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A multimodal physiological dataset 
for driving behaviour analysis
Xiaoming Tao1,2, Dingcheng Gao1,2, Wenqi Zhang1,2, Tianqi Liu1,2, Bing Du3, 
Shanghang Zhang4 & Yanjun Qin1,2 ✉

Physiological signal monitoring and driver behavior analysis have gained increasing attention in 
both fundamental research and applied research. This study involved the analysis of driving behavior 
using multimodal physiological data collected from 35 participants. The data included 59-channel 
EEG, single-channel ECG, 4-channel EMG, single-channel GSR, and eye movement data obtained via 
a six-degree-of-freedom driving simulator. We categorized driving behavior into five groups: smooth 
driving, acceleration, deceleration, lane changing, and turning. Through extensive experiments, 
we confirmed that both physiological and vehicle data met the requirements. Subsequently, we 
developed classification models, including linear discriminant analysis (LDA), MMPNet, and EEGNet, 
to demonstrate the correlation between physiological data and driving behaviors. Notably, we propose 
a multimodal physiological dataset for analyzing driving behavior(MPDB). The MPDB dataset’s scale, 
accuracy, and multimodality provide unprecedented opportunities for researchers in the autonomous 
driving field and beyond. With this dataset, we will contribute to the field of traffic psychology and 
behavior.

Background & Summary
According to the National Motor Vehicle Crash Causation Survey (NMVCCS), 94% of traffic crashes are caused 
by the inappropriate driver behaviour1,2. Some drivers may not consistently adhere to traffic regulations, poten-
tially elevating the risk of conflicts3. Individual drivers exhibit distinct driving styles and levels of risk-taking 
propensity, influenced by factors like age and gender, affecting their perception of hazardous situations. 
Additionally, specific driving needs can lead to more assertive driving, potentially resulting in errors. These 
observations suggest a causal link between a driver’s reactions and accidents4,5. While there exists some research 
on the influence of driving state on accidents, there is a pressing need for further investigation into the impact of 
driving responses. Integrating human elements into traffic models offers a more comprehensive grasp of traffic 
modeling, control, and safety6. Among these considerations, comprehending the cognitive aspects of drivers and 
the mechanisms governing their decisions is fundamental for enhancing driver behaviour6,7. There remains a 
requirement for more human driver behavior models adaptable to a wide array of scenarios7. Employing physio-
logical signals in experiments can reveal the underlying logic behind human decision-making, providing a solid 
foundation for modeling human driving behavior8.

Asymptotically homogeneous driving behaviour response dataset for complex dynamic environments will 
help to detect driver cognitive function based on natural driving behaviour and provide a basis for tracing the 
cause of accidents. Since driver cognition is an integral component of driving behaviour, driving behaviour must 
be studied from a cognitive and decision-making perspective, utilizing the knowledge and theory of related 
fields, such as psychology, physiology, engineering, and behavioural science9–13. Cortical beta power changes can 
reflect decision dynamics based on EEG. Beta power as an indicator of evidence accumulation is mainly used 
to study decision making14. To observe human behaviour, psychophysiological studies can analyse the driver’s 
driving state or driving intentions through physiological signals from different parts of the human body15–20. 
The development of low-power, high-precision wearable device technology has driven the study of cognition, 
leading to an increasing number of studies investigating the cognitive decision-making process of human driv-
ing behaviour during driving. Currently, numerous studies delve into the interpretation of EEG signals for 
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behavioral movements. Both low-frequency EEG potentials (<3 Hz), which are referred to as movement-related 
cortical potentials, and faster EEG activity, such as the sensorimotor rhythm21, have been related to the planning 
and execution of movements during both motor and imagery tasks22–24. Part of the literature linked anticipatory 
EEG signals with the contingent negative variation (CNV), a central negative deflection that can last from about 
300 ms to several seconds that was previously related to sensory-motor association and expectancy25–27. Utilizing 
measurements of the CNV from low-frequency EEG, researchers have successfully decoded driver intentions 
in real-world driving scenarios. This research demonstrates the ability to anticipate braking and accelerating 
actions with a lead time of 320±200 ms28–30.

To study human responses and decision-making processes during driving tasks, researchers require rich and 
reproducible datasets. Table 1 summarizes the datasets from which information on drivers in survey papers as 
far as we know. Most existing datasets focus on predicting vehicle trajectories based on previous data or vehi-
cle dynamics. While there have been extensive studies on vehicle-based driving behavior, attributing accidents 
solely to vehicle driving data proves insufficient in effectively distinguishing between driver operational errors 
and potential vehicle performance issues.

Consequently, discerning driver behavior from vehicle performance problems presents a considerable chal-
lenge. Despite the wealth of driving data available in autonomous driving research, users exhibit hesitancy in 
relinquishing control over vehicles, resulting in the underutilization of this capability31,32. In other words, the 
majority of vehicles on the road remain in a non-autonomous driving state. This underscores the critical impor-
tance of human factors in driving behavior research33,34. In essence, conducting a comprehensive examination of 
driver behavior is imperative from a research standpoint. To emulate human behavior, methods like electroen-
cephalography (EEG) and electrocardiography (ECG)35 play an indispensable role in quantification. Acquiring 
such information is more accessible compared to invasive data. Empirical evidence strongly attests to the effec-
tiveness of these multimodal data in extracting driver behavior features.

Relying exclusively on vehicle behavior data proves inadequate in overcoming these challenges. In the actual 
driving process, the internal state of the driver at a certain moment is often a combination of multiple drive 
emotion rather than a single emotion36,37. For instance, when a driver is experiencing drowsiness while using the 
phone, a distracted state coexists, and these states may swiftly transition to an internal state of anger in response 
to another driver’s overtaking situation. Therefore, we cannot clearly label driving states because they are tran-
sient and unmeasurable38–40. However, we cannot clearly label driving states because they are transient and 
unmeasurable41. Hussain et al.41 is to establish the mapping relationship with EEG signals in both stationary and 
driving states. In the driving state, there is an observed increase in theta and delta waves, along with a decrease 
in the beta and gamma bands compared to the resting state. However, this observation does not align with the 
specific internal states emphasized in our article, such as anger, distraction, fatigue, etc. Despite this inconsist-
ency, it does not contradict our claims. To some extent, it supports the notion that driving behavior can indeed 
be reflected in EEG signals, highlighting the complexity of the internal state during driving. We want to measure 
the current driver’s internalimplicit states through explicit driving behaviour data analysis besides deliberate 
experiment design. Mental status must be induced through well-designed experiments42–44. Covering all these 
states is difficult, so we try to reflect the intrinsic states by detecting the multimodal data to measure the driving 
behaviour in real time. Therefore, creating multimodal physiological signal human behaviour datasets in driving 

Attribute Dataset Tasks Amount Annotation Modalities

Engineering Pedestrian Collision 
Avodiance Dataset85 Turning 12 participants Driver Assistance sEMG

Computer Science

Honda Research Insitute 
Driving Dataset86 Turn Lane-change 104 hours Driving Scene 

Understanding
Camera, LiDAR, GPS,IMU 
and CAN

100-Car Naturalistic Driving 
Study (NDS) Dataset87

Crashes, near-crashes, other 
“incidents” 100-car Driving behavior 

and Performance
Video, Vehicle state and 
kinematic sensors

Vehicle Driving Behaviour88 Acceleration, normal driving, 
collision, turn 1032 events Driving behaviour Six-axis sensor

Driving behavior Dataset89 Sudden Acceleration, Sudden 
Breaking, Sudden Turn 3 participants Driving behaviour Accelerometer gyroscope

Driving Style Recognition 
Dataset90 Turning, Acceleration, Deceleration 10 participants Driving style GPS, Driving recorder

Psychology

multimodal distracted 
driving dataset42

No distraction, cognitive distraction, 
emotional distraction, sensorimotor 
distraction

68 participants distracted driving
EDA, palm EDA, heart rate, 
breathing rate, facial signals, 
eye tracking

sustained-attention driving 
dataset43 fatigue and drowsiness 27 participants sustained-attention 

driving task EEG

multimodal driving emotions 
dataset44

Anger,Fear, Disgust,Sadness, 
surprise,Happniess, Neutural 40 participants driving emotion

EEG, video, psychological 
data, rgb camera, infrared 
camera vehicle behaviour

Collision Threat Dataset9 Brake 25 participants Emergency EEG

Ours Smooth driving, Acceleration, 
Deceleration, Lane-change, Turning

35 participants 
(6052 events) Driving behaviour EEG,EMG,GSR, ECG,Eye 

tracker

Table 1.  Summary of reviewed publicly available datasets for human behaviour research in driving. IMU = inertial 
measurement unit, CAN = controller area network, GPS = global positioning system, ECG = electrocardiography, 
EMG = electromyography, GSR = galvanic skin response, EEG = electroencephalogram, sEMG = surface 
electromyography.
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is essential for studying driver cognitive characteristics affecting driving behaviour decisions. However, to our 
knowledge, there are no publicly available multimodal physiological datasets of human response decisions in 
driving tasks. EEG signals can generate clear physiological signal analysis when we are driving, but the internal 
states of drivers during driving, such as distraction, anger and frustration, are relatively instantaneous changes. It 
is also more complex, such as angry soon into the state of frustration and so on45. In summary, driving behaviors 
are easier to annotate and map than complex emotional states. Although the internal driving state is difficult to 
calibrate in composite instants, we may be able to deduce the driver state from the driver’s driving behavior in 
future research.

Our dataset is mainly targeted at neuroscience and traffic psychology domains. Fatigue, emotion, distrac-
tion, and driving behavior are studied in this field, and it has been an important research topic in psychology, 
physiology, human factors engineering, and ergonomics.Our paper studies the driving behavior of drivers. At 
present, the common datasets in the field of driving behavior are mainly divided into four categories: 1) Driving 
behavior based on vehicle sensors is studied in acceleration, deceleration, turning and other aspects of driving 
behavior46–50. The data collected from vehicle sensors may be subject to inaccuracies and noise. Sensor read-
ings can be affected by factors such as sensor calibration errors, environmental conditions, and wear and tear, 
leading to potential inaccuracies in the analysis of driving behavior. 2) Study the driver behavior based on the 
camera mounted on the vehicle51–54. Analysis of driving behavior may be influenced by lighting and weather 
conditions. Adverse weather, low light, or other visual impediments can affect the quality of images, potentially 
compromising the accuracy of driving behavior analysis; 3) Driving behavior is determined by the data of smart 
phone sensors55–57. Smartphones are often placed in fixed locations, such as pockets or mounts, which might not 
be ideal for capturing certain driving behaviors accurately. The fixed position could affect the ability to detect 
nuanced movements, such as steering wheel rotations or pedal usage. 4)The research of driving state based on 
physiological signals mainly studies the fatigue and distraction states of drivers, but there is no relevant data set 
that directly maps physiological signals to driver behavior58–61.Physiological responses to fatigue and distraction 
can vary significantly among individuals. What may be a reliable indicator for one driver may not hold true for 
another. This variability complicates the development of universal models for detecting fatigue or distraction.

We investigate the development of a dataset that directly maps physiological signals to driver behavior. 
Currently, there is no relevant dataset proposed. The advantages of such a dataset include: small computational 
requirements for physiological signal data; relatively stable physiological signal data; a clearer and more direct 
reflection of driving behavior with a more explicit correlation; the collection of physiological signals is not 
influenced by the driver’s position; simultaneously, it can improve the vehicle-human interaction interface. The 
application of the mapping dataset is expected to enhance the vehicle-human interaction interface. The system 
can intelligently respond to the driver’s physiological needs, providing a more intuitive and user-friendly inter-
action experience.

Here, we present a driving behaviour dataset of multimodal physiological signals for the first time. The core 
challenge of this dataset is how to effectively collect the driver’s reaction decisions and behaviour during driving. 
Therefore, the core work is to obtain multimodal driving behaviour datasets and analyse different human driv-
ing behaviours by designing experiments based on Event-Related Desynchronization/Synchronization (ERD/
ERS) paradigm62–64 and combining data from physiological signals. We did not utilise Event-Related Potentials 
(ERPs) as an EEG experimental paradigm in our experiments. The experimental design of ERPs requires a single 
stimulus such as flashing brake lights65. Specific stimuli in ERP experiments cannot be reproduced in dynamic 
driving scenarios. Our experimental paradigm is Event-Related Desynchronization/Synchronization (ERD/
ERS). Cortical beta power changes can reflect decision dynamics based on EEG. Beta power as an indicator of 
evidence accumulation is mainly used to study decision making14.

First, we design four different driving tasks in the same scene. Then, we conducted driving experiments on 
the 51 WORLD driving simulator. The conventional scalp EEG caps for the EEGs we used is a non-invasive 
method to record scalp voltage over time. The electroencephalography (EEG), electrocardiogram (ECG) and 
electromyogram (EMG) device model is Neuracle, and the eye tracker model is Tobii Glasses 2. The driving 
simulation software synchronizes all the equipment by sending time stamps to the trigger box. Finally, data pre-
processing is mainly carried out using the EEGLAB66 plug-in of MATLAB. The preprocessed data are analysed 
in the time-frequency domain by MATLAB, and feature downscaling and classification are carried out using 
methods such as linear discriminant analysis (LDA).

Methods
Participants.  The content and procedures of this study were noticed and approved by the Medical Ethics 
Committee of Tsinghua University(the approval number: 20230007). Thirty-five voluntary participants (age 
range = 20–60 years old, average age = 25.06 years old, SD = 7.90), who were students or faculty members at 
Tsinghua University were recruited to participate in 150-minute event-related driving tasks, including 26 males 
and 9 females. The participants must have a driving licence of the People’s Republic of China above grade C 
(including grade C) and had at least one year of driving experience (driving experience range = 1–20 years, aver-
age driving experience = 3.03 years, SD = 3.68). Participants were required to ensure adequate rest (sleep no less 
than 8 hours) before the experiment, and to not stay up late the night before the experiment (sleep no later than 
12:00 p.m.) to reduce the impact of noise on EEG signals. The participants had no hair perms or drug use history 
within three months and did not take any excitatory substances within 48 hours before the experiment, including 
but not limited to tranquilizers, tranquilizers, alcohol, coffee, tea and cigarettes. All participants had no mental 
disorders and were required to complete the experiment according to their actual driving style. A pretest will be 
conducted before the experiment to ensure that all participants understand the experimental task and that no 
participants have physiological discomfort due to the simulated environment of the experiment. All participants 
were informed of the experimental requirements before participating in the experiment and the economic reward 
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for an experiment was 90–120 yuan per hour. Each participant completed all five types of driving events, spread 
across seven or eight sets of driving tasks.

Desired sample size was based on G*Power analysis. We used F-tests, ‘ANOVA: Repeated measures, between 
factors’ to compute required sample size. We set f = 0.5, α = 0.05, Power = 0.8, Number of groups = 5, Number 
of measurements = 40, G*Power produced a recommended sample size of 30 participants. Among them, α and 
Power are determined based on the basic theory of mathematical statistics67. The number of measurements is the 
average number of events per subject. The number of groups correspond to the categories of the events. Effect 
size f is determined based on large effect with values ranging from 0.5 to 0.868–71.

Experimental environment.  The experimental environment is mainly composed of a driving simulator 
and a circular curtain, as shown in Fig. 1a. The driving simulator contains a six-degree-of-freedom motion plat-
form and a control platform. The carrying capacity of the six-degree-of-freedom motion platform reaches 500 kg, 
and during the experiment, the platform can achieve the functions of translation and rotation, in which the 
maximum stroke of translation motion can reach 400 mm, the maximum acceleration can reach ±0.7 g, and the 
maximum speed can reach 400 mm/s. The maximum amplitude of rotation motion can reach ±23°, the maxi-
mum acceleration is ±500°/s2, and the maximum speed is 40°/s. The steering wheel of the control platform adopts 
the real car disk surface, which is directly driven by a servo motor. The strength of the steering wheel is linearly 
adjustable and the peak torque can reach 28.65 Nm. The servo motor communicates with the control system 
through a coding device, the control system contains a servo driver and motion control card, the servo driver is 
responsible for driving the servo motor, the motion control card is responsible for the interaction between the 
torque signal and the steering wheel signal with the computer, and the two communicate through an encoder 
signal.

The scene used in the experiment is provided by 51world, which simulates the actual road in Beijing and is 
projected onto the circular curtain. The actual road section, which is approximately 11 km near Shunbai road 
in Shunyi, Beijing, is intercepted as the simulation scene to better restore the actual driving environment. The 
experimental route is shown in Fig. 1b. The road scene is relatively rich, including multiple right angle curves, 
four lane straight urban roads, two lane straight urban roads, etc. The refresh rate of the scene frame is approxi-
mately 60 fps, and the simulation image is shown in Fig. 1c. The main vehicle is controlled by the driving simu-
lator operated by the participants. The static elements and the opponent vehicle are designed to realize various 
events according to the location of the main vehicle. The participants needed to pay attention to the road condi-
tions at all times and take measures for the events. A variety of physiological signal acquisition devices synchro-
nously recorded the physiological data changes before and after the participants engaged in driving behaviour.

Simulation scenario

Route

Simulator with six degrees of freedom

First-person perspective

Approximately 11 km near Shunbai road in Shunyi, Beijing

c

a

db

EEG & ECG

Eye Tracking

GSR

EMG

Scene

Driving simulator Overall environment Data collection

Dashboard

Wheel

Seat

Bracket

Base

Fig. 1  Experimental setup of multimodal human driver factor data collection. (a) A brief sketch of the 
overall simulation scenario. (b) Structural diagram of the simulator with six degrees of freedom. (c) Overall 
environment. All participants completed the experiment in the same environment. (d) Data collection. The 
multimodal physiological data to be collected are shown in Fig. 1, and the use of the relevant portraits was 
authorized by the participants.
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Experimental paradigm.  The experiment adopted the event-related behaviour response paradigm to 
model various driving behaviours using event-related multimodal physiological signals, as shown in Fig. 2. This 
experimental design covers a relatively comprehensive range of basic driving behaviours, which were carried out 
by the subjects participating in the experiment, and the driver’s multimodal physiological data were collected 
synchronously. The exact location of the sensors used in the experiment is shown in Fig. 4. The driving behav-
iours of our experiment are relatively rich, and the collected physiological data have a higher dimension, that is, 
the data may contain more information. By designing specific events to induce different driving behaviours, the 
participants were required to respond to the events to record the multimodal physiological data when the par-
ticipants engaged in different driving behaviours. Specifically, the driving behaviours to be induced were divided 
into five categories: smooth driving (control group), acceleration, deceleration, lane-change and turning. The 
selection of these five types of behaviours takes into account the driver’s basic operations, namely, pedal-based 
operations and steering wheel-based operations. Smooth driving is the control group. Pedal-based operations 
include acceleration and deceleration, and steering wheel-based operations include lane changing and turning. 
Various behaviours are triggered by different events. To ensure the balance of the number of samples, the number 
of samples corresponding to different driving behaviours should be the same as similar as possible. As shown in 
Table 2, smooth driving is triggered by normal straight-line driving; acceleration is triggered by overtaking and 
congestion relief; deceleration is triggered by the sudden braking of the vehicle in front, the sudden lane change 
of the vehicle in front of the side, and the pedestrian crossing the road; lane-change is triggered by static obstacles 
in front; turning is triggered by right angle left turn indication and right angle right turn indication. When the 
trigger event occurs, the time is marked as the marker of event-related potential (ERP) to facilitate data segmen-
tation and research during data analysis, as shown in Fig. 3. Different driving behaviours were divided into four 
different cases (considering the actual setting of the case, the two behaviours of smooth driving and turning were 
in the same case). Each participant completed eight groups of experiments. Notably, the time interval between 
two adjacent events was 5–15 s, and the participants were required to manoeuvre the vehicle back to the original 
lane and resume normal driving within this period of time. In each experiment, the participant needs to drive 
the entire journey. The duration of all driving tasks was approximately 90 min, and a rest time was interspersed 
between them to ensure that the participants do not enter a fatigued driving state. All the operating procedures of 
the participants and the physiological data during the operation were synchronously recorded.

The setting conditions and time mark positions corresponding to various trigger events were different, and 
are summarized as follows:
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Fig. 2  The overall design framework of the experiment. (a) Trigger event. (b) Signal input. (c) Model selection. 
(d) Behavioural output. The overall idea is to induce different driving behaviour of human drivers through 
specific events and synchronously collect multimodal physiological signals, and then use models, such as LDA 
and EEGNet, to classify multiple driving behaviours.
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	 1.	 Smooth driving: Smooth driving in our experimental design is relative to other mark with event trigger-
ing as a control, which refers to the state when no event occurs and the vehicle is travelling on an empty 
straight road, as a control group. When the main vehicle drives in the normal straight line driving area 
which is defined in the map design, the time mark is made.

	 2.	 Acceleration: The acceleration behaviour has two types of trigger conditions. The first is the overtaking sce-
nario, where the main vehicle will encounter a slower moving vehicle in front of it (speed set to 5 m/s and 
the driver needs to complete the overtaking action after noticing the slow moving vehicle. The time marker 
is set when the opponent car starts to drive slowly, as shown in Fig. 5d.
The second is the congestion relief scenario, in which the main car encounters multiple cars blocking the 
road (the speed was set to 5 m/s simulating a congestion scenario). And the opponent cars will rush out 
at a fast speed to simulate congestion relief after driving slowly for 50 m. At this time, the driver needs to 
accelerate because they were asked to keep the normal speed at no less than 60 km/h, and the time marker 
is set at the time when multiple opponent cars accelerate to rush out, as shown in Fig. 5e.

EEG

ECG

EMG

Eye 
Track

GSR

Fig. 4  Location of all sensors. The EEG cap, EMG electrodes, GSR electrodes, ECG electrodes, and eye tracker 
are placed in the positions as shown.

Driving 
behaviour Corresponding events

The number 
for marker

Expected number of 
samples per participant

Smooth driving Normal straight line driving 133 18

Acceleration
Overtaking 135 24

Congestion relief 143 24

Deceleration

The front emergency brake 139 16

The side front cut-in 141 16

Pedestrian crossing 145 16

Lane-change
Static obstacle on right 131 24

Static obstacle on left 129 24

Turning
Left-turn sign 125 18

Right-turn sign 127 18

Table 2.  Correspondence between driving behaviour and triggering events.

2 …3 1010-1

ISI: 5-15s

Marker: 

event

occur

Before event：
500ms

After event：
1500ms

Fig. 3  Marker used to mark the event occurrence point. With reference to the event related potential (ERP) 
paradigm, 500 ms before the event and 1500 ms after the event were intercepted to analyse the relationship 
between physiological signals and driving behaviours. To reduce mutual interference between events, there is a 
time interval between two events.
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	 3.	 Deceleration: There are three scenarios that prompt deceleration. The first involves an emergency braking 
situation with the vehicle in front. As the main vehicle follows, both vehicles maintain a consistent speed. 
However, after traveling 50 meters, the vehicle in front suddenly applies the brakes. This leads to a rapid 
reduction in speed, potentially reaching 0 km/h. Participants were instructed to maintain a speed of no less 
than 60 km/h and a following distance of only 100 meters. Consequently, they must decelerate swiftly upon 
encountering such a situation to avert a rear-end collision. The time mark is located when the opponent car 
in front decelerates to 0, as shown in Fig. 5a.
The second is the situation of a sharp lane change of the vehicle on the side in front. When the main vehicle 
drives in accordance with the specified lane, there will be a opponent vehicle driving at 0.7 times the speed 
of the main vehicle on the side in front when driving to a fixed position, and the opponent vehicle will ur-
gently change the lane to the lane where the main vehicle is located after driving for 50 m. The driver needs 
to slow down after discovering this change to prevent a rear end collision. The time mark is located in the 
sharp lane change of the vehicle on the side in front, as shown in Fig. 5b.
The third is the situation of pedestrians crossing the road. When the main vehicle reaches a fixed position, 
pedestrians cross the road at a speed of 5 m/s in front of it. The driver needs to respond in time and slow 
down to prevent hitting pedestrians. The time mark is when pedestrians begin to cross the road, as shown 
in Fig. 5c.

	 4.	 Lane-change: There are two types of trigger conditions for lane change: both are static obstacles, and the 
difference is that there are two kinds of static obstacles blocking the road ahead. To guide the driver to 
achieve left lane change and right lane change, the driver needs to complete the corresponding lane change 
behaviour after observing the static obstacles. The case design delineates the lane change area, the starting 
point of which is approximately 100 m from the static obstacles. This position is the position where the rel-
atively stable obstacles found through the test appear in the simulation screen, and the time mark is when 
the main vehicle drives into the area, as shown in Fig. 5f,g.

	 5.	 Turning: There are two kinds of trigger conditions for turning behaviour, road turn signs, which are divid-
ed into left-turn signs and right-turn signs. They guide the driver to turn left and right to ensure that the 
main vehicle runs according to the specified route. The driver needs to complete the corresponding turning 
behaviour after observing the sign. In the case design, the turning area is delimited, which is similar to the 
lane-change area. The starting point of the turning area is approximately 100 m away from the indicated 
road sign. This position is the position where the relatively stable indicated road sign found through the 
test appears in the simulation screen. When the main vehicle drives into the area, the time mark is record-
ed, as shown in Fig. 5h,i.
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Fig. 5  Event setup used to induce human driving behaviours, including acceleration, deceleration, lane-change 
and turning. (a)The front emergency brake. (b)The side front cut-in. (c) Pedestrian crossing. (d) Overtaking.  
(e) Congestion relief. (f) Static obstacle on left. (g) Static obstacle on right. (h) Left-turn sign. (i) Right-turn sign.

https://doi.org/10.1038/s41597-024-03222-2


8Scientific Data |          (2024) 11:378  | https://doi.org/10.1038/s41597-024-03222-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data synchronization.  During the experiment, multimodal physiological data were recorded synchro-
nously. Synchronization is achieved by the synchronization trigger box provided by Neuracle in China, which is 
called the NeuSen TB series multiparameter synchronizer. When the driving simulator data collection computer 
receives a specific stimulus, it sends a time marker to the physiological data side through the synchronization 
trigger box, and all these time markers are recorded in a “bdf ” file. Through this synchronization mark, the 
physiological data corresponding to driving behaviour are aligned to realize synchronization of data recording.

EEG and ECG signals.  The EEG signals were collected by the physiological data collection system called the 
NeuSen W Series Wireless EEG Acquisition System, which is provided by Neuracle. The system includes an EEG 
cap with 64 electrodes, 59 of which were used to collect the EEG signals for subsequent data analysis. The cap was 
worn on the participant’s head to record the EEG signals, and the EEG signals were recorded in a “bdf ” file with 
a sampling frequency of 1000 Hz.

The electrode position distribution of EEG acquisition instruments has a unified customary standard, 
arranged according to the international 10–20 electrode system developed by the EEG Society72. The electrode 
distribution of this system is shown in Fig. 6, where the electrodes are named by letters and numbers, with letters 
representing the cortical area where the electrodes are located, odd numbers representing the left brain part, and 
even numbers representing the right brain part.

The ECG signal is also collected through the Neuracle system since one of the electrodes in the cap is for 
ECG recording. The ECG electrode can be applied to the participant’s chest near the heart through an electrode 
patch to achieve ECG data collection. The sampling frequency was also 1000 Hz and the data were recorded in 
a “bdf ” file.

EMG signals.  The EMG signals were acquired by the NeuSen WM Series Wireless EMG Acquisition System 
provided by Neuracle. The acquisition module was pasted on the tibialis anterior muscle, gastrocnemius muscle 
of the right leg and brachioradialis muscle of both arms, for these muscles are involved in a person’s driving 
behaviour during driving. The tibialis anterior and gastrocnemius muscles of the right leg are mainly involved in 
the braking and throttle operation of the legs73,74, while the brachioradialis muscles of the arms are involved in 
the control of the steering wheel75,76. The acquisition module communicates with the device base station through 
Bluetooth, and the base station and the acquisition computer realize multimodule synchronous acquisition 
through a wired network connection. The sampling frequency was also 1000 Hz and data were recorded in a 
“bdf ” file.

GSR signal.  The GSR signal was collected by the NeuSen W GSR Series Wireless GSR Acquisition System 
provided by Neuracle, and the collection electrode was adhered to the belly of the participants’ left index finger 
and middle finger. The sampling frequency was also 1000 Hz and data were recorded in a “bdf ” file.

Eye track signals.  The oculomotor signal was collected by Tobbi Glasses 2, which can be configured accord-
ing to the participant’s desired visual correction, thus ensuring that the participant has normal or corrected vision 
at the time of the experiment. The participant wore an oculomotor, and the raw data collected by the oculomotor 
contained time-stamped information, visual fall point, eye position, pupil diameter, etc. The sampling frequency 
was 100 Hz and data were recorded in a “ttgp” file.

Fig. 6  Location of EEG electrodes. 59 electrode locations shown.
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Data Records
Data recording and storage.  In this section, we will clarify the storage organization of MPDB dataset, 
which is publicly accessible in Figshare, including raw dataset77, preprocessed dataset78, and eye tracking dataset79. 
The raw dataset contains physiological data of 35 subjects driving for 2 hours each, and the preprocessed dataset 
contains physiological data samples of the driving behaviour of 35 subjects.

Raw dataset storage.  The organization of the dataset folder is shown in Table 3. The directory of each subject 
includes data from four experiments, and each experiment corresponds to different behaviors, namely, deceler-
ation, acceleration, turning, and lane change. Therefore, the {event} field of the filename should be replaced with 
{brake, turn, throttle, change} when obtaining the data of different behaviors, as shown in the “Raw Dataset” 
section in Table 3. You can frame and prerprocess the raw data according to your own needs.

Preprocessed dataset storage.  After all, we have uploaded the raw dataset and the preprocessed dataset to the 
publicly accessible repository of figshare. In the preprocessed dataset, the behaviour samples of each subject are 
combined into a file. These samples include five types of behaviors, and the event types in each behaviour are 
shown in the Table 2. Readers can find these event types in “EEG.events.type” of the EEG structure when using 
MATLAB to read the datasets. Since EEG and ECG were collected through the same wireless transmission 
device, the two were separated during preprocessing and the raw data were organized by subject number. For 
each modality, all behavioural data from each subject were combined into one data file and named using the 
corresponding modality and subject number, as shown in the “Preprocessed Dataset” section in Table 3.

Technical Validation
In this section, we prove the validity of the dataset. According to the convention of physiological data validation 
and the experiment, we consider the following three aspects80: whether physiological data can be used, whether 
vehicle parameters are correct, and whether there is a correlation between physiological data and driving behav-
iours. To this end, technical validation includes quality validation of physiological variables and vehicle param-
eters and correlation analysis of physiological variables and behaviours. In the last part, several classification 
models are used to effectively prove the validity of the data81.

Physiological data validation.  This part explains the availability and standard of the physiological data 
in this dataset. Each kind of physiological data was preprocessed before use, and the preprocessing method con-
formed to the specifications of physiological data preprocessing, which is described in detail below.

The technical validity of the physiological dataset is highly related to the equipment and acquisition speci-
fication process of the experiment. For example, whether the impedance is in a reasonable range, whether the 
data processing method is standardized, and so on. Table 4 demonstrates the parameters of the experimental 
equipment, and it is evident that its accuracy meets the needs of physiological signal acquisition.

For each physiological variable collected in the experiment, we drew their waveforms as time functions for 
verification. The overall results of each type of data for each subject are shown in Figs. 10–13.

EEG validation.  The EEG data for this dataset include 59 channels, the sampling frequency is 1 kHz, and the 
sample length of each behaviour is 2 s, so each frame contains 2000*59 sampling points.

Impedance validation.  EEG signals were collected by a head-worn device, so the hair of the participants affects 
the quality of the signal. In the preparation stage of the experiment, it is necessary to inject conductive paste into 
each electrode to ensure reliable contact with the scalp. Excessive impedance will reduce the quality of the signal 
and cause greater noise. During the test, we ensured that the impedance of each electrode was lower than 20 k Ω, 
and each experiment was carried out after confirming that the data waveform was normal.

Data preprocessing validation.  We preprocessed the raw EEG signal to suppress noise, remove artifacts, and 
extract useful information. The preprocessing steps mainly include bandpass filtering, enframing and artefact 
removal. According to the useful frequency band of the EEG signal, an IIR bandpass filter with a [0.5 Hz 40 Hz] 
pass band is used for filtering.

Take the corresponding time of each mark as the centre, we can select the [−0.5 s, 1.5 s] interval as the cor-
responding behaviour samples for the filtered data, which was based on the data partitioning method used in 
event-related potential experiments73. We provided this as a reference for technical validation, rather than a 
mandatory segmentation. Finally, ICA decomposition is performed on these behaviour samples to remove arte-
facts. EEGLAB will determine whether each independent component is a useful signal or a artifact based on sev-
eral objective indicators. We make a comprehensive judgment based on the recommendations of EEGLAB and 
typical artifact paradigms, including obvious eye movement artifacts, muscle movement artifacts and abnormal 
electrode artifacts82, as shown in Fig. 7. The EEG waveform is shown in Fig. 10. It contains 59 channels of valid 
data from five categories of driving behaviours. From the waveform, it can be observed that the EEG signals 
corresponding to each category of events meet the requirements, with no significant anomalies in the samples.

Physiological structure.  In order to analyze the physiological components of driving behaviors embodied in 
the EEG signals, we extracted the EEG time-frequency domain features of each driving behavior by using the 
short-time Fourier transform (STFT), and selected 500 ms before the event, 200 ms after the event and 1500 ms 
after the event as the three observed moments, as shown in Fig. 8. It can be seen from the figure that among the 
three events that caused the braking behavior, the driver’s EEG signal showed an increase in power at 200 ms, 
mainly in the parietal and temporal lobes.
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Statistical property validation.  We analyzed the statistical properties of the EEG data. The EEG power spectral 
densities under each event are shown in Table 5, which lists the average EEG power spectral densities PSD (dB/Hz)  
as well as the mean and standard deviation for all participants under each stimulus condition. The boxplot of 
EEG power spectra for different events is depicted in Fig. 9, which indicates that the power distribution of each 
group is essentially identical.

EMG, GSR and ECG validation.  The dataset also includes EMG, ECG and GSR signals, which can be regarded 
as discrete time series. The EMG signal consists of four channels with a sampling rate of 1 kHz, which were col-
lected on two arms and the right leg. The GSR and ECG both contain one channel with a sampling rate of 1 kHz. 
These three signals were all preprocessed to suppress noise and extract useful information. The preprocessing 
steps include bandpass filtering and removing bad samples. The range of bandpass filtering is selected as15,83 Hz 

Subject

Filename

Raw Dataset Preprocessed Dataset

EEG&ECG EMG GSR EEG EMG GSR ECG

1 1_{event}.set 1_{event}.set 1_{event}.set EEG_1.set EMG_1.set GSR_1.set ECG_1.set

2 2_{event}.set 2_{event}.set 2_{event}.set EEG_2.set EMG_2.set GSR_2.set ECG_2.set

3 3_{event}.set 3_{event}.set 3_{event}.set EEG_3.set EMG_3.set GSR_3.set ECG_3.set

4 4_{event}.set 4_{event}.set 4_{event}.set EEG_4.set EMG_4.set GSR_4.set ECG_4.set

5 5_{event}.set 5_{event}.set 5_{event}.set EEG_5.set EMG_5.set GSR_5.set ECG_5.set

6 6_{event}.set 6_{event}.set 6_{event}.set EEG_6.set EMG_6.set GSR_6.set ECG_6.set

7 7_{event}.set 7_{event}.set 7_{event}.set EEG_7.set EMG_7.set GSR_7.set ECG_7.set

8 8_{event}.set 8_{event}.set 8_{event}.set EEG_8.set EMG_8.set GSR_8.set ECG_8.set

9 9_{event}.set 9_{event}.set 9_{event}.set EEG_9.set EMG_9.set GSR_9.set ECG_9.set

10 10_{event}.set 10_{event}.set 10_{event}.set EEG_10.set EMG_10.set GSR_10.set ECG_10.set

11 11_{event}.set 11_{event}.set 11_{event}.set EEG_11.set EMG_11.set GSR_11.set ECG_11.set

12 12_{event}.set 12_{event}.set 12_{event}.set EEG_12.set EMG_12.set GSR_12.set ECG_12.set

13 13_{event}.set 13_{event}.set 13_{event}.set EEG_13.set EMG_13.set GSR_13.set ECG_13.set

14 14_{event}.set 14_{event}.set 14_{event}.set EEG_14.set EMG_14.set GSR_14.set ECG_14.set

15 15_{event}.set 15_{event}.set 15_{event}.set EEG_15.set EMG_15.set GSR_15.set ECG_15.set

16 16_{event}.set 16_{event}.set 16_{event}.set EEG_16.set EMG_16.set GSR_16.set ECG_16.set

17 17_{event}.set 17_{event}.set 17_{event}.set EEG_17.set EMG_17.set GSR_17.set ECG_17.set

18 18_{event}.set 18_{event}.set 18_{event}.set EEG_18.set EMG_18.set GSR_18.set ECG_18.set

19 19_{event}.set 19_{event}.set 19_{event}.set EEG_19.set EMG_19.set GSR_19.set ECG_19.set

20 20_{event}.set 20_{event}.set 20_{event}.set EEG_20.set EMG_20.set GSR_20.set ECG_20.set

21 21_{event}.set 21_{event}.set 21_{event}.set EEG_21.set EMG_21.set GSR_21.set ECG_21.set

22 22_{event}.set 22_{event}.set 22_{event}.set EEG_22.set EMG_22.set GSR_22.set ECG_22.set

23 23_{event}.set 23_{event}.set 23_{event}.set EEG_23.set EMG_23.set GSR_23.set ECG_23.set

24 24_{event}.set 24_{event}.set 24_{event}.set EEG_24.set EMG_24.set GSR_24.set ECG_24.set

25 25_{event}.set 25_{event}.set 25_{event}.set EEG_25.set EMG_25.set GSR_25.set ECG_25.set

26 26_{event}.set 26_{event}.set 26_{event}.set EEG_26.set EMG_26.set GSR_26.set ECG_26.set

27 27_{event}.set 27_{event}.set 27_{event}.set EEG_27.set EMG_27.set GSR_27.set ECG_27.set

28 28_{event}.set 28_{event}.set 28_{event}.set EEG_28.set EMG_28.set GSR_28.set ECG_28.set

29 29_{event}.set 29_{event}.set 29_{event}.set EEG_29.set EMG_29.set GSR_29.set ECG_29.set

30 30_{event}.set 30_{event}.set 30_{event}.set EEG_30.set EMG_30.set GSR_30.set ECG_30.set

31 31_{event}.set 31_{event}.set 31_{event}.set EEG_31.set EMG_31.set GSR_31.set ECG_31.set

32 32_{event}.set 32_{event}.set 32_{event}.set EEG_32.set EMG_32.set GSR_32.set ECG_32.set

33 33_{event}.set 33_{event}.set 33_{event}.set EEG_33.set EMG_33.set GSR_33.set ECG_33.set

34 34_{event}.set 34_{event}.set 34_{event}.set EEG_34.set EMG_34.set GSR_34.set ECG_34.set

35 35_{event}.set 35_{event}.set 35_{event}.set EEG_35.set EMG_35.set GSR_35.set ECG_35.set

Table 3.  The file names of the raw dataset and the preprocessed dataset.

Device Parameters

EEG CMRR:≥120 dB

EMG base noise: < 1uVrms

GSR CMRR:100 dB

Table 4.  Main parameters of the data acquisition equipments.
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Fig. 7  Three types of typical artifacts: (a) Eye blinks; (b) Eye movement; (c) Abnormal electrode artifact.

Fig. 8  Power spectral density of three braking events.
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for EMG, [0.01, 200] Hz for ECG, and [0.5, 100] Hz for GSR. The waveforms of the extracted valid EMG, GSR, 
and ECG data samples for each test are shown in Figs. 11–13.

ECG signals.  The ECG signal waveform of each epoch is shown in Fig. 11. For different subjects, the ECG of 
each subject must be normalized because the impedance conditions of the experiment may change. The heart 
rate in the figure is very normal and conforms to the parameter setting of the sensor.

GSR signals.  The GSR signal waveform of each epoch is shown in Fig. 12. It can be seen that there is no obvious 
abnormal fluctuation in the GSR signal.

EMG signals.  Figure 13 shows the waveform of EMG sigmals. When the muscles on the driver’s arms and legs 
produce actions, there will be an obvious fluctuation in the EMG waveform, such as when stepping on the brake 
or turning the steering wheel. The EMG signal has large noise interference, so we could extract enough obvious 
peaks as features.

The non-uniformity of fluctuations in EMG signals arises from the action potentials of different muscles 
during driving, e.g., the tibialis anterior muscle is more vigorous during pedal pressing and releasing, while the 
gastrocnemius muscle is relatively flat. For braking events, pressing the brake pedal urgently causes large observ-
able fluctuations in EMG signals in the legs. Each individual also does not react and maneuver in the experiment 
in exactly the same way, which is one reason for the different EMG signals. In addition, the last two channels of 
EMG are placed on the arm, and the intensity of the arm muscle action is different from that of the leg.

The above results show that the driving condition of the subjects remains stable most of the time, without 
excessive stress and stress state during simulated driving. In particular, only under the stimulation of some 
emergency braking events involved in this case will the signals change substantially.

Correlation analysis of physiology and driving behaviours.  Figures 14, 15 illustrates the Spearman correlation 
analysis between the five driving behaviors and the mean and variation of 64-channel physiological signals 
(EEG, EMG, GSR), with the correlations shown as heat maps ranging from −1 to 1.

Driving behaviour Stim Type Sample Size

EEG PSD

Mean Std

Deceleration

139 430 7.0314 0.3113

141 480 7.0792 0.3026

145 415 7.016 0.309

Turning
125 499 7.096 0.2849

127 503 7.0995 0.3007

Lane-change
129 864 7.3345 0.2727

131 901 7.3527 0.2919

Acceleration
137 768 7.2833 0.3112

143 734 7.2636 0.2998

Smooth driving 133 950 7.3757 0.3233

Table 5.  The statistical properties of the EEG power spectral densities.

Fig. 9  Box plots of EEG power spectra for different events.
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Eye tracking variable validation.  The eye tracker recorded the x and y coordinates of the subject’s gaze at each 
point in time during the driving experiment, which can show the focus of subjects’ attention. As we introduced, 
the dataset mainly includes five categories of driving behaviours. In each behaviour, we found that the gazing 
patterns are notable at the main objects that induce driving events. Furthermore, the gazing pattern is also clear 
at the motor board, where speed and rpm are shown. This indicates that the subjects are sensitive to the car’s 
speed. To show the result, we plotted subject 1’s eye movement data scatter diagram of each event, which is 
shown in Fig. 16. The scatter diagram shows that the scatter points are concentrated in the centre of the event, 
and the driving state of the subjects in the experiment is normal and without distraction. Therefore, the data is 
effective.

Validation of main vehicle parameters.  Simulated driving environment.  The simulated driving envi-
ronment in this experiment is close to the actual vehicle environment. The hardware system of the simulator 
includes an adjustable real car seat, steering wheel, safety belt and shift lever. The software system of the simulator 
includes a model of an actual road in Beijing, dashboard, and a vehicle parameter recording system. Therefore, 
the physiological data collected during the simulated driving experiments can reflect the characteristics of actual 
driving to a certain extent.

Vehicle parameter verification.  Vehicle parameters, such as speed, acceleration, accelerator pedal, brake pedal, 
engine speed, and gear position, are recorded by the simulator during the simulated driving test, which can 
directly reflect the driver’s behaviour. In the experiment, the subjects were asked to drive as smoothly as possible 
to avoid collisions to simulate the behaviour of real world driving as much as possible.

Fig. 10  EEG signals of each epoch for 8 channels, 5 events, and 20 sampled subjects. Each row represents an 
event, and each column represents a channel. The waveform of each sample is stable, and most signals of the 
same event have the same trend without obvious abnormal fluctuation.

Fig. 11  ECG signals of each epoch for all subjects. The waveform of the ECG shows a regular periodic peak, 
which indicates that the driving state is normal.
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To ensure the repeatability of the experiment and the applicability of the dataset across subjects, we set the 
same route for each subject in the experiment under the same case, and the trigger time and content of events 
on the route were the same in different trials. Therefore, it can be concluded that the vehicle parameters of each 
subject in each case should show the same trend.

The curve of vehicle parameters changing with time is shown in Fig. 17. Each subfigure in Fig. 17 contains the 
curves of all 35 subjects, and each curve represents the time waveform of vehicle parameters during simulated 
driving. The figure shows that for each driving behaviour experiment, the trend of vehicle parameter data that 
changes with time has a strong similarity, which ensures the sameness of subject behaviour in each experiment. 
This shows that the behaviours of different subjects in the experiment are consistent, so the data obtained are 
repeated samples of five different types of behaviours. This ensures the repeatability of the sample and lays the 
foundation for subsequent analysis.

Correlation validation of physiological data, behaviour and event labels.  For this dataset, the 
most important point to prove is the correlation between physiological data and behaviour, that is, whether the 
physiological data contain the corresponding information of the driver’s behaviours. This section uses the col-
lected data and the behaviour tags to build a model to illustrate this correlation.

Quality control of information interaction synchronization.  Quality control of information interaction synchro-
nization. The time of event labels and physiological data must be synchronized. In the above, we introduced a 
method of data synchronization. The software and hardware system of the 51Sim-One driving simulator writes 
the events into the event storage area of the Neuracle data acquisition software through serial ports according to 
the preset event determination conditions. For example, we set the judgement area at the point where the subject 
can just see the turning sign. At this time, it is deemed that the stimulus point of turning time has occurred, and 
this event will be marked in the system. Each event mark has a timestamp and is stored with the dataset. We use 
these event marks to cut the data to obtain event sample frames (epochs). Through experimental analysis, the 
delay of USB serial communication is very low (approximately 10 ms). Synchronization between data and marks 
can be ensured, which is also the basis of correlation analysis.

Classification of physiological data.  Classification is a powerful illustration of data validity. We use the mark-
ers of vehicle parameters as data labels and physiological data as samples to train classifiers for classification 
tasks. If the data are valid, there should be commonalities between similar samples and differences between 
different samples. We first balanced the number of samples to ensure that the number for each category was 
roughly equal, divided the data into a training set, validation set and test set by 6:2:284. Specifically, we specified 
stratify = y to ensure that the proportions of different classes in the training and test sets are the same as in the 
original dataset, and finally used the following two models for classification.

Linear discriminant analysis.  Linear Discriminant Analysis (LDA)83 minimizes the distance between data of 
the same category and maximizes the distance between data of different categories through projection transfor-
mation of data; that is, it achieves the effect of dimension reduction and classification at the same time. To use 
LDA for the five classification tasks, the data must be reduced to no more than four dimensions. We combined 

Fig. 12  GSR signals of each epoch for all subjects. The GSR signals indicate the change in skin surface 
conductivity of the subjects.
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EEG and EMG data, trained an LDA classifier to reduce each sample to four dimensions, and then verified the 
performance of the classifier. The overall classification accuracy of the model is 35.1%.

EEGNet.  EEGNet is a compact EEG feature extraction convolution neural network with a deeply separable 
convolution structure. It has good generalization ability and performance in the case of limited data and can 
learn various interpretable features in a series of BCI tasks. After data preprocessing, we use EEGNet to classify 
the EEG epochs. We divided the training set and validation set for classification and used EEG data as samples 
and the mark generated by the simulator as labels. After all, the overall classification accuracy of the model is 

Fig. 14  Correlation heatmap of mean values of physiological signals and five driving behaviors.

Fig. 13  EMG signals of each epoch for all subjects and 4 channels. Channels 1,2-right calf, channels 3-4, arms. 
The signal response of channel 1 is the most obvious, which reflects the action of the subject when stepping on 
the pedal.
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49.8%. The results of the above two models show that the classification results of the two models are similar, 
which shows that there is indeed a correlation between samples and that it does not change with a change in the 
model.

The classification results show that the classification accuracy of the brake category is the highest, followed 
by throttle and changing_lanes, while the error rate of the turning and stable categories is higher. The reasons 
may be as follows:

	 1.	 For categories with high classification accuracy, throttle and brake involve the action of stepping on the 
accelerator and brake pedal, and their motion imagination characteristics may be quite obvious; thus, their 
sample characteristics are obvious, and the classification accuracy is much higher.

	 2.	 For categories with low classification accuracy, turning and stability, the main reason is the similarity 
and fuzziness between behaviours. Specifically, turning is easily misjudged as changing lanes because the 
driving actions of the two behaviours are similar, and the reason why the turn is misjudged as throttle may 
be that the accelerator pedal is pressed after turning; thus, the actions on the arm during turning and lane 
changing are not obvious.

	 3.	 The stable category that we designed to work as the control group tends to be misjudged as many other 
categories, especially turning, changing lanes and throttle, possibly because the throttle pedal is pressed 
under normal driving conditions, and the differences are not obvious.

Validation of multimodal data.  To improve the resolution of EEG signals, we use multimodal data(e.g. com-
bining EEG with EMG and ECG) as an assistant. Multimodal data actually promote EEG data to a higher 
dimension. Although compared with the 59 effective channels of EEG signals, EMG has only 4 channels, the 
behavioural information provided by EMG is crucial.

Multimodal physiological Net(MMPNet).  MMPNet is a neural network model specially designed for multi-
modal physiological data, and its structure is shown in Fig. 2. The overall classification accuracy of the MMPNet 
model under multimodal data is 62.6%, while the accuracy of MMPNet model using EEG only is 55.7%, and the 
confusion matrices are shown in Fig. 18.

Fig. 15  Correlation heatmap of variation values of physiological signals and five driving behaviors.

Fig. 16  Subject 1’s Eye tracking: The scatter points are concentrated in the centre of the event, which indicates 
that the driving state is normal and without distraction.
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EEGNet.  The overall classification accuracy of EEGNet model under multimodal data is 55%, which is signif-
icantly improved compared with 49.8% of the single-mode data.

Overall, the classification accuracy of several models is shown in Table 6. It can be seen that the classification 
performance of MMPNet exceeds that of the baseline model EEGNet. The performance comparison of MMPNet 
model between multimodal data and EEG data shows that the classification accuracy of multimodal data is sig-
nificantly improved compared with that of single mode data (p = 1.2956 × 10−9).

The results show that the accuracy of the model is improved to a certain extent by multimodal data. 
Compared with the situation where only single mode data are used, EMG provides information on the driver’s 
arm and leg movements, which makes it easy to distinguish between the three behaviours of acceleration, turn-
ing and stability that were easily confused before due to the differences in pedal and steering wheel movements.

We adopt a strategy to demonstrate the effectiveness of the above classification results, which involves add-
ing additive Gaussian noise with a mean of zero and a gradually increasing variance to the data. Figure 19 
illustrates the variation of the performance of the three models for different noise powers. It can be seen that as 
the variance of additive Gaussian noise increases, the classification performance will deteriorate. It can be seen 
that when the power of noise exceeds a certain limit, the classification results of the model will be very close to 

Fig. 17  Vehicle parameters. (a) Velocity(m/s): the average speed is about 60 km/h, which is meeting the speed limit 
standard of urban roads with center lines. (b) Throttle pedal: for each driver, the acceleration signal is very strong 
at the beginning of driving, and then decreases until the vehicle speed approaches the speed limit. (c) x-position: 
when different subjects are driving, the change of vehicle position over time is almost the same, which ensures that 
the pre-designed events on the route are triggered in turn.

a b

Fig. 18  The performance comparison of MMPNet model between multimodal data and EEG data shows that 
the classification accuracy of multimodal data is significantly improved compared with that of single mode data 
(p = 1.2956 × 10−9). (a) Multimodal data. (b) EEG Only.
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completely random. Hence, we can clearly see that the physiological data has strong separability, which reflects 
the high quality of the data.

Usage Notes
The original data and preprocessed data of multimodal physiological signals can be downloaded from Figshare. 
Users interested in the dataset can register on the website and download the dataset locally. The original dataset 
and the preprocessed dataset are named as “Driving behaviour multimodal human factors original dataset” and 
“Driving behaviour multimodal human factors preprocessed dataset”, respectively.

After the dataset is downloaded, users can process EEG through MATLAB’s EEGLAB plug-in. We recom-
mend that researchers use EEGLAB version 2021 and MATLAB R2021b on Windows 10 or Linux. EEGLAB can 
help complete EEG preprocessing steps such as filtering, segmentation and ICA. The code for batch preprocess-
ing of EEG signals will also be provided in “Code availability”. The file formats of EMG, GSR and ECG signals 
are consistent with those of the EEG signals, which can also be imported and processed through MATLAB. The 
batch preprocessing codes of EMG, GSR and ECG signals will also be provided in “Code availability”.

Additionally, we suggest the following data processing steps:

•	 Download the dataset from the above website and save it locally. Record the save path.
•	 Check whether the dataset is complete. Each raw data point consists of two parts, namely “data. bdf ” and “evt. 

bdf ”.
•	 Import the EEGLAB plug-in to MATLAB and load the dataset.
•	 Complete data preprocessing, including but not limited to filtering and segmentation.
•	 Further analysis and research can be performed using the preprocessed data.

Code availability
Readers can access the tutorials and code of our original and preprocessed datasets on Github (https://github.
com/zwqzwq0/MPDB). Two folders called preprocessing and classification can be found, which contain 
MATLAB code for preprocessing and python code for classification.
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