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The number of neutrons emitted from a nuclear reaction plays a crucial role in various fields, including 
nuclear theory, nuclear nonproliferation, nuclear energy and nuclear criticality safety. Accurate 
determination of neutron multiplicities requires the application of several corrections, with dead‑time 
correction and background subtraction being particularly significant. These corrections become more 
challenging for neutron detectors with time‑dependent neutron capture. In this work, we perform 
a comprehensive study of three existing methods used for dead‑time correction and background 
subtraction in neutron detectors with time‑dependent neutron capture. The methods were tested 
for dead‑times in the range from 0 to 1 μs using a Monte Carlo model simulating the dead‑time 
and background effects in the standard neutron multiplicity probability distribution of 252Cf. The 
previous methods showed larger than desired uncertainty or systematic trade off. Those uncertainties 
prompted the development of a novel approach using neural networks trained with data from 
Monte Carlo simulations. The Neural Network method enabled the correction of neutron multiplicity 
probabilities more accurately than the other methods with fractional errors smaller than 3% for 
multiplicities around the peak of 252Cf. A similar approach using neural networks could be applied to 
problems where the system being studied can be accurately simulated without having an accurate 
analytical description available. The neural network method presented in this paper can be easily 
expanded if multiplicities greater than 10 are expected.

The development of the first large liquid scintillator counter for neutron detection at the Los Alamos National 
Laboratory (LANL) made it possible to measure not only the average number of emitted neutrons but also the 
neutron multiplicity  probabilities1, i.e. the probability of emitting n neutrons ( Dn ). The first experiments using 
this detector to measure the neutron multiplicity probability distribution of various fissioning nuclides were 
reported by  Diven2 and  Hopkins3. In these experiments, a dead-time correction was introduced to account for 
a single pulse overlap, i.e. two events with a time difference smaller than the dead-time per event of the data 
acquisition electronics, which in their case was τ = 0.15 μs. The effect of the background on the neutron multiplic-
ity distribution was then corrected by solving a system of equations. The final neutron multiplicity distribution 
was obtained after correcting for the detector efficiency. However, as later found by  Moat4, the validity of Diven’s 
analytical method holds only for a small concentration of the neutron capture element loaded in the scintillator, 
low backgrounds and short dead-times. The larger the concentrations of neutron capture element loaded in the 
scintillator, the shorter the time window where neutrons are absorbed, increasing the overlap probability.  Moat4 
conducted a similar experiment with a dead-time of τ = 0.25 μs using their own simulation method to overcome 
the limitations of Diven’s analytical method. In a second paper by the same group,  Mather5 clarified that a Monte 
Carlo (MC) model was used to obtain a matrix that transforms the experimental into the real neutron multiplic-
ity probability distribution. A different formulation of the MC method was later introduced by  Ribrag6 where 
the background correction was performed with an analytical method and the dead-time correction with a MC 
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method similar to Moat’s method. In the work reported by  Jahnke7, each multiplicity is corrected individually 
using an average dead-time correction obtained from MC simulations.

The first to develop an analytical method to simultaneously correct for dead-time and background was 
 Boldeman8,9, where only a single overlap per detection gate was considered since the measured dead-time was 
small ( τ = 0.076 μs). The detection gate is defined as the time interval after the trigger event occurs where the 
acquisition channels of the electronics are open waiting for an event to be recorded. Diven’s method was improved 
by  Frehaut10, who included more than one overlap per detection gate in (n, 2n) and (n, 3n) cross section meas-
urements. Frehaut applied the background correction introduced by  Baron11 and then used an improved version 
of Diven’s  method2 for dead-time correction. The time distribution of neutron capture in liquid scintillators is 
a crucial part of the analytical methods for dead-time correction.  Parker12 explored in depth the parameters 
affecting the time distribution of neutron capture events in liquid scintillators for (n, 2n) cross section measure-
ments. A different formulation of the analytical method was introduced by  Spencer13 where the background 
and dead-time corrections are performed separately. First the background is unfolded by solving a system of 
equations.  Spencer14 initially used Frehaut’s  version10 of Diven’s  method2 to correct for the dead-time overlap 
and unfold the background. However, due to the limitations of these methods,  Spencer13 introduced a differ-
ent formulation for dead-time correction following the work of  Ribrag6. The dead-time correction in Spencer’s 
method involves several integrals to calculate each element of the correction matrix and then solve the resulting 
system of equations.

The next generation of large liquid scintillator detectors designed for neutron multiplicity measurements 
exhibit longer electronics dead-times due to the use of digitizers for data acquisition, with τ = 0.3 μs for the 
detector used by  Dushin15 and τ = 0.9 μs for the NeutronSTARS detector used by  Akindele16. As anticipated, 
the analytical method proposed by  Diven2 is inadequate when dealing with a dead-time of τ = 0.9 μs. However, 
 Dushin15 successfully employed the MC method introduced by  Moat4 to perform the dead-time correction for 
τ = 0.3 μs. Ideally, the electronics dead-time should be kept as short as possible. In the case of NeutronSTARS, 
the expected dead-time from vendor’s specifications was around 0.120 μs. However, the measured dead-time 
was found to be much longer, on the order of 0.9 μs.

Inevitably, we are faced with the questions of whether those methods present accurate results for dead-times 
as long as τ = 1.0 μs, and if not, what is the maximum dead-time threshold where the analytical methods and the 
MC method begin to fail. Additionally, we aim to explore the feasibility of an alternative approach to correct the 
neutron multiplicity probability distribution impacted by dead-time and background effects. This paper provides 
a comprehensive overview of three methods used for dead-time correction and background subtraction and 
introduces a promising alternative in the form of a MC-trained neural network (NN). The NN is trained using 
data generated from a MC simulation based on the characteristics of the NeutronSTARS large liquid scintilla-
tor  detector16. The NeutronSTARS detector is used as a comparison reference in this manuscript. However, the 
results here presented are applicable to all detectors with a time dependent event distribution in the detection 
gate like for example the BF3 detector assembly from the work of  Lees20.

Results and discussion
In this study, we delved into the complexities of dead-time correction and background subtraction methods 
used in neutron multiplicity measurements. We conducted Monte Carlo simulations to evaluate the impact 
of dead-time overlaps in the case of neutron detectors with time-dependent neutron capture. Using the 252 Cf 
standard neutron multiplicity distribution from the work of  Santi17 and the characteristics of the NeutronSTARS 
 array16, our investigations revealed that at a dead-time of τ = 1µs nearly 29% of triggers resulted in the loss of 
one neutron, while 5% lost two, underscoring the critical importance of using an accurate dead-time correction 
technique (Fig. 2).

Upon scrutinizing Boldeman’s analytical  method9, limitations surfaced particularly from τ = 0.2µs onward. 
Through extensive iterations, a significant degeneracy was revealed, rendering Boldeman’s analytical method 
impractical for dead-times approaching a few hundred  nanoseconds4. This degeneracy, vividly illustrated in 
Fig. 3, led to substantial uncertainties from a dead-time of τ = 0.2µs and higher, where absolute errors exceeded 
0.4 for all multiplicities, resulting in fractional errors of more than 100%. The standard deviation of the errors 
for multiplicities 4, 5 and 6 is more than 0.1 at τ = 0.9µs (Fig. 1), equivalent to fractional errors ranging from 
30% to more than 100% respectively. We also tested the analytical method introduced by  Spencer13. Spencer’s 
integral method presents a smaller degeneracy and the standard deviation of the errors for multiplicities 4, 5 and 
6 exceeds 0.02 at τ = 0.9µs (Fig. 1), equivalent to fractional errors ranging from 7% to around 29% respectively.

Our exploration extended to Moat’s MC method, unveiling a linear growth in errors with increasing dead-
times. Although free from degeneracy, this method introduced fractional errors of around 15% for multiplicity 
2 and 7% for multiplicity 4 at τ = 0.9µs (Fig. 1). It also presented the largest error in the average number of 
neutrons per detection gate ν̄ , around 2.4%. Embracing advanced computational techniques, the NN approach 
emerged as a promising method for enhanced accuracy. Trained on MC data based on the NeutronSTARS 
characteristics, the NN method demonstrated exceptional resilience with mean errors consistently below 0.005 
at τ = 0.9µs (Fig. 1), equivalent to fractional errors smaller than 2% for multiplicities 3, 4 and 5. This approach 
also presented the smallest error in the average number of neutrons per detection gate, showcasing its potential 
in enhancing the accuracy of neutron multiplicity measurements.

In the subsequent sections, we delve deeper into each aspect of our findings, elucidating the complexities of 
dead-time overlap effects, the limitations of currently available methods, and the benefits of the innovative MC-
trained NN method. The results refine our understanding of the corrections involved in neutron multiplicity 
measurements, offering valuable insights for future experimental endeavors.
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Figure 1.  Comparing correction methods at 0.9 µ s  dead-time. The standard 252 Cf multiplicity probability 
 distribution17 was used to sample the multiplicity 105 times in a detection gate of 60µ s duration, with time 
distribution and background rate from the NeutronSTARS  detector16. The MC simulation was repeated to 
generate the simulated observed data which was then corrected using four different methods. Each plot contains 
the initial 252 Cf multiplicity distribution in black squares and the results in red circles, with an underneath plot 
containing the error of each method: a Boldeman’s; b Spencer’s; c Moat’s; and, d this work’s method. The error 
bars are the standard deviation of the results from the many MC repetitions. The dashed (Initial distribution) 
and dotted lines (Results) are the average number of neutrons emitted per detection gate ν̄.
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Figure 2.  Dead-time overlap effect. The probability per detection gate of one or more overlaps were simulated 
for different dead-times. The standard 252 Cf multiplicity probability  distribution17 was used to sample the 
multiplicity in a detection gate of 60µ s duration, with time distribution and background rate from the 
NeutronSTARS  detector16. The results only include neutron-neutron and neutron-background overlaps since we 
are interested in how many real events are lost.
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Dead‑time overlap effect
In this work we only consider systems of the “nonparalyzable” type, that is a pulse occurring during the dead-time 
of the previous one does not introduce additional dead-time. In the past six years our group performed several 
experiments using the large liquid scintillator detector array  NeutronSTARS16. A MC model was developed in 
C++ to gain insight into the number of lost events resulting from dead-time overlaps using this detector.

Trigger events were generated, and for each trigger the multiplicity was sampled from the standard multi-
plicity probability distribution of 252 Cf reported by  Santi17. Random seeds were utilized to initialize all random 
variates. The neutron multiplicity was generated using the inverse transform method, while the time of each event 
was generated using the Accept-Reject  method18. The time of each neutron event was sampled from the time 
distribution shown in Fig. 8, and a detection efficiency of 100% was used. As shown in Eqs. (9), (10) and (11), 
the dead-time overlap probability do not depend on the detection efficiency. A lower efficiency would shift the 
multiplicity distribution towards lower multiplicities reducing the effect of dead-time overlap. For each trigger 
the multiplicity and time of the background events were sampled considering a typical rate for NeutronSTARS 
of 20 kHz in a detection window of 60 µ s. Then, a time difference matrix was generated for each given trigger 
with the time difference between all available neutron and background events. The dead-time overlap followed 
a simple selection rule where if the time difference is smaller than τ = 0.9 µ s, the event was rejected and the 
number of overlaps incremented. Only neutron-neutron and neutron-background overlaps were included in 
the overlap probability calculation since the background-background overlap does not contribute to the loss 
of real neutron events. A distinction is made between a reaction or fission neutron event, and a background 
event because they have different time distributions within the detection gate. Figure 2 shows the probability 
per trigger event of up to 4 overlaps for dead-times up to 1 µ s. One overlap means that one neutron was lost 
during the detection gate, and four overlaps means that four neutrons were lost during the detection gate. At τ 
= 1 µ s almost 29% of the triggers lose one neutron and 5% lose two neutrons for the 252 Cf neutron multiplicity 
distribution. Different from what was assumed by  Lott19, for systems of the non-paralyzable type, the dead-time 
overlap probability does not depend on the reaction rate. The dead-time overlap probability depends on three 
factors: the dead-time per event of the acquisition electronics, the duration of the detection window, and the 
neutron capture time distribution of the detector.

Boldeman’s analytical method
Boldeman’s method is described in the Methods section “Boldeman’s analytical method”. The implementation 
of this method and the MC model used to test it are described in the Methods section “Implementation of 
Boldeman’s method” and “Monte Carlo model to test Boldeman’s method’. Boldeman’s method was tested with 
a MC-generated data that simulates the observed data for the 252 Cf standard  distribution17. We found that, for 
each MC example we obtained a very different output from the solver developed for Boldeman’s method. After 
repeating this process several times we obtained a Gaussian probability distribution for each multiplicity that 
should reflect the statistical variation of the MC simulation. The standard deviation and mean values for each 
multiplicity are shown in Fig. 1 in comparison with the true multiplicity probability distribution. The results 
clearly show a degeneracy behavior much larger than the expected statistical variation from the MC simulation 
which is repeated 105 times. This observation is consistent with Moat’s  findings4, where it was emphasized that 
Diven’s analytical method, a purely analytical method like Boldeman’s, becomes impractical when dealing with 
dead-times larger than a few hundred nanoseconds.

We conducted additional simulations varying the dead-time values in the range of 0 to 1 µ s to identify the 
point at which Boldeman’s method exhibits degeneracy. We recorded the error of each multiplicity defined as the 
difference between the calculated value and the true value. The results indicate that at an approximate dead-time 
of τ = 0.2 µ s, certain multiplicities become highly uncertain, with absolute errors exceeding 0.4, equivalent to 
fractional errors of more than 100% for all multiplicities.

Figure 3.  Degeneracy of results from Boldeman’s method. The errors with respect to the initial multiplicity 
probability values are displayed for several MC repetitions for multiplicities ranging from 0 to 10. For more 
details see Fig. 1.
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The scatter plot in Fig. 3 provides a visual representation of the point at which the solver’s results start to 
exhibit degeneracy. However, it does not provide specific quantitative error values for each multiplicity. To gain 
a deeper understanding of the behavior of each multiplicity within the context of a standard 252 Cf multiplicity 
distribution, we divided the X-axis into 20 equally sized bins of 0.05µ s each and used a Gaussian function to 
fit the projection along the Y-axis for each dead-time bin. The standard deviation and mean value of the errors 
were plotted as a function of the dead-time bin center for multiplicities ranging from 3 to 6 in Fig. 4. To obtain 
a clear picture of this result, it is important to also consider the fractional error defined as the ratio between 
the error and the true value, which for multiplicities 3, 4, 5 and 6 is around ± 15%, ± 33%, ± 105%, and ± 230% 
respectively at τ = 0.9 µs.

The analysis described in this section was also performed using single overlap equations (6) and (7) instead 
of double overlap equations (12) and (13). The results shown here in Figs. 1, 3 and 4 remained unchanged, which 
demonstrates that the degeneracy observed is not due to the double overlap terms added in equations 12 and 
13 but rather due to inaccuracies in the single overlap terms. It is not clear why the mathematical solution for 
the system of equations become so degenerate. There is clearly a statistical variation in the simulated observed 
multiplicity probabilities due to the limited number of stories, 105 . However, we can infer that this analytical 
method do not reflect the complexity of the system for longer dead-times when more terms become important 
for the solution.

It is crucial to highlight the distinction: while our analysis employs MC simulations to generate multiple 
datasets for a given input multiplicity distribution, an actual experiment yields just one dataset per input multi-
plicity distribution. When applying Boldeman’s analytical method to this singular dataset from a real experiment, 
there is a 68% probability that the solution obtained will fall within the error bars depicted in Fig. 1, leading to 
an unacceptably large uncertainty.

The errors observed in Fig. 1 generate a 1.14% mean error in the average number of neutrons per detection 
gate calculated with ν̄ =

∑

nDn . The average number of neutrons emitted per detection gate is 3.757 for 252 Cf 
from the work of  Santi17 and 3.80(3) if using Boldeman’s method. This result indicates that the degeneracy 
observed in Boldeman’s method has a small effect in ν̄ , and the errors somehow compensate each other when 
calculating ν̄.

Spencer’s integral method
After correcting for the background, the MC-generated data were corrected for dead-time overlap by solving the 
system of equations (16) described in the Methods section “Spencer’s integral method”. This process was repeated 
for ten different dead-times. For each dead-time value, 103 MC examples were used to test Spencer’s method. The 
distribution of errors for each multiplicity probability was fit with a Gaussian function and the mean value with 
standard deviation for multiplicities 3, 4, 5 and 6 are shown in Fig. 5. The results clearly show a mild degeneracy 
growing with dead-time impacting the higher multiplicities more than the lower ones. Therefore, the analytical 
description provided by this method despite being more accurate than Boldeman’s method, do not reflect the 
whole complexity of the problem, and again the solution of the system of equations become degenerate. The 
fractional errors for multiplicities 3, 4, 5 and 6 are around ± 7%, ± 7%, ± 13%, and ± 60% respectively at τ = 0.9 µs.

The errors observed in Fig. 1 generate a 0.9% mean error in the average number of neutrons per detection 
gate calculated with ν̄ =

∑

nDn . The average number of neutrons emitted per detection gate is 3.757 for 252 Cf 
from the work of  Santi17 and 3.791(7) if using Spencer’s method. This result seems to indicate that the degeneracy 
observed in Spencer’s method do not affect ν̄ and is somehow compensated. This compensation ends up masking 
the errors of this method if one is only interested in determining ν̄.

Moat’s MC method
Moat’s method is described in the Methods section “Moat’s MC method”. Similar to the other methods, a MC-
generated data was used to test Moat’s method. The method was tested for different dead-times in the range 0.05 
to 1.0 µ s. The error distribution of each neutron multiplicity probability was fit with a Gaussian function. The 
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Figure 4.  Errors from Boldeman’s method. Figure 3 was divided in 20 dead-time bins, the mean value 
and standard deviation resulting from the Gaussian fit of the Y-axis projection for each dead-time bin was 
plotted. Panels (a), (b), (c), and (d) correspond to neutron multiplicities 3, 4, 5, and 6, respectively, providing a 
comprehensive view of the data’s variability. For more details please refer to text.
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mean value and standard deviation of the Gaussian fit for multiplicities 2, 3, 4 and 5 are shown in Fig. 6. The mean 
fractional errors for multiplicities 2, 3, 4, and 5 are around 18%, 4%, −8% , and −9% respectively at τ = 0.9 µs.

The results of Moat’s method do not present degeneracy as the results of Boldeman’s and Spencer’s methods. 
However, the errors of the neutron multiplicity probabilities from the true values grow linearly as a function of 
the dead-time. These trends show that the corrected distribution is being shifted to the left as the dead-time gets 
longer. The error of multiplicities 2 and 3 get more negative because they are on the left side of the peak center 
and the error in multiplicities 4 and 5 get more positive because they are on the right side of the peak center. If 
the multiplicity distribution is shifting to the left, this means that the correction is smaller than needed and the 
method is missing something.

The errors observed in Fig. 1 generate a 2.4% error in the average number of neutrons per detection gate 
calculated with ν̄ =

∑

nDn . The average number of neutrons emitted per detection gate is 3.757 for 252 Cf from 
the work of  Santi17 and 3.667(5) if using Moat’s method.

The NN method
The NN method proposed in this work is described in the Methods section “The NN method”. The MC-generated 
data was used to test the NN method for different dead-times in the range 0.05 to 1.0 µ s. The error distribution 
of each neutron multiplicity probability was fit with a Gaussian function. The mean value and standard deviation 
of the Gaussian fit for multiplicities 3, 4, 5 and 6 are shown in Fig. 7. The fractional errors for multiplicities 3, 4, 
5 and 6 are around ± 1.5%, 3%, ± 2%, and ± 5% respectively at τ = 0.9 µs.

The NN was trained with Gaussian and skewed Gaussian multiplicity probability distributions with different 
shapes covering a broad range of possible distributions with different mean values. Due to the random initializa-
tion of weights and the random division of training and testing examples, multiple networks can be obtained 
for the same training dataset. To account for this statistical variation, we trained the NN 100 times, resulting 
in an ensemble of 100 NNs. For each multiplicity, the probability distribution obtained from the ensemble was 
fit with a Gaussian function. The mean value and standard deviation of each Gaussian fit are shown in Fig. 1, 
along with the true neutron multiplicity probability distribution of 252 Cf from the work of  Santi17 and the error 
from the true values.

The mean errors observed in Fig. 1 are consistently smaller than 0.005, equivalent to fractional errors smaller 
than 2% for multiplicities 3 and 5, and generate a 0.5% error in the average number of neutrons per detection 
gate calculated with ν̄ =

∑

nDn . The average number of neutrons emitted per detection gate is 3.757 in the case 
of 252 Cf from the work of  Santi17 and 3.775(49) if using the NN method. Notably, the neural network exhibits a 
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higher degree of resilience toward statistical variations when compared to both Boldeman’s and Moat’s methods. 
This finding highlights a key advantage of using NNs, namely the ability to generalize. The effectiveness of NN 
generalization relies heavily on the quality and diversity of its training data. The training data must include all 
possible expected multiplicity distributions. In the case of our training dataset, it included all possible Gaussian 
and skewed Gaussian distributions with perturbations of ±10% for each multiplicity probability in the studied 
multiplicity range. It also included narrow Gaussians which is the equivalent of a single multiplicity. Therefore, 
if the expected multiplicity distribution differs from a Gaussian, or skewed Gaussian, e.g. two peaks, the neural 
network may fail in unfolding it. This problem can be easily solved by training the neural network with distribu-
tions like the expected. This increases the robustness of the method since the training data comes from Monte 
Carlo simulations that can be easily multiplied.

Conclusion
This work demonstrates the successful application of a method using neural networks for dead-time correction 
and background subtraction for detectors with time-dependent neutron capture. In this work, we reviewed 
and tested three other methods available in the literature for different dead-times. While Boldeman’s analytical 
method proved effective for dead-times below 0.2 µ s, for larger dead-times it becomes degenerate, resulting in 
fractional errors of more than 100% for all multiplicities. Spencer’s integral method demonstrates a mild degen-
eracy that grows with dead-time resulting in fractional errors of more than 7% for all multiplicities. Although 
Moat’s method yields a more accurate result compared to Boldeman’s, it shifts the multiplicity distribution 
towards lower multiplicities as the dead-time gets longer. The NN method is more accurate and precise than 
any of the three methods studied in this work. An example is given using the neutron multiplicity probability 
distribution of 252Cf, where the average number of neutrons per detection gate resulting from Moat’s method 
has an error of 2.4% from the true value while the result from the NN method has an error of 0.5% from the true 
value. In fact, the principle of the NN method described in this work can be applied to any physics problem where 
one is confident that the system studied can be simulated without being able to analytically describe the system 
accurately. In addition, the NN method can be easily modified if multiplicities greater than 10 or if multiplicity 
distributions different from gaussian and skewed gaussians are expected. In this paper, we have developed and 
successfully demonstrated a novel approach using neural networks trained with data from a MC model that 
simulates the dead-time and background effects. The neural network corrects the measured neutron multiplicity 
probability distribution for background and dead-time overlap all at once. This approach can now be broadly 
applied to all experiments measuring multiplicity probabilities utilizing detectors with time-dependent events 
in the detection gate.

Methods
Time distribution of neutrons captured in gadolinium‑loaded liquid scintillators
The dead-time correction depends primarily on the neutron capture time distribution. Therefore, it is important 
to understand this process and the equation describing the time distribution. To be absorbed by a gadolinium 
loaded liquid scintillator the neutron needs to be moderated to a thermal energy (G) typically on the order of 
0.05 to 0.1  eV12. The probability that a neutron moderated to an energy G becomes absorbed in the time range 
( t ′ , t ′+dt′ ) is given by equation (1), where t ′ is the time measured from the trigger reference point and dt′ is 
an infinitesimal increment of time. The reference point can be the fission fragments in the case of a fissioning 
nucleus, or the prompt γ-rays coming from a nuclear  reaction21.

where k is the probability that the neutron will eventually be captured in the gadolinium, β is a “slowing down” 
parameter which depends mainly on the actual amount of the loading material present in the liquid scintillator 

(1)kh(t′)dt′ = kdt′
∫ t′

0

βg(t) e−β(t′−t)dt,
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Figure 7.  Errors from NN’s method. The mean value and standard deviation resulting from the Gaussian fit of 
the error distribution for ten different dead-times was plotted. Panels (a), (b), (c), and (d) correspond to neutron 
multiplicities 3, 4, 5, and 6, respectively. For more details please refer to text.
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and g(t) is a probability density representing the neutron thermalization time and subsequent capture time of 
the form

where the reciprocal of � is a “slowing down” parameter, with 2/� being the mean time for neutrons to become 
moderated to G, and g(t)dt is the probability that a neutron is moderated to energy G in a time interval (t, t + dt ). 
Substituting eq. 2 into eq. 1 gives

After solving the integral in equation (3) we obtain

The resulting curve from fitting the time distribution measured by  Akindele16 using equation (4) is shown in 
Fig. 8. Equation (4) gives the best analytical representation of the capture time distribution in a gadolinium 
loaded liquid scintillator. If a neutron detector with different capture element has a different time dependent 
capture distribution e.g. Poisson, Gaussian or any other, the results may differ a little bit depending on the 
resulting overlap probability, which is what mostly affects our results. The overlap probability depends on the 
integral of the square of the the normalized capture time distribution. Therefore, the smaller the width of the time 
distribution, the larger the overlap probability. Our results demonstrate that the larger the overlap probability, 
the worst all available methods perform.

Finally, the normalized time distribution f(t) is given by

where T is the detection gate time length.

Boldeman’s analytical method
The dead-time correction for neutron multiplicity counters introduced by  Dytlewski22 and further expanded 
by  Croft23 does not apply to a liquid scintillator because the neutron capture temporal distribution of a liquid 
scintillator is not constant in time. The equations to correct the neutron multiplicity probability distribution for 
a single overlap per detection gate in Boldeman’s method are described in the work of  Boldeman8,9.

If F ′l  is the probability per reaction of recording l pulses during the neutron counting gate, B′x the probability 
of recording x background pulses during the background counting gate, Dx and Bx are the real probabilities of 
occurrence of x neutron pulses during the neutron counting gate and x background pulses during the background 
counting gate respectively, the following equations may be written as

(2)g(t) = �
2t e−�t

,

(3)h(t′) = β�2 e−βt′
∫ t′

0

t e(β−�)tdt.

(4)h(t′) =
β�2

(β − �)2
( e�t

′

[(β − �)t′ − 1] + e−βt′).

(5)f (t) = h(t)

[
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0

h(t′)dt′
]−1

,
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l
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Figure 8.  Neutron capture time distribution. The neutron capture time distribution for a gadolinium loaded 
liquid scintillator was obtained by fitting the experimental time distribution reported by  Akindele16 using 
equation (4).
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where knn is the probability that two neutron pulses, occurring during the neutron counting gate, overlap and 
appear as one pulse; knb is the probability that one neutron and one background pulse overlap; kbb is the probabil-
ity that two background pulses overlap; and, X CY is the combination probability of selecting Y items out of  X2,10,

The overlap probabilities can be written as

where τ is the dead-time, and T is the duration of the detection gate.
Note that equations (6) and (7) account only for the probability of a single overlap per detection gate. The 

dead-time measured by  Boldeman9 is approximately 70 ns. Since the dead-time for the NeutronSTARS detector 
is more than ten times longer, we extended equations (6) and (7) to include two overlaps per detection gate:

where the overlap probabilities knnn = k2nn , knnb =
3
4
knnknb , knbb = 3

4
knbkbb , and kbbb = 3

4
k2bb are the probabilities 

per detection gate of one event overlapping with two other events. The overlap probabilities k2nn = k2nn 4 C2/2! , 
k2nb = k2nb 

4 C2/2! , k2bb = k2bb 
4 C2/2! , knn,nb = knnknb 4 C2/2! , and knb,bb = knbkbb 4 C2/2! are the probabilities 

of two separate overlaps.

Implementation of Boldeman’s method
Equations (12) and (13) were implemented in C++ as an array of functions set to zero. The implementation 
consisted of 20 B′x functions and 15 F ′l  functions covering the intervals B0 to B19 and D0 to D14 . In order to ensure 
the number of equations is equal to the number of variables, adjustments were made to the last but one equation 
of B′x and F ′l  . Specifically, the multiplicity probabilities D15 and B20 were assumed to be zero and were removed 
from both system of equations. Additionally, in the last equation of B′x and F ′l  systems of equations, the terms 
containing D15 , B20 , D16 and B21 were omitted. Indeed, the multiplicity probabilities D15 and D16 are zero in the 
case of 252 Cf as shown in Fig. 1, and the multiplicity probabilities B20 and B21 are zero for a background rate of 
20 kHz in a detection window of 60 µs.

The two systems of equations, B′x and F ′l  , are solved independently using  ROOT24. The first system, B′x , is 
solved to obtain the probabilities Bx , while the second system, F ′l  , is solved to obtain the probabilities Dx . Each 
system of equations is wrapped using ROOT::Math::WrappedParamFunction with the corresponding parameters: 
B′x , F ′l  , the overlap probabilities, and the probabilities Bx obtained from the B′x system of equations. The wrapped 
functions are then added to a ROOT::Math::GSLMultiRootFinder object, enabling the separate solution of each 
system of equations for the probabilities Bx and Dx.

Monte Carlo model to test Boldeman’s method
The experimentally measured multiplicity probabilities B′x , F ′l  and the overlap probabilities were generated with 
a MC model that simulates the data acquisition process including the background and the dead-time overlap 
effects in the measured multiplicity probability distribution. The MC receives as inputs the real multiplicity 
probability distribution, the time distribution of neutron capture, the background rate, the detection gate dura-
tion and the dead-time.

Analogous to the section “dead-time overlap effect”, the neutron multiplicity was sampled from the standard 
neutron multiplicity probability distribution of 252 Cf from the work of  Santi17, and the time of each event was 
sampled from the time distribution shown in Fig. 8. A time difference matrix was then generated for each given 
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detection window with the time difference between all available neutron and background events. The dead-time 
overlap followed a simple selection rule where if the time difference is smaller than τ = 0.9 µ s, the event with a 
longer time was rejected. Each iteration corresponds to a detection gate and is referred to as a “run”. A set of 105 
runs is considered as one output containing the neutron multiplicity distribution simulating the experimental 
distribution. By performing the Monte Carlo simulation 103 times, we generated 103 outputs-equivalent to 103 
simulated experimental distributions, each sharing identical input parameters. The simulated data were then 
given to the solver for Boldeman’s method. The results from the solver for each individual multiplicity had a 
distribution due to the MC statistical variation. Each multiplicity was fit with a Gaussian function, and the mean 
value and standard deviation of the resulting fit were recorded. These were the inputs used in the Monte Carlo 
model: Multiplicity probability distribution of 252 Cf reported by  Santi17; Time distribution of neutron capture 
measured by  Akindele16; Background rate of 20 kHz from previous experiments using NeutronSTARS; Detection 
gate length of 60 µ s; and, dead-time of 0.9 µs.

Spencer’s integral method
In Spencer’s  work13, the neutron multiplicity probability distribution is first corrected for the background and 
then for the dead-time overlap with an analytical method.

Spencer’s systems of equations were solved using the same procedure explained in the Methods sec-
tion “Implementation of Boldeman’s method”. The MC-generated data to test Spencer’s method were obtained 
with the MC model described in the Methods section “Monte Carlo model to test Boldeman’s method”.

Background correction
The background corrected neutron multiplicity probability distribution, Nn , is obtained by solving the following 
equations,

where F ′n is the measured neutron multiplicity probability distribution, Bn,i is the probability distribution of n 
background events occurring in the detection window when i neutrons are present,

and Bn is the measured background multiplicity probability distribution. In the present work, we considered 
the multiplicity range from 0 to 10. This system of equations was solved using the same solver implemented 
described in Boldeman’s method.

dead‑time overlap correction
The dead-time corrected multiplicity probability distribution, Dj , is obtained by solving the following equations,

where Ni is the background corrected neutron multiplicity probability distribution, and Si,j represents the prob-
ability that only i neutrons will be counted when j neutrons are actually present within the detection window,

where f(t) is the neutron capture time distribution of Fig. 8, and the function Gi,j = 1 if i = j , Gi,j = 0 if i > j , 
and for i < j,

where

The multidimensional integral in Si,j was solved numerically using the MC integration algorithm  VEGAS25 
implemented in the ROOT class ROOT::Math::GSLMCIntegrator. To implement the multidimensional numerical 
integration in Si,j , variables t2 . . . ti were substituted, setting the new integration limits from 0 to 1. The relative 
error tolerance of each matrix element was fixed to 10−5 , i.e. 0.01%.
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Moat’s MC method
Moat’s  method4 involves obtaining the coefficients of the matrix T  that transforms D = {D0, ...,Dl} into 
F
′ = {F ′0, ..., F

′
l } through a MC simulation. The coefficients Tmn of the transformation matrix are defined as

where j starts from m− n for m ≥ n , and for m < n it starts from 0. The value of J adopted for each summation 
is such that B(J+1) is near zero. The probabilities Bj are the background multiplicity probabilities after dead-time 
correction and can be obtained by solving the system of equations from equation (13). The term km(n, j) rep-
resents the probability of observing m pulses when n neutron pulses are produced according to the scintillator 
capture time distribution and j background pulses are produced with uniform probability distribution in the 
detection gate. The km(n, j) probabilities include dead-time overlaps and can be calculated using the MC model 
described in the Methods section “Monte Carlo model to test Boldeman’s method” with small modifications to 
the code. The system of equations obtained from F ′ = TD can be written as

where F ′m are the experimentally measured multiplicity probabilities and Dn are the real neutron multiplicity 
probabilities.

The km(n, j) probabilities were calculated after 108 runs with the neutron and background multiplicities rang-
ing from 0 to 10 for twenty different dead-times. For each set of km(n, j) probabilities associated with a dead-time, 
the F ′m and Bj multiplicity probabilities were obtained after 105 runs of the MC model described in the Methods 
section “Monte Carlo model to test Boldeman’s method”.

The NN method
To enhance the accuracy of the results and overcome the dead-time limitation, we employed a NN trained with 
Monte Carlo data. Traditionally, NNs are trained using Python, but our existing codes were in C++. Therefore, 
we investigated the availability of a NN framework within the ROOT software package, which is based on C++, 
aligning with our coding language. We used the Deep Learning module in the TMVA (Toolkit for Multivari-
ate Data Analysis) toolkit, which offers a deep learning architecture called Deep Neural Network (DNN). The 
TMVA/DNN architecture provides an optimized implementation of feed-forward multilayer perceptrons. It 
has distinct advantages, such as the ability to utilize multi-core and GPU hardware architectures and various 
optimization methods such as momentum-based  learning26. To construct our NN, we referred to the examples 
“TMVARegression.C” and “TMVARegressionApplication.C”26. These steps were followed for training the NN: 

1. Eleven F ′l  variables and one dead-time variable are declared for the input neuron layer, and eleven Dx targets 
are declared for the output neuron layer.

2. The dataset tree is loaded and randomly split into training and testing trees, each containing half of the 
examples from the training dataset.

3. The NN is defined with three hidden layers, each with 50 neurons (12/50/50/50/11). All neurons in the 
network use the hyperbolic tangent activation function (TANH).

4. The optimization method  ADAM27 is used, with common parameter  values26,28. The learning rate is set to 
10−4 , the momentum to 0.9, the convergence steps to 10, the batch size to 128, the weight decay to 10−4 , and 
beta1 = 0.9, beta2 = 0.999, and eps = 10−7.

5. The weights are initialized using the XAVIER method, which randomly initializes the connection weights 
of each layer.

6. The network is trained until the learning rate does not improve after 10 steps;
7. The weights obtained are saved in a file to later test the network with the testing datasets.

The training dataset is composed of example sets of τ , F ′0...F
′
10 and D0...D10 where the dead-time τ and the prob-

abilities F ′l  are the inputs and the probabilities Dl the target values. Each example set had a different initial input 
multiplicity probability distribution Dl . For each set of the probabilities Dl , the resulting probabilities F ′l  were 
obtained using the MC model described in the Methods section “Monte Carlo model to test Boldeman’s method”. 
We trained the NN using three distinct datasets: one comprising solely of Gaussian multiplicity probability 
distributions, another consisting exclusively of skewed Gaussian multiplicity probability distributions, and a 
third dataset that combined both Gaussian and skewed Gaussian multiplicity probability distributions, all with 
around 2 ×106 examples. The NNs trained on the first two datasets yielded errors of up to 0.03, while the NN 
trained on the composite dataset exhibited errors smaller than 0.01. In addition, we generated a fourth dataset 
comprising Gaussian and skewed Gaussian multiplicity probability distributions with ±10% perturbations for 
each multiplicity probability in the whole dead-time range from 0 to 1.1 µ s. The NN trained in the fourth dataset 
containing around 2 ×106 examples yielded errors smaller than 0.005. Therefore, we show the results for the NNs 
trained in the fourth perturbed composite dataset which had mean values randomly distributed in the interval 
[1, 9], standard deviation randomly distributed in the interval [0.1, 3.0], and skewness randomly distributed in 
the interval [−2, 2].

(20)Tmn =

J
∑

j=m−n

Bj km(n, j),

(21)F ′m =

l
∑

n=0

TmnDn,
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