 
by Scanpy39 for further analyses, by the cellxgene visualization tool43, or by other compatible toolkits.

Smart-seq2 data. The gene-by-cell raw and tpm-normalized count matrices and the processed data for the 
Smart-seq2 experiments are available from Zenodo record 839945844. The tpm (transcripts per million) nor-
malized count matrix is available in the MTX format (barcodes.tsv, genes.tsv, matrix.mtx) together with the cor-
responding metadata in the TSV format (metadata.tsv) within the gzip archive: raw.tar.gz. The matrices can be 
processed using Besca38. The processed data files are available from the gzip archive: standard_workflow_besca2.
tar.gz. It contains mainly human-readable text-files or tab-separated files, which can be opened by any text editor 
or spreadsheet software. The processed data is also available as an AnnData object in the h5ad format: stand-
ard_workflow_besca2.h5ad. It can be loaded by Scanpy39 for further analyses, by the cellxgene visualization tool43, 
or by other compatible toolkits.

10X and Smart-seq2 integrated data. The gene-by-cell raw UMI count matrix and the processed data 
for the integrated data are available from Zenodo record 839947545. The raw count matrix is available in the 
MTX format (barcodes.tsv, genes.tsv, matrix.mtx) together with the corresponding metadata in the TSV format 
(metadata.tsv) within the gzip archive: raw.tar.gz. The matrix can be processed using Besca38. The processed data 
files are available from the gzip archive: integrated_10X_SS2.tar.gz. It contains mainly human-readable text-files 
or tab-separated files, which can be opened by any text editor or spreadsheet software. The processed data is also 
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available as an AnnData object in the h5ad format: integrated_10X_SS2.h5ad. It can be loaded by Scanpy39 for 
further analyses, by the cellxgene visualization tool43, or by other compatible toolkits.

Technical Validation
Cell sorting. For subsequent scRNA-seq cells were sorted either as bulk populations when used for sequenc-
ing with the 10X Genomics platform or directly into lysis buffer of 96-well plates when used for sequencing by 
the Smart-seq2 protocol. The general gating strategy for these two approaches was identical. Cells were identified 
as lymphocytes and doublets excluded by forward and side scatter. Viable CD45+ cells were selected and CD3+ 
T cells identified.

In the following steps either total non-naive T cells by gating out CD45RA/CCR7 double-positive naive cells, 
PD1+ T cells or HBV specific CD8+ T cells were chosen for sorting (Fig. 2). For the sorting of HBV-specific T 
cells from HLA-A*02:01+ donors, cells double-positive for CD8 and the MHC-core-peptide (FLPSDFFPSV) 
tetramer complex were selected.

For the plate based Smart-seq2 protocol HBV-specific T cells from 3 different donors were included. These 
cells are assumed to display an exhausted phenotype, indicated by high PD1 expression. Figure 3 shows PD1 
expression on HBV-specific cells for each of the donors displayed versus the expression in total T cells. The 
HBV-specific cell population shows a higher expression of PD1 versus total T cells.

10X cell clustering. The steps in this paragraph were done to evaluate the 10X data alone and are not rele-
vant for the integration of the 10X and Smart-seq2 data.

To reduce dataset dimensionality before clustering, the highly variable genes within the dataset were selected. 
Genes were defined as being highly variable when they have a minimum mean expression of 0.0125, a maximum 
mean expression of 3 and a minimum dispersion of 0.5.

Technical variance was removed by regressing out the effects of count depth and mitochondrial gene content 
and the gene expression values were scaled to a mean of 0 and variance of 1 with a maximum value of 10.

The first 50 principal components were calculated and used as input for calculation of the 10 nearest neigh-
bours. The neighbourhood graph was then embedded into two-dimensional space using the Uniform Manifold 
Approximation and Projection (UMAP) algorithm)46. Cell communities are detected using the Leiden algo-
rithm47 at a resolution of 1 (Fig. 4).

Smart-seq2 cell clustering. The steps in this paragraph were done to evaluate the Smart-seq2 data alone 
and are not relevant for the integration of the 10X and Smart-seq2 data (see paragraph thereafter).

To reduce dataset dimensionality before clustering, the highly variable genes within the dataset were selected. 
Genes were defined as being highly variable when they have a minimum mean expression of 0.0125, a maximum 
mean expression of 3 and a minimum dispersion of 0.5.

Technical variance was removed by regressing out the effects of count depth and mitochondrial gene content 
and the gene expression values were scaled to a mean of 0 and variance of 1 with a maximum value of 10.

The first 50 principal components were calculated and used as input for calculation of the 10 nearest neigh-
bours. The neighbourhood graph was then embedded into two-dimensional space using the UMAP algorithm46. 
Cell communities were detected using the Leiden algorithm47 at a resolution of 1 (Fig. 5).
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Fig. 2 Gating strategy for T cell populations of interest for subsequent scRNA-seq. Representative image of the 
gating strategy used for cell sorting of non-naive T cells, PD1+ T cells and HBV-specific T cells using antibodies 
against surface markers and fluorescently labeled MHC tetramers against the core protein as indicated on the 
plot axes.
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Integration of 10X and Smart-seq2 data. The raw UMI count matrix (10X data) and TPM count matrix 
(Smart-seq2 data) were concatenated resulting in 187,192 cells. Normalization was performed using count depth 
scaling to 10,000 total counts per cell, resulting in the cp10k (counts per 10,000) unit for both protocols. Count 
values were log-transformed using natural logarithm: ln(cp10k + 1). We did not apply any advanced integration 
method and therefore cells cluster by protocol (see Fig. 7).
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Fig. 3 FACS staining and PD1 expression of HBV core-specific CD8 T cells from three donors used for scRNA-
seq with Smart-seq2.

Fig. 4 UMAP of 186,123 cells from the 10X platform coloured by 38 Leiden clusters.
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Integrated cell clustering. The clustering performed on the integrated dataset is independent from the previous 
clusterings on the individual datasets (see previous paragraphs).

To reduce dataset dimensionality before clustering, the highly variable genes within the dataset were selected. 
Genes were defined as being highly variable when they have a minimum mean expression of 0.0125, a maximum 
mean expression of 3 and a minimum dispersion of 0.5.

Technical variance was removed by regressing out the effects of count depth and mitochondrial gene content 
and the gene expression values are scaled to a mean of 0 and variance of 1 with a maximum value of 10.

The first 50 principal components were calculated and used as input for calculation of the 10 nearest neigh-
bours. The neighbourhood graph was then embedded into two-dimensional space using the UMAP algorithm46. 
Cell communities were detected using the Leiden algorithm47 at a resolution of 1 (Figs. 6–8).

Fig. 5 UMAP of 1,069 cells from the Smart-seq2 protocol coloured by 10 Leiden clusters.

Fig. 7 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by organ (left) and 
protocol (right).

Fig. 6 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by 38 Leiden clusters 
(left) and experiment condition (right).

https://doi.org/10.1038/s41597-024-03187-2


9Scientific Data |          (2024) 11:355  | https://doi.org/10.1038/s41597-024-03187-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

We assessed the cell types of all cells by calculating a signature scores for all signatures provided by Besca 
(https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNames_scseqCMs6_sigs.gmt)38. 
The score is the average expression of a set of genes subtracted with the average expression of a reference set of 
genes, calculated by Scanpy’s score_genes function (https://scanpy.readthedocs.io/en/stable/generated/scanpy.
tl.score_genes.html)39.

These signatures were selected for the cell type annotation (Figs. 9, 10):

•	 Hematopoietic signature genes: PTPRC, CORO1A, RAC2, CD53, LAPTM5, CXCR4, LCP1
•	 Myeloid signature genes: CSF3R, MS4A6A, MS4A7, MNDA, C5AR1, FCGR2A, C3AR1, FPR1, LILRB2, 

HDC, FCGR3B, CCL22
•	 B cell signature genes: CD19, MS4A1, TNFRSF13C, VPREB3, PAX5, CR2
•	 T cell signature genes: CD3E, CD3D, CD3G, TRAC, BCL11B, TRAT1, CD2
•	 NK cell signature genes: NCR1, LIM2, KIR2DL4, KLRC1, IL18RAP, KLRF1,
•	 Endothelial signature genes: CDH5, ECSCR, CCL14, KDR, TIE1, PCAT19, MYCT1, FLT4

Fig. 8 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by disease (left) and 
Leiden (right).

Fig. 9 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by signature score from 
Scanpy’s score_genes function.
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Code availability
The Besca38 toolkit was used to process the data. The corresponding Jupyter notebooks are available from the 
Zenodo together with the data. The processing workflow for the 10X data is available from record 839940942 
standard_workflow_besca2.ipynb or standard_workflow_besca2.html and the processing workflow for the 
Smart-seq2 data is available from record 839945844 standard_workflow_besca2.ipynb or standard_workflow_
besca2.html. The Jupyter notebook to integrate both datasets is available from record 839947545 integrate_10x_
smartseq2.ipynb or integrate_10x_smartseq2.html.

Received: 16 October 2023; Accepted: 25 March 2024;
Published: xx xx xxxx

References
 1. WHO. GLOBAL HEPATITIS REPORT, 2017. https://www.who.int/publications/i/item/9789241565455 (2017).
 2. Lazarus, J. V. et al. The hepatitis B epidemic and the urgent need for cure preparedness. Nat Rev Gastroenterol 15, 517–518 (2018).
 3. Maini, M. K. et al. Direct ex vivo analysis of hepatitis B virus-specific CD8 + T cells associated with the control of infection. 

Gastroenterology 117, 1386–1396 (1999).
 4. Webster, G. J. M. et al. Incubation phase of acute hepatitis B in man: Dynamic of cellular immune mechanisms. Hepatology 32, 

1117–1124 (2000).
 5. Dunn, C. et al. Temporal Analysis of Early Immune Responses in Patients With Acute Hepatitis B Virus Infection. Gastroenterology 

137, 1289–1300 (2009).
 6. BÖCHER, W. O. et al. Regulation of the neutralizing anti‐hepatitis B surface (HBs) antibody response in vitro in HBs vaccine 

recipients and patients with acute or chronic hepatitis B virus (HBV) infection. Clin Exp Immunol 105, 52–58 (1996).
 7. Burton, A. R. et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest 128, 4588–4603 (2018).
 8. Salimzadeh, L. et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J Clin 

Invest 128, 4573–4587 (2018).
 9. Boni, C. et al. Characterization of Hepatitis B Virus (HBV)-Specific T-Cell Dysfunction in Chronic HBV Infection. J Virol 81, 

4215–4225 (2007).
 10. Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral Persistence Alters CD8 T-Cell 

Immunodominance and Tissue Distribution and Results in Distinct Stages of Functional Impairment. J Virol 77, 4911–4927 (2003).
 11. Hoogeveen, R. C. et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage 

of infection. Gut 68, 893–904 (2018).
 12. Ye, B. et al. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis 6, 

e1694–e1694 (2015).
 13. Schuch, A. et al. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8 + T cells in 

chronically HBV-infected patients with low viral load. Gut 68, 905–915 (2019).
 14. Boni, C. et al. Restored Function of HBV-Specific T Cells After Long-term Effective Therapy With Nucleos(t)ide Analogues. 

Gastroenterology 143, 963–973.e9 (2012).
 15. Bénéchet, A. P. et al. Dynamics and genomic landscape of CD8 + T cells undergoing hepatic priming. Nature 574, 200–205 (2019).
 16. Bert, N. L. et al. Effects of Hepatitis B Surface Antigen on Virus-Specific and Global T Cells in Patients With Chronic Hepatitis B 

Virus infection. Gastroenterology 159, 652–664 (2020).
 17. Montali, I. et al. Antigen Load and T Cell Function: A Challenging Interaction in HBV Infection. Biomed 10, 1224 (2022).
 18. Raziorrouh, B. et al. Inhibitory Phenotype of HBV-Specific CD4 + T-Cells Is Characterized by High PD-1 Expression but Absent 

Coregulation of Multiple Inhibitory Molecules. Plos One 9, e105703 (2014).
 19. Li, Y. et al. CXCL13-mediated recruitment of intrahepatic CXCR5 + CD8 + T cells favors viral control in chronic HBV infection.  

J Hepatol 72, 420–430 (2020).
 20. Cheng, Y. et al. Multifactorial heterogeneity of virus-specific T cells and association with the progression of human chronic hepatitis 

B infection. Sci Immunol 4, (2019).
 21. Cheng, Y. et al. Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival 

in hepatocellular carcinoma. Immunity 54, 1825–1840.e7 (2021).
 22. Yuen, M. et al. HBsAg seroclearance in chronic hepatitis B in the Chinese: Virological, histological, and clinical aspects. Hepatology 

39, 1694–1701 (2004).

Fig. 10 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by cell type 
annotation.

https://doi.org/10.1038/s41597-024-03187-2
https://www.who.int/publications/i/item/9789241565455


1 1Scientific Data |          (2024) 11:355  | https://doi.org/10.1038/s41597-024-03187-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

 23. Ferreira, S. C. et al. Factors associated with spontaneous HBsAg clearance in chronic hepatitis B patients followed at a university 
hospital. Ann Hepatol 13, 762–70 (2014).

 24. Nkongolo, S. et al. Longitudinal liver sampling in patients with chronic hepatitis B starting antiviral therapy reveals hepatotoxic 
CD8 + T cells. J Clin Investigation 133, e158903 (2023).

 25. Maini, M. K. et al. The Role of Virus-Specific Cd8 + Cells in Liver Damage and Viral Control during Persistent Hepatitis B Virus 
Infection. J Exp Medicine 191, 1269–1280 (2000).

 26. Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. J Exp Med 214, 1567–1580 
(2017).

 27. Isogawa, M., Kakimi, K., Kamamoto, H., Protzer, U. & Chisari, F. V. Differential dynamics of the peripheral and intrahepatic 
cytotoxic T lymphocyte response to hepatitis B surface antigen. Virology 333, 293–300 (2005).

 28. Ouaguia, L. et al. Circulating and Hepatic BDCA1+, BDCA2+, and BDCA3 + Dendritic Cells Are Differentially Subverted in 
Patients With Chronic HBV Infection. Front Immunol 10, 112 (2019).

 29. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8 + T cell persistence in chronic infection. Nat Immunol 20, 
890–901 (2019).

 30. Pritykin, Y. et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Mol Cell 81, 2477–2493.e10 (2021).
 31. Wang, S. et al. An atlas of immune cell exhaustion in HIV-infected individuals revealed by single-cell transcriptomics. Emerg 

Microbes Infect 9, 2333–2347 (2020).
 32. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).
 33. Zheng, C. et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell 169, 1342–1356.e16 

(2017).
 34. Zhang, C. et al. Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in 

HBV-infected patients. Gut 72, 153–167 (2023).
 35. Genshaft, A. S. et al. Single-cell RNA sequencing of liver fine-needle aspirates captures immune diversity in the blood and liver in 

chronic hepatitis B patients. Hepatology Publish Ahead of Print (2023).
 36. Bai, Q. et al. Single-cell landscape of immune cells during the progression from HBV infection to HBV cirrhosis and HBV-associated 

hepatocellular carcinoma. Front. Immunol. 14, 1320414 (2023).
 37. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9, 171–181 (2014).
 38. Mädler, S. C. et al. Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research. NAR Genom. Bioinform. 

3, lqab102- (2021).
 39. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
 40. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
 41. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic 

features. Bioinformatics 30, 923–930 (2014).
 42. Hatje, K. et al. HBV Immunomics 10X data. Zenodo https://doi.org/10.5281/zenodo.8399409 (2023).
 43. Megill, C. et al. cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. bioRxiv https://doi.

org/10.1101/2021.04.05.438318 (2021).
 44. Hatje, K. et al. HBV Immunomics Smart-seq2 data. Zenodo https://doi.org/10.5281/zenodo.8399458 (2023).
 45. Hatje, K. et al. HBV Immunomics 10X and Smart-seq2 integrated data. Zenodo https://doi.org/10.5281/zenodo.8399475 (2023).
 46. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 

861 (2018).
 47. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 

(2019).

Acknowledgements
We thank Dr. Simona Tripon (Strasbourg University Hospital) for her help with patient inclusion. We thank 
colleagues at Roche who supported the project: Asja Praetor, Guillaume Marc Daniel and Volker Stucke for 
contracting and external alliance support, Petra Schwalie and Jitao David Zhang for bioinformatic discussions, 
Thomas Racek and Claudia Bossen for administrative support, Vera Griesser, Fabian Koechl and Alexia Phedonos 
for sequencing support.

Author contributions
K.H. performed bioinformatic data analysis, interpreted data, wrote the manuscript. T.K.T. contributed to 
bioinformatic data analysis. N.G. performed library preparation, sequencing and contributed to manuscript 
preparation. A.S. selected and enrolled patients and edited the manuscript. P.S. selected and enrolled patients and 
assured biological sample collection. N.K. helped with sequencing and contributed to manuscript preparation. 
T.N. gave substantial intellectual input for study design and analysis. F.H. selected and enrolled patients and 
reviewed the manuscript. T.F.B. initiated and designed the study and edited the manuscript. N.P. initiated and 
designed the study, interpreted data and gave substantial intellectual input. M.F. designed the study, performed 
experiments, interpreted data and wrote the manuscript.

Competing interests
Authors previously or currently employed by F. Hoffmann-La Roche Ltd. might hold stocks. The authors declare 
that they have no other competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.H., A.S. or M.F.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41597-024-03187-2
https://doi.org/10.5281/zenodo.8399409
https://doi.org/10.1101/2021.04.05.438318
https://doi.org/10.1101/2021.04.05.438318
https://doi.org/10.5281/zenodo.8399458
https://doi.org/10.5281/zenodo.8399475
http://www.nature.com/reprints


1 2Scientific Data |          (2024) 11:355  | https://doi.org/10.1038/s41597-024-03187-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03187-2
http://creativecommons.org/licenses/by/4.0/

	Single-cell RNA-sequencing of virus-specific cellular immune responses in chronic hepatitis B patients
	Background & Summary
	Background. 

	Methods
	Human clinical samples. 
	Sample collection and processing. 
	Sample collection. 
	PBMC isolation. 
	Biopsies processing. 

	Magnetic bead isolation. 
	Fluorescence-activated cell sorting (FACS). 
	Library preparation and sequencing (10X Genomics). 
	Smart-seq2. 
	Sequencing of 10X libraries. 
	Sequencing of Smart-seq2 libraries. 
	Single cell RNA-sequencing data processing. 
	10X data preprocessing. 
	10X data filtering. 
	10X data normalization. 
	Smart-seq2 experiments. 
	Smart-seq2 data preprocessing. 
	Smart-seq2 data filtering. 
	Smart-seq2 data normalization. 


	Data Records
	10X data. 
	Smart-seq2 data. 
	10X and Smart-seq2 integrated data. 

	Technical Validation
	Cell sorting. 
	10X cell clustering. 
	Smart-seq2 cell clustering. 
	Integration of 10X and Smart-seq2 data. 
	Integrated cell clustering. 


	Acknowledgements
	Fig. 1 Schematic overview of the study workflow.
	Fig. 2 Gating strategy for T cell populations of interest for subsequent scRNA-seq.
	Fig. 3 FACS staining and PD1 expression of HBV core-specific CD8 T cells from three donors used for scRNA-seq with Smart-seq2.
	Fig. 4 UMAP of 186,123 cells from the 10X platform coloured by 38 Leiden clusters.
	Fig. 5 UMAP of 1,069 cells from the Smart-seq2 protocol coloured by 10 Leiden clusters.
	Fig. 6 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by 38 Leiden clusters (left) and experiment condition (right).
	Fig. 7 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by organ (left) and protocol (right).
	Fig. 8 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by disease (left) and Leiden (right).
	Fig. 9 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by signature score from Scanpy’s score_genes function.
	Fig. 10 UMAP of 187,192 cells from the integrated 10X and Smart-seq2 dataset coloured by cell type annotation.
	Table 1 Characteristics of the study cohort.




