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A complexity efficient 
penta‑diagonal quantum 
smoothing filter for bio‑medical 
signal denoising: a study on ECG
Mostafizur Rahaman Laskar 1*, Sawon Pratiher 2, Amit Kumar Dutta 1*, Nirmalya Ghosh 2 & 
Amit Patra 2

Extracting information-bearing signal from a noisy environment has been a practical challenge in both 
classical and quantum computing formalism, especially in critical signal processing applications. To 
filter out the effect of noise, we propose a quantum smoothing filter built upon quantum formalism-
based circuits applied for electrocardiogram signal denoising. The proposed quantum filter is a 
conceptually novel framework with an advantage in computational complexity as compared to the 
existing classical filters, such as discrete wavelet transform and empirical mode decomposition, 
whereas it achieves similar performance metrics for the accuracy of the filter. Further, we exploit the 
penta-diagonal Toeplitz structure of the smoothing filter, which gives approximately 48% gate cost 
reduction for 10 qubit circuit compared to the standard Hamiltonian simulation without structure. The 
run-time complexity using the quantum matrix inversion technique for the structured matrix is given 
by Õ

(

κ2poly(logN)

ε
P

)

 for condition number κ of the N × N filter matrix within precision ε
P

 . Embedding 
fixed sparsity of the banded matrix, the quantum filter shows potentially better run-time complexity 
than classical filtering techniques. For the quantifiable research results of our work, we have shown 
several performance metrics, such as mean-square error and peak signal-to-noise ratio analysis, with a 
bound of error due to observation noise, simulation error and quantum measurement uncertainty.

Information-bearing signal in practical systems is often corrupted by observation noise, which needs denoising 
for further analysis1–3. In critical biomedical applications such as electrocardiogram (ECG), the signal acquisition 
process from the human body surface is inevitably contaminated with noise4, and is a critical step for ECG signal 
parameter estimation. Typical noise sources corrupting particular frequency bands of ECG signals are baseline 
wandering (BW), powerline interference (PLI), i.e., AC interference, electrode motion, and muscle artefacts. The 
most common additive white Gaussian noise (AWGN) present during channel recording adulterates the entire 
ECG frequency spectrum5. In the context of large-scale ECG analysis, denoised ECG templates are critical for 
feature extraction6, arrhythmia detection7, heartbeat classification8, and ECG bio-metrics9,10.

Statistical signal processing-based ECG denoising techniques like Kalman filtering-based Bayesian 
frameworks11, non-local means (NLM) filtering5,12,13, decomposition methods like discrete wavelet transform 
(DWT)14, empirical mode decomposition (EMD)15, variational mode decomposition (VMD)16, and deep learn-
ing (DL)17 are routinely used. However, DWT-based ECG denoising discards the low-frequency approximation 
coefficients completely16, EMD and VMD have sample noise sensitivity16. The NLM technique is susceptible to 
the rare-patch effect in the high-frequency QRS-complex13, and Kalman filtering require the knowledge of the 
underlying ECG generating model11,18. In addition to massive training data requirements, DL methods are com-
putationally expensive in low-complexity edge computing applications like wearables6. The prior art abounds in 
smoothness prior and quadratic variation (SPQV)-based smoothing filters for many classical signal and image 
denoising applications. The SPQV technique is often used for modelling non-stationary time series19, non-
parametric estimation20, and surface reconstruction in pattern recognition applications21. SPQV-based signal 
denoising is mainly dependent on the regularization techniques employed in the underlying algorithm, such 
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as penalized least square optimization22, Savitzky-Golay filter23, Tikhonov regularization24, and the band-stop 
smoothing filter25 has recently been applied to ECG denoising.

Although the above-mentioned denoising techniques mitigate the effect of noise, their application in large 
datasets is a computationally intensive task, especially in critical applications such as continuous ECG monitoring 
of cardiac patients. The computational run-time complexity of the classical filers largely depends on the underly-
ing matrix inversion methods employed. One of the best classical inversion methods is the conjugate gradient 
(CG) method with a run-time complexity of O

(

Nd
√
κ log 1

εP

)

 for d-sparse filter matrix P ∈ R
N×N . Conse-

quently, there is a need to design a computationally efficient algorithm for signal filtering in the fastest possible 
way in such critical applications.

This work investigates the possibility of synergy between quantum computation and signal filtering methods 
to design an efficient quantum filtering algorithm for vital applications like ECG denoising. Quantum computing 
(QC) and quantum signal processing (QSP) are becoming promising avenues for simulating large-scale problems 
in science and technology. The recent development of superconducting qubit-based quantum simulators such as 
the IBM quantum machine provides a practical way to run quantum algorithms (QA) on a quantum computer. 
QAs have many practical advantages such as efficient computational complexity, fewer physical resources, security 
and reliability26 for processing large data. The recent development in QA such as quantum linear-system solver27, 
quantum principal component analysis28, and quantum eigenvalue estimation technique29 are based on one or 
several quantum sub-routines (QSR) including quantum amplitude amplification (QAA), Hamiltonian simula-
tion, quantum Fourier transform (QFT) and quantum phase estimation (QPE)29–31.

Given the above background, the contributions of this work are given as follows.

•	 We propose a quantum smoothing filter (QSF) exploiting the inherent structural property of the filter, which 
is modelled as a penta-diagonal banded Toeplitz matrix. The structural exploitation is achieved by a proposed 
Jordan decomposition-based quantum architecture, which requires fewer quantum functional gates compared 
to the scenario if this structural exploitation would not be considered in the Quantum realm.

•	 A complexity-efficient quantum filter is designed based on the matrix inversion principle by exploiting the 
inherent structure of the operator. The modified Hamiltonian-simulation sub-routine is embedded in the 
matrix inversion process to augment run-time complexity advantage of approximately Õ (

cdκ
2 logN
εP

) , which 
is faster than the existing filtering algorithms. Here cd is a constant, κ denotes the condition number of the 
filter matrix, and εP represents the overall error in the filtering process.

•	 The efficacy of the proposed quantum framework is measured in terms of mean square error (MSE), which 
is compared with its classical analogue filtering algorithms. Also, the quantum advantage is compared with 
the standard Hamiltonian simulation in terms of gate complexity analysis, which measures quantum com-
putational resources. The proposed method’s potency for near-time application is shown in an IBM quantum 
machine, and the performance is compared with the classical computer. The difference between the classical 
and the quantum methods due to quantum noise and quantum measurement uncertainty has also been 
pictured in this work.

Signal model
Signal filtering is one of the central challenges in signal processing for retrieving information-bearing compo-
nents, which are embedded with noise, given as:

where y ∈ C
N×1 denotes the measured signal, x ∈ C

N×1 represents the desired signal and w ∈ C
N×1 is the noise 

vector. Here our objective is to extract the information-bearing part x from the noisy observation y as a filtered 
version, which requires a filtering operation on y . The proposed quantum framework requires that the signal y 
is encoded in a suitable form for the simulation on a quantum computer. The real computer introduces quantum 
error to the resultant signal, which is later analyzed in this work.

The signal estimated with the smoothness prior can be written in sampled discrete form as:

where i = 1, . . . ,N , η denotes a smoothness trade-off parameter, and ∇n is the n th-order difference approxima-
tion of the derivative given by

with nCj as the binomial coefficient. The solution of (2) becomes

where the matrix I denotes the identity matrix of order N and D ∈ R
N−2×N is a banded Toeplitz matrix obtained 

from the backward difference operator with a band ( d0, . . . , dp ) of the form given as

(1)y = x + w,

(2)x̂[i] = argmin
x[i]

N
∑

j=1

(

y[j] − x[j]
)2 + η

N
∑

j=1

(

∇nx[j]
)2

(3)∇nx[i] =
n

∑

j=0

(−1)j nCjx[i ± j],

(4)
x̂ =

(

I + ηDTD
)−1

y

= P−1y (assuming P = I + ηDTD),
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For N-samples, and 2nd order smoothness prior the matrix D has the following form

Note that the elements of the band can be taken from a suitable Kernel function. We have a kernel of [1, − 2, 1] 
for the ECG signal denoising with the second-order smoothing. The transfer function for the filter in our con-
sideration is a low-pass smoothing filter (LPSF), expressed in Z-domain with angular frequency ω given by

where n is the order of the derivative to get the operator D . In our approach, we have kept this simplest filter 
configuration due to the banded symmetric structure of the filter operator P . One can further improve the 
filter response by using the high-pass and band-stop filter25 at the cost of increasing complexity. The value of 
the hyper-parameter η can be chosen based on the filter order and cut-off frequency of the Fourier frequency 
response HLP(e

jω).

Quantum formalism
Signal encoding
Among several quantum encoding methods, such as basis encoding, amplitude encoding, and Hamiltonian 
encoding, we consider the amplitude encoding technique for preparing the quantum states efficiently with 
log2(N) qubits for encoding N-length observation vector. The ECG signal vector can be amplitude encoded in 
qubits as

where the probability amplitude for the ith-basis vector |x�i is given by αi = xi
�x� for xi ∈ x, and i ∈ {1, . . . ., l} 

with a l-basis set. The amplitude-encoded quantum state vector corresponding to the observation y can be 
prepared similarly as

with probability amplitude of βi for the i th basis vector |y�i . We are interested in getting an estimate of the pure 
ECG signal, i.e., x̂ from the noisy encoded observation vector |y�.

Proposed Hamiltonian simulation exploiting penta‑diagonal matrix operator
A quantum evolution operator is required to perform a quantum formalism-based SPQV filtering approach. Here, 
we propose a quantum algorithm with an efficient quantum architecture for the filter operator P . The filtering 
operation can be performed using a quantum evolution operator (a unitary matrix here) based on the matrix P . 
We embed quantum Hamiltonian simulation (QHS) to get the unitary operator as UP = exp(−iPt) , where the 
evolution time is t. In reality, the Hamiltonian simulation is performed with an approximation for optimal usage 
of quantum resources. Standard QHS methods simulate the Hamiltonian simulation with several techniques such 
as product formula32, truncated Taylor series33, qubitization34, quantum walk35, and Quantum signal processing 
algorithm36. The approximated unitary ŨP prepared for the operator P incurs an error given by �ŨP − UP� ≤ εP.

In standard QHS approaches such as Trotterization and Taylor series method, the Hamiltonian is often pre-
sented on Pauli-basis. In general, it requires that the Hamiltonian is a symmetric matrix, and the advantage of 
computational complexity is often dependent on the sparsity of the underlying Hamiltonian in the QHS. In this 
work, considering the kernel as [1 − 2 1] , we get the Hamiltonian operator P given by (10).

Here, the coefficients a0, a1 , and a2 are generated from the relationship P = I + ηDTD . The matrix P is a 
banded and penta-diagonal matrix with 5N − 6 non-zero elements. Hence, it can be considered a sparse Ham-
iltonian, and the quantum complexity advantage can be significant with large dimension N. The matrix P is 
symmetric, so it can be decomposed with the basis obtained from Pauli operators.

(5)D =













d0 d1 d2 . . . dp 0 . . . 0

0 d0 d1 . . . dp−1 dp
. . .

...
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. . .
. . .

. . .
. . .

. . .
. . . 0
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




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.

(6)D =


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
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. . .

...
...

. . .
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. . .
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








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.

(7)
HLP(z) =

1

1+ η(1− z−1)n(1− z)n
,

HLP(e
jω) = 1

1+ η(2 sin ω
2 )

2n
,

(8)|x� =
l

∑

i=1

αi|x�i for i ∈ {1, . . . ., l},

(9)|y� =
l

∑

i=1

βi|y�i ,
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To exploit the Toeplitz structure embedded in the filter matrix, we choose the Jordan-normal form as the basis 
of decomposition. The 1-sparse N × N Jordan matrix gives the super-diagonal basis, which is given as

(10)P =




















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



a0 a1 a2 0 0 0 . . . 0

a1 a0 a1 a2 0 0
. . .

...
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0 a2 a1 a0 a1 a2 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 a2 a1 a0 a1 a2
...
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



∈ R
N×N .

Figure 1.   Quantum architecture and flow-diagram for signal denoising. (a) The proposed quantum architecture 
for a penta-diagonal banded Toeplitz Hamiltonian of size 8×8 using elementary quantum gates: Here, dark dots 
represent connections, the circle ⊗ notation represents tensor operation, circle ⊕ represents the adder circuit, 
σ0,σ1, lu, ll , JU, JL are identity gate, Pauli-x operator, upper-ladder, and lower-ladder operator, upper-Jordan 
gate, and lower-Jordan gates respectively, a0, . . . ,a4 are the filter coefficients with a1 = a3, a2 = a4, and QRAM 
represents quantum random access memory. (b) A quantum circuit of a quantum filter using the quantum 
phase estimation circuit using the proposed quantum filter: the sub-system in as shown in (a) is used here 
as controlled unitaryŨP . (c) Flow diagram of signal denoising using the proposed quantum filter: Here, C2Q 
denotes the classical to quantum encoding block, the sub-routine shown in (b) is used here as QPE sub-system.
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The J†N is its symmetric form and provides the off-diagonal basis below the diagonal. The quantum-architecture 
realization of the Jordan form for N = 8 is given in Fig.1a.

Lemma 1  The Hamiltonian matrix P can be decomposed in Jordan-basis as a combination of 4 off-diagonals (using 
elementary quantum gates) and 1-diagonal basis (with tensor product of identity gates as a basis) scaled by the 
filtered coefficient as follows

Proof  The Hamiltonian P is defined as I+ ηDTD . For a kernel [1 − 2 1] , the matrix D is tri-diagonal and DTD 
is penta-diagonal. As a consequence, P = I+ ηDTD is penta-diagonal as well as Toeplitz as shown in (10). The 
diagonal of P can be implemented with tensor products of identity gates scaled by the coefficient a0 . The effective 
matrix can be decomposed into the sum of five sparse matrices, including a0I , corresponding to the diagonal 
matrix. As P is Toeplitz, each off-diagonal can be represented with Õ (1) sparse matrices ( JN or J†N and their 
square) scaled by corresponding coefficients a1, a2 as shown in (13). 	�  �

An Example of the Proposed Architecture : We show an example architecture of P of size 8× 8 based on the 
lemma with the quantum gate complexity reduction by augmenting the filter operator’s structural advantage as 
shown in Fig. 1a. Elementary gates such as Pauli and Hadamard gates are available in real quantum machines 
such as IBM-QISKIT37. In Fig. 1a, the ladder gates are used, which can be implemented using combinations of 
Pauli gates as follows

where σ1 and σ2 are Pauli-x and Pauli-y gates respectively. In this circuit, we have used Jordan gates JL , and JU 
which can be obtained as follows

In the circuit diagram Fig. 1a, σ0 is the 2× 2 identity gate, and 04 denotes the 4× 4 zero-matrix.
Determination of approximate unitary ŨP : The implementation of the ideal unitary operator UP is expen-

sive. Hence, an approximate unitary operator corresponding to P can be prepared practically via the quantum 
Hamiltonian simulation (QHS) within an error of εP as follows
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2
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(14)lu = 1

2
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[

0 0
1 0

]

, and

(15)ll =
1

2
(σ1 − iσ2) =
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0 1
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]

,

(16)
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=







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






, and

(17)

JU = (σ 0 ⊗ lu)+ (lu ⊗ σ x)− (lu ⊗ lu)

=







0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0






.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10580  | https://doi.org/10.1038/s41598-024-59851-5

www.nature.com/scientificreports/

The problem in (18) can be addressed with standard QHS approaches such as Trotter-Suzuki approximation38,39, 
Quantum walk40, and Taylor series approximation33. Here, we proceed with the Taylor series truncation method 
for the approximation of the unitary matrix ŨP up-to-order L as

Quantum matrix inversion
We employ the HHL matrix inversion method27 in which the observation vector |y� needs to be decomposed in 
the eigenbasis of P as |y� =

∑

N
j=1βj|u�i via the QPE approach27,41. The QPE sub-routine is employed to get the 

eigenvalues of the operator P . The approximated unitary matrix ŨP is applied as controlled U-gate in the QPE 
circuit as shown in Fig. 1b, which impacts the phases of the |1� . The QPE circuit estimates the phases θj ∈ [0, 1) 
such that ŨP |u�j = exp (2iπθj)|u�j for j ∈ 1, . . . ,N  . Applying the Fourier transform sub-routine on the first 
register (and converting Fourier basis |k� to the eigenbasis |�̃k� ), we obtain the state

where δk|j is a normalizing factor, �̃k = 2πk
t0

 with t0 = O ( κ
εP
) , and T can be chosen sufficiently large for the 

conditional evolution 
∑T−1

ζ=0 |ζ ��ζ | ⊗ exp (iPt) with t := ζ t0
T  . Considering δk|j = 1 in |ϕ�1 , �̃k = �̂k and applying 

conditional rotation yields

where Cm can be chosen as O( 1
κ
) . The filtered signal is retrieved after multiple measurements of |ϕ�2 in state |1� 

given by

Proposed algorithm

We have shown the pseudo-code for signal denoising using the proposed quantum formalism in Algorithm 1.

(18)�ŨP − exp (−iPt)� ≤ εP .

(19)ŨP =
L−1
∑

l=0

(−iPt)l

l! + εP .

(20)|ϕ�1 =
N
∑

j=1

T−1
∑

k=0

δk|jβj|�̃k�|u�j ,

(21)|ϕ�2 =
N
∑

j=1

T−1
∑

k=0

βj|uj�
(
√

1− C2
m

�̂k

|0� + Cm

�̂k

|1�
)

,

(22)|x� =
N
∑

j=1

βj�̂
−1
j |uj� = P−1|y�.
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Algorithm 1.   Proposed QSF for signal denoising.
In Fig. 1c, a flow diagram of the quantum signal denoising process is shown. The pseudo-code of the proposed 

quantum filtering method, as shown in Algorithm 1, is summarized as follows.

•	 Noisy (ECG) signal is encoded with quantum amplitude encoding as |x� using qubit size of nq.
•	 The symmetric filter operator is processed to prepare an approximate unitary operator using quantum Ham-

iltonian simulation (QHS). We have used the Taylor-series truncation method to approximate the unitary 
matrix Ũ with approximation error εp.

•	 Given a preparation of the eigenstate vectors in the oracle as |vj� , the quantum phase estimation (QPE) circuit 
estimates the eigenvalues of the filter matrix P following superposition of the input qubits, application of 
control rotation gates, and the inverse quantum Fourier transform (IQFT) given by 

•	 Following the quantum eigen-inversion method, the Moore-Penrose pseudo-inverse of the filter matrix is 
prepared as 

 where �−1 = diag
(

1

�̂1
, . . . , 1

�̂N

)

.
•	 The encoded filtered signal is obtained as follows |x� = P−1|y� . The filtered signal from the encoded form to 

the discrete signal can be obtained by multiplying it with a suitable factor.

(23)�̃j ←
1

2j

2j−1
∑

h=0

2j−1
∑

l=0

e

(

2π il

2j
(h−2jθj)

)

|h� ⊗ |vj�.

(24)P−1 = V†
P�

−1VP ,
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In Fig. 1a, we show a quantum circuit of the proposed quantum filter. The QPE circuit produces the eigenvalues 
of the operator P whose precision depends on the length of the input qubit size and the Hamiltonian approxima-
tion algorithm. The eigen-inversion and inverse-QPE circuit generates the filter operator P−1 . The Hamiltonian 
simulation for the matrix P can be performed using the Pauli bases (e.g., σx , σy , σz ), as it is in Hermitian matrix 
form. To exploit the structural benefits of the banded-Toeplitz matrix by sparse decomposition, we propose the 
Jordan gate-based Hamiltonian simulation for the matrix inversion problem.

Lemma 2  A Hamiltonian operator, P ∈ C
N×N of the form penta-diagonal banded-Toeplitz can be realized using 

elementary quantum gates with computational resources (as a function of input qubit size nq ) is given by

Proof  The computational gate counts (which is a measure of computational resources in Noisy Intermediate 
Scale Quantum (NISQ) for designing the Hamiltonian, P ∈ R

N×N as a function of input qubit size ( nq ) is dis-
cussed as follows:

•	 We need nq = log2 N number of Identity gates ( σ0 ) for preparing the principal diagonal.
•	 We have 4 off-diagonals in the filter Hamiltonian matrix, P , which can be prepared with combinations of 

Jordan gates. Using the recursive implementation of the Jordan gates, we need two Jordan sub-circuits J N
2
 

and an additional upper ladder operator. We require [log2 N
2 ] elementary lu gates to implement a ladder 

operator lu N
2
.

•	 A 4× 4 Jordan gate J4 requires four elementary gates (One σ0 , two lower ladder gates ( lL for J4 , and lu for J†4 ), 
and one σx , respectively). Using the recursive architecture of the Jordan block, the elementary gates required 
for the implementation of the banded Toeplitz matrix are given by �(N logN) . Hence, the computational 
gate complexity, Cg in terms of input qubit size, is given by �(nq2

nq ).

	�  �

Note: Given the length of the ECG signal, N, we choose nq = ⌈logN⌉ for efficient quantum encoding of the 
ECG signal. The basic operations needed for a unitary matrix simulation ( U(2nq ) ) is given by �(nq

34nq ) (Sec-
tion VIII in42). Here, we see that considering each gate to perform a basic operational unit, the banded Toeplitz-
patterned matrix needs an overall lesser number of quantum gates, as shown in Table 1.

Results
This section discusses the experimental evaluation of our proposed quantum filter on synthetic and real-world 
noisy ECG signals. The synthetic ECG records are generated using ECGSYN—A realistic ECG waveform gen-
erator (https://​physi​onet.​org/​conte​nt/​ecgsyn/​1.0.​0/). The real-world ECG data are taken from the MIT-BIH 
Arrhythmia database43, where the ECG signals are sampled at 360 Hz with 11-bit resolution. A comparative 
evaluation with the existing ECG denoising methods like EMD15, NLM12,13, and DWT14 is carried out to show 
the effectiveness of the proposed method. The uncertainty factors considered in the overall quantum algorithm 
are observation noise, quantum simulation error, and quantum measurement uncertainty. The experiments are 
partly simulated on a classical computer with MATLAB and partly on an IBM ’Statevector’ quantum simulator. 
The choice of simulation parameters and their values are given in Table 2.

Accuracy of the filter in comparison to classical methods
Figure 2 shows the performance of the proposed QSF approach applied to denoise the ECG signal. AWGN noise 
with a varying signal-to-noise ratio (SNR) from 5 to 25 dB is added to the clean ECG signal for evaluating the 
performance of the proposed algorithm. A snap of the denoised signal from the filter response is shown in Fig. 2a. 
The method is compared with two widely used classical algorithms viz., discrete wavelet transform (DWT)1 and 
the empirical mode decomposition (EMD)44. The proposed QSF attains the denoising performance closer to the 
classical DWT method, as shown in the black-coloured ECG curve. As the Moore-Penrose pseudo-inverse of the 
filter matrix has an inbuilt regularization with the parameter � , it regularizes perturbation up to a certain level. 
As a consequence, it gives prominent filtering performance as compared to the EDM technique. In Fig. 2a, the 
index 1 shows time samples, the signal amplitude of the ECG is shown as the vertical axis, and index 2 is drawn 
to separate the filter responses of different algorithms. Further, to evaluate the performance of the proposed QSF, 
we take a diseased dataset (with atrial fibrillation) in the presence of AWGN noise. A snapshot of the filtering 
performance of different classical filters and the proposed quantum filter at SNR of 15 dB is shown in Fig. 2b. 
The peaks are perfectly detected by the proposed QSF filter at regularization factor � = N

15.
Further, The performance is evaluated with mean square error (MSE) and the peak signal-to-noise ratio 

(PSNR) metrics, defined for M1 number of samples as follows

(25)Cg = nq2
nq .

Table 1.   Calculation of gate counts.

Hamiltonian simulation Gate counts

Standard unitary simulation �(nq
34nq )

Banded Toeplitz structured unitary simulation �(nq2
nq )

https://physionet.org/content/ecgsyn/1.0.0/
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(26)MSE := 1

M1

M1
∑

j=1

�x̂(j)− x(j)�2,

Table 2.   Simulation parameters.

Parameters Numerical value

Simulation time (t) 0.2 second

Precision ( εP) 0.01

‖P‖2 1

Dimension of noisy signal y (N) 600, 2351

Filter coefficient ( η) N/25

Matrix dimension of P N × N

Qubit size ⌈2 log2 N⌉ + l

SNR (in dB) 5 to 25 dB.

Kernel [1,−2, 1]

Figure 2.   Performance of the proposed QSF for healthy and diseased datasets in comparison with classical 
DWT1, and EMD44 methods. (a) A Snapshot of the clean ECG signal of a healthy dataset and the denoised 
signal using different methods. (b) A Snapshot of the clean ECG signal from a diseased (atrial fibrillation) 
dataset and the denoised signal using different methods.
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where MAXx denotes the maximum possible signal amplitude in the ECG signal x . Lower MSE and higher PSNR 
signify the better quality of signal reconstruction of a filter. In Fig. 3a and b, we have shown the MSE and PSNR 
performance of the proposed QSF algorithm for varying noise levels. At an SNR of 10 dB, the quantum filter has 
an improved MSE performance of approximately 43.71% in comparison to the classical EMD method, which is 
close to the classical DWT algorithm (it has improved MSE performance of 41.78% approximately as compared 
to EMD). From 14 dB SNR and above, the DWT algorithm outperforms the denoising performance where the 
proposed QSF follows similar performance characteristics closer to the DWT.

Similar results are also reported in PSNR values. As shown in Fig. 3b, the PSNR curve improves with increas-
ing SNR values. In comparison with the EMD method, both the classical DWT and the proposed quantum filter 
have significant performance improvement. At an SNR of 17 dB, the proposed QSF has an improved PSNR of 
25.24% approximately (DWT has an improved PSNR of 26.08% approximately) in comparison with the classical 
EMD method.

Note: As presently, quantum gates and qubits are not ideal and possess inherent noise sources (which is con-
sidered in the simulation), the proposed quantum filter has a slightly degraded performance in the lower SNR 
levels, which is expected to be eliminated in the near future with error-tolerant quantum hardware. Here, the 
proposed QSV filter shows performance equivalent to that of classical filters at moderate to high SNR values. 
Here, our motivation in this work is to design a quantum formalism-based filter i.e., QSF, which can provide 
quantum speed-up for faster data processing on a quantum computer with excellent run-time complexity without 
compromising the filter’s accuracy.

The spectrogram plot of the ECG signal is shown in Fig. 4. The time-frequency domain plot of ECG sig-
nals shows the high visual quality and accuracy of the filtering methods in reconstructing the estimated ECG. 
The spectrogram of the clean ECG is shown in Fig. 4a corresponding to the waveform in the time-amplitude 
response given in Fig. 4b. AWGN is added to the clean ECG signal with a standard deviation of 0.05, which has 
a spectrogram shown in Fig. 4c. Signal denoising response with the EMD method (Fig. 4d) shows substantially 
degraded signal reconstruction. The proposed quantum smoothing filter performs excellent signal denoising, 
demonstrated in Fig. 4f, which matches the energy profile closer to the classical DWT approach given by Fig. 4e.

Proposed QSF’s performance to other ECG noises: a case study
Figure 5 shows the performance comparison of the proposed QSF method to denoise the ECG signal corrupted 
with AC interference and BW. With the AC noise and BW variation, the performance of the classical DWT 
method is degraded, whereas the proposed QSF method shows filtering performance similar to the EMD algo-
rithm. Here, we have chosen the regularization parameter in the order of data dimensionality for its optimal 
performance. In both the AC interference and BW cases, the results in Fig. 5 show the efficacy of the proposed 
quantum formalism in ECG signal denoising.

Comparison of computational complexity
The primary motivation behind designing a quantum filter is to get computational advantage while processing 
large ECG datasets. Here, we demonstrate two key aspects, viz., the quantum gate complexity (resources in terms 
of elementary quantum gate operations) and the run-time complexity in terms of time operations. The run-
time complexity is often resource-independent, and hence, it may be used to compare the complexity between 
a classical filter and a quantum filter. On the other side, the quantum gate complexity is demonstrated to show 
the further improvement of the quantum Hamiltonian simulation, which is a critical sub-routine for a quantum 

(27)PSNR := 20 log10(MAXx)− 10 log10(MSE),
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Figure 3.   Performance of the proposed QSF in comparison with classical DWT1 and EMD44. (a) MSE 
performance of the QSF. (b) PSNR performance of the QSF.
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operator by augmenting the structural advantage (sparse and banded Toeplitz in our case) and the overall gate 
complexity in the quantum eigenvalue estimation.

In Fig. 6a, the quantum gate complexity versus the dimension (N) of the filter operator is given. The quantum 
simulation is performed for t = 0.2 s, with the precision of the Hamiltonian approximation of εP = 0.01 , and the 
length of the ECG signal is given by N = 2351 . The quantum gates required by the proposed structured Ham-
iltonian simulation are much less than that of the standard quantum Hamiltonian simulation. For example, the 
quantum gate-operation complexity (with N = 1012 ) of the standard QHS algorithm (considering the sparsity) 
is 731 approximately, whereas in the proposed QSF simulation (considering sparsity and banded-Toeplitz struc-
ture), the required cost is 374 approximately as shown in Fig. 6a. It reduces a gate cost of 48.84% approximately 
for N = 1012 . Hence, the proposed QSF filter gives an advantage in terms of quantum resources compared to 
standard quantum methods for large ECG datasets.

In general, the matrix inversion for the filter operator P ∈ R
N×N has a run-time complexity of O (N3) and 

O (N2.37) approximately by Gauss-Jordan and Coppersmith-Winograd-based approaches45. The classical CG-
based filters such as independent component analysis46 incur a run-time complexity of O (Nd) . The EMD44 
and DWT1 methods for ECG signal denoising have run-time of O (β1N logN) with β1 ∈ Õ (1)47, and ˜O (N)48 
respectively. In Fig. 6b, we have shown a curve of run-time complexity for different filtering algorithms applied 
to ECG signal processing. In the simulation, we have kept the algorithmic error ( εP = 0.01 ) for both the clas-
sical and quantum set-up and kept the length of the signal vector to be N = 1024 . The Gauss-Jordan (denoted 
as GJ) and Coppersmith method (shown as CW) take significantly high run-time with data dimension. The 
classical algorithms- EMD, DWT (and CG) perform polynomial and linear time complexity approximately. The 
proposed quantum filter (denoted by ′QSF ′ ) initially showed similar performance to that of EMD and DWT. For 
large dimensional datasets ( N ≥ 200 ), the proposed QSF outperforms all classical algorithms. As an example, 
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Figure 4.   Time-amplitude waveform and time-frequency spectrogram of clean ECG, noisy signal and denoised 
signals. (a) Spectrogram of clean ECG. (b) Waveform of clean ECG. (c) Spectrogram of noisy ECG (σw = 0.05). 
(d) Spectrogram with EMD. (e) Spectrogram with DWT. (f) Spectrogram with QSF.

Figure 5.   A snapshot of the clean ECG signal and the denoised version using different methods for different 
noise types. (a) Corrupted with AC interference. (b) Corrupted with AC interference and baseline wandering.
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the run-time taken by EMD, DWT, and QSF is given by 1.008× 106 , 10.1× 104 , and 2.4× 104 respectively for 
N = 210 . Hence, with this experimental setup for banded Toeplitz and sparse filter matrices, the exponential 
speed-up can be augmented for large ECG datasets as reported.

Simulation results on IBM quantum machine
A small-scale quantum simulation of the proposed quantum filter is shown in Fig. 7 with the available quantum 
resources at the present moment. We consider a 4× 4 filter matrix P and perform Hamiltonian simulation and 
QPE on the IBM quantum machine (‘statevector simulator’) with 5 qubit accuracy for the estimated eigenvalues. 
In Fig. 7a, a QPE circuit is shown for the minimum eigenvalue estimation, with five auxiliary qubits ( q0, . . . , q4 ) 
and two qubits ( q5, q6 ) for the given eigenstate ( |ψ� ) preparation. Here, ’Up’ denotes the unitary operator corre-
sponding to the filter matrix P prepared through Hamiltonian simulation, and ’IQFT_dg’ represents the inverse 
quantum Fourier transform sub-routine. The quantum measurement is performed on the computational bases 
(on the binary strings 00000 to 11111 based on the auxiliary qubits). A histogram is shown in Fig. 7b with 8192 
quantum measurements for finding the minimum eigenvalue for the filter matrix P . From the histogram, the 
basis 11111 has shown the highest probability (with a count of 4620 out of 8192) with an estimated eigenvalue 
(here, it is the lowest eigenvalue of the filter) given by 1.394448. The proposed QSF filter performs the inverse of 
the diagonal matrix (with eigenvalues of the matrix P in its diagonal). We have shown the reciprocal of the esti-
mated eigenvalues (here it is 1/� ) in Fig. 7c obtained using multiple QPE circuits simulated on an IBM quantum 
machine. As compared with eigenvalues obtained on a classical computer, the eigenvalues estimated on an IBM 
quantum machine are quite close.

Analysis
The performance of the proposed algorithm is derived analytically in terms of mean square error (MSE) bound 
and computational complexity. The error analysis considers the quantum measurement error and truncation 
error in addition to classical observation noise. To show the computational resource efficiency, we propose a 
lemma on gate complexity and run-time complexity, as portrayed in this section.

Error analysis

Lemma 3  The mean square error of the proposed quantum filter is a function of the eigenvalues of the filter matrix, 
signal power, and noise power which can be given as a bound with the expression in (28), where σ 2

x  denotes the 
power of the information-bearing signal, and σ 2

w = E
(

�w�2
)

 and �i is the ith eigenvalue of the filter matrix P.

Proof  Assuming the filter matrix P−1 = W , the estimation error can be written as

(28)err ≤ σ 2
x

(
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∑

i=1

(

1

�
2
i

)

)

+ E

N
∑

i=1

(

1

�
2
i

)

σ 2
w ,

(29)
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)†(
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Figure 6.   Comparison of computational complexity. (a) Quantum gate complexity. (b) Run time complexity
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Here, σ 2
x = E

(

x†x
)

 denotes the signal power. The second term in the R.H.S of expression (29) can be written 
as follows
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Figure 7.   A quantum simulation of the proposed filter on IBM Quantum machine. (a) A QPE circuit designed 
on IBM Quantum machine. (b) Histogram for minimum eigenvalue estimation. (c) Comparison of estimated 
eigenvalues.
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Similarly, we obtain the following expression for the 3rd-term E
(

y†W†x
)

 as

Note that, the expression of the fourth term E
(

y†W†Wy
)

 can be simplified as follows

Hence, the error is given by

	�  �

Dropping the subscript i in �i , we can express its estimated value �̂ as

where �tr denotes the true eigenvalue; �m, �ε , and �w represent the perturbation error in the estimated eigenvalue 
due to quantum measurement uncertainty, Hamiltonian simulation error and observation noise respectively. 
Hence, the total mean square error in the estimated eigenvalues has the following bound

where |εP |2 denotes the Hamiltonian simulation error, σ 2
m is the variance of the measurement uncertainty, and 

the σ 2
w is the variance of the observation noise. With a precision of Nq qubits for the estimated eigenvalues, the 

probability of error due to measurement uncertainty is given by

(30)

e2 = E(x†Wy)

= E
(

x†W(x + w)
)

= E
(

x†Wx
)

(assuming x and w are independent)
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)
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v†�−1v
)
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where k denotes an integer representation of the parameter �m in a binary string, and this represents the num-
ber of errors in the string. The variance of the measurement noise parameter �m for a Nq-bit resolution can be 
expressed following49 as (37).

Here, di is the decimal value of the ith binary-string representation (of length Nq ) of an eigenvalue, dki,j denotes 
an Nq-length binary string with j bits reversed with respect to di and k represents the kth realization of the string.

The probability of a bit’s (in the binary representation of an eigenvalue) correct measurement outcome is 
given by

where �̂i is the i th estimated eigenvalue, τr-times unitary rotation in each quantum measurement, mr ∈ {0, 1} , 
Bj denotes normalizing coefficients, and β represents the the phase for rotation around the Z-axis. The terms 
E

(

1

�̂

)

 , and E
(

1

�̂2

)

 can be expressed (assuming independence of �tr , �m, �ε , and �w ) as follows
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d�w are mathematically intractable 
and divergent for the limit [0,∞) . We take the truncated Taylor series about the point �w = 0 and step size h for 
the exponential term as

where O (h2) is the residual error. Further, as the integral is divergent in [0,∞) , we fix an upper bound for �w as 
umax which is often the case in practical systems. Hence, the integral I1 can be solved for �w as follows

where,

(36)
p(�m = k) =

2Nq−1
∑

k=1

p(�m|�̂)p(�̂)

= 1

2Nq

lCkP
l−k
b (1− Pb)

k with l = 2Nq ,

(37)

σ 2
m = 1

2Nq
∑Nq

l=1
NqCj × Nq

2Nq
∑

i=1

Nq
∑

j=1

NqCj
∑

k=1

p
j
b(1− pb)

Nq−j�di − dki,j�2, with pb

= 1

N

N
∑

k=1

∑

j

Bj

Rn
∏

r=1

cos2

(

τr �̂i

2
+ βr −mrπ

2

)

.

(38)pb =
1

N

N
∑

k=1

∑

j

Bj

Rn
∏

r=1

cos2

(

τr �̂i

2
+ βr −mrπ

2

)

,

(39)

E

(

1

�̂

)

= E�m

(

1

σw
√
2π

∫ ∞

0

1

K + �w
exp

(−�
2
w

2σ 2
w

)

d�w

)

E

(

1

�̂2

)

= E�m

(

1

σw
√
2π

∫ ∞

0

1

(K + �w)
2
exp

(−�
2
w

2σ 2
w

)

d�w

)

where K = �tr + �m + �ε .

(40)exp

(−�
2
w

2σ 2
w

)

=
∞
∑

l=0

(−�
2
w

2σ 2
w

)

= 1− �
2
w

2σ 2
w

+ O (h2),

(41)

I1 = lim
u→∞

∫ u

0

1

K + �w
exp

(−�
2
w

2σ 2
w

)

d�w

≤ lim
u→umax

∫ u

0

1

K + �w

[

1− �
2
w

2σ 2
w

]

d�w

≈ −1

2σ 2
w

∫ umax

0

�
2
w − 2σ 2

w

K + �w
d�w = −1

2σ 2
w

[I11]
u=umax
u=0 ,



16

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10580  | https://doi.org/10.1038/s41598-024-59851-5

www.nature.com/scientificreports/

Hence, the integral I1 becomes

Here, C2 = −2σ 2
wC1 , and C3 = 4σ 2

wC2 . Considering, umax > 0 , and umax + K > 0 , the expression of I1 can be 
simplified with the definite integral limit in [0, umax] as given by (47). Similarly, considering Taylor series approxi-
mation for the exponential part (with two terms), and solving I2 with upper limit umax we obtain

where,

where C4 is an arbitrary constant. Hence the integral I2 becomes

where C5 = −2σ 2
w × C4 . Considering, umax > 0 , and umax + K > 0 , the expression of I2 can be simplified with 

the definite integrallimit in [0, umax] as given by (48). Taking the bounds for the integrals I1 in (47) and I2 in (48), 
and considering the probability mass function in (36) the expressions E( 1
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) , and E( 1
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) for M quantum measure-

ments can be approximated by (49) and (50) respectively.
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The quantum simulation-based quantum filter introduces additional perturbation due to the Hamiltonian 
approximation error εp and the quantum measurement uncertainty and Hardware imperfection. For the large 
dimensional sample size, we assume that the total simulation uncertainty is white and zero-mean Gaussian dis-
tributed with variance given by σ 2

e = |εp|2 + σ 2
m + σ 2

h  , where σ 2
m denotes the measurement uncertainty, and σ 2

h  
is the variance of hardware imperfection error (often occurs in qubit preparation and thermal instability). The 
effective quantum filter operator can be written as

where �e is the diagonal matrix corresponding to the error covariance matrix (due to simulation uncertainty). 
Hence, the estimated signal as shown in (4) is impacted by the inverse of the matrix P̂ given by

Note that the iterative execution of the proposed algorithm perceives the filter perturbation in eigenvalues with 
the variance of σ 2

e  . Hence, multiple quantum measurements are required to find the correct basis from the his-
togram and to get the estimated ECG signal x̂ . The estimated error in 1/� perceived in the quantum simulator 
is shown in Fig.7c.

In the proposed QSF, we have exploited both the sparsity and banded-Toeplitz structure of the Hamiltonian 
matrix P . First, the quantum gate-complexity advantage is discussed in comparison with the standard QHS 
method. Secondly, we analyse the quantum run-time complexity of the proposed QSF method in comparison 
with standard classical filtering methods for ECG signals.

Complexity of the Hamiltonian simulation
The quantum gate-operation complexity for the QHS with a sparse Hamiltonian matrix P ∈ C

N×N in time t and 
approximation error εP is given in35,50 as

Here nq = log(N) denotes the input size of qubit for the d-sparse matrix P , and T is defined as T = d2�P�maxt.
In this work, we have augmented the structural advantage of the Banded-Toeplitz matrix pattern. The pro-

posed Algorithm 1 has shown a sparse decomposition of the matrix P ∈ C
N×N with 5N − 6 non-zero elements 

(instead of operations for N2 ) and the sparsity d = 5 . In the below proposition, we show the computational 
complexity of the proposed structured QHS.

Lemma 4  The computational gate-operation complexity for simulating a Banded-Toeplitz structured operator 
P ∈ C

N×N using Algorithm 1 to prepare an approximate unitary UP ∈ C
N×N within the evolution time t and 

precision εP is given by

Proof  The banded-Toeplitz matrix with band d has a classical inversion cost of Õ (d logN)51. Here, the filter 
matrix with Kernel [1 − 2 1] has the band length d = 5 with the Toeplitz structure. Encoding such an operator 
for 5N − 6 matrix elements with band d = 5 will incur a gate cost approximately Õ

(

d logN
)

 following (53) with 
nq = logN , and T ≈ 25�P�maxt . Hence, the overall gate complexity of the Hamiltonian simulation becomes
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Õ
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Complexity of the quantum filter
In filtering large-dimensional biomedical signals such as ECG, one critical aspect is the filter’s complexity. To put 
our quantum filter in context, we compare it with the classical filtering approaches. Here, the filter is designed as 
the inversion of the matrix P ∈ R

N×N whereby regularizing with a factor � which improves condition number κ 
of P in the presence of perturbation. In addition to the sparsity d, the underlying filter has a Toeplitz structure, 
which gives the computational gate complexity advantage, as discussed earlier.

In the implementation of the filer, most of the classical algorithms for the matrix inversion, such as the Gauss-
Jordan method, take a run time of O (N3) . Some optimized classical algorithms such as the Coppersmith-Win-
ograd-based method and its variants take O (N2.3+γ ) with the constant γ > 045. One of the best classical matrix 
inversion approaches is the conjugate gradient algorithm which incurs a total run-time of O

(

Nd
√
κ log ( 1

ε
)
)

 
considering the operator P be positive definite, and the precision is given by εP.

Lemma 5  There is an efficient algorithm for simulating the filter matrix P−1 having a regularized condition number 
κ , a constant sparsity (d), and large dimension (N) with quantum run time complexity given by

Proof  Following HHL quantum matrix inversion27, the run-time complexity for the sparse-matrix ( P ) inversion 
can be obtained as Õ

(

d2κ2 log(N)

εP

)

 . For N times execution, the total run-time of O (cN logN) with c = d2κ2 . 
Employing the strategies as shown in52, this can be further improved to Õ

(

c log(N2)

εP

)

 . Here, c = 25κ2 for the 
penta-diagonal structure of the filter matrix (with d = 5 ). Hence, the overall time complexity of the proposed 
Quantum filter is approximately Õ

(

κ2poly(logN)

εP

)

 . 	�  �

Discussion
Note on � trade‑off for sharp change and smoothing in different time segments of the denoised 
ECG signal
 One of the critical aspects of a filter applied to the ECG signal is that the ′QRS′ complex is preserved with proper 
detection of the ′R′ and ′S′ patterns while the ′PQ′ and ′ST ′ segments do not perturb much after denoising. In the 
QRS complex, the time domain transition (or gradient) of the signal is sharp, whereas, in the ′PQ′ and ′ST ′ , it is 
slowly growing and flat (or linear), respectively. Hence, a filter with high detectability of sharp edges may often 
perturb the ′PQ′ and ′ST ′ regions in the reconstructed signal due to large weights of the higher-order derivative 
terms present in the filter. On the other side, one may expect smoothness in the ′PQ′ and ′ST ′ segments at the cost 
of reduced energy levels in the ′QRS′ complex. In our proposed algorithm, the distribution of the weights to the 
derivative terms in the filter given in (2) is controlled by the parameter � of the filter operator P . One may find 
an optimization over � to find the minimum global error of the denoised ECG signal. However, the choice of � 
can be variably optimum with specific regions of the ECG. Note that the ′QRS′ complex is related to ventricular 
depolarization, the ′PQ′ interval is related to the electrical activity of the movement between the atria and the 
ventricles, and the ′ST ′ has a correlation with ventricular contraction (Chapter 1.3 in53). In our experimental 
simulation, we have seen that a lower value of � (typically N25 ) gives a closer pattern for the ′QRS′ complex, and a 
relatively higher value of � (approximately 1.2× N ) gives a smooth pattern for ′PQ′ and ′ST ′ segments respectively 
for a N-length ECG signal. Each segment and peak has its own importance relative to the health of the heart. For 
example, pre-excitation syndromes may occur for a shortened ′PQ′ segment, and pericarditis and pulmonary 
embolism may show ′ST ′-segment abnormality. The QRS complex has multiple sharp transitions within a shorter 
span (less than 0.12 s). Abnormality in the ′QRS′ complex may incur bundle-branch block, pre-excitation syn-
dromes, and premature ventricular contraction etc. Here, we show the two different choices of � , which preserve 
the pattern of both sharp and flat patterns in the denoised ECG signal through our proposed QSF.

Note on accuracy and complexity trade‑off
 In this article, a conceptually novel quantum filtering framework is proposed. The main motivation has been 
lying within the augmentation of quantum computational speed-up in the signal denoising application, focusing 
on the ECG signal. There are several future scopes to improvise the algorithm in order to increase the accuracy of 
the signal reconstruction from its noisy version. One can approach methods such as band-stop smoothing filter 
(BSSF) as shown in25 to get better filter response for ECG signal denoising. However, the complexity advantage 
due to the sparsity nature of the filter can be compromised with BSSF within quantum formalism. With the 
increase in the number of terms of Taylor series truncation for QHS, one can hope for a slight improvement in 
the accuracy at the cost of increased computational complexity. An increasing number of qubits (especially the 
ancillary qubits considered for representing the information) can provide us with improvement in the precision 
of the estimated signals. Hence, we see that the proposed QSF has a trade-off between complexity and accuracy. 
In this work, computational gate complexity and run-time complexity are exploited without compromising the 
accuracy of the filter as compared to the classical methods.

Note on condition number ( κ ), and time of evolution (t)
 Two important parameters of the proposed QSF are the condition number ( κ ) and quantum time evolution 
(t). The QHS method requires a minimum time t for its optimal simulation. Note that we have chosen t = 0.2 
second using the concept of quantum time resolution as given in49. In general, the condition number for the 
matrix P should be sufficiently less in order to maintain the positive definite property of the operator and its 

(55)Õ

(

κ2poly(logN)

εP

)

.
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stable inversion. However, the perturbation from multiple sources (such as noise and quantum uncertainty 
phenomena) may increase the value of κ and direct inversion with HHL sub-routine27 may degrade the filter 
performance. However, the regularization within the filter matrix (with tuning parameter � ) takes care of the 
matrix perturbation, and the condition number remains within a lower range. Hence, the proposed quantum 
filter may be applied in the perturbed situation and inherent regularization stabilizes the filter performance.

Note on possible extension to quantum machine learning algorithms
 The recent deep learning (DL) models54–56 show potential avenues for the novel ECG signal denoising problem, 
surpassing the accuracy limits of the conventional statistical signal processing-based algorithms. However, the 
successful application of the DL largely depends on the training data dimensionality, which incurs significant 
computational complexity. In addition, training DL models require large computational resources (number of 
quantum registers and circuit depth in terms of quantum formalism), limiting their deployment innear-term 
quantum computers. Our work shows a quantum formalism for the quantum smoothing filter, with its possible 
integration in the NISQ computing and resource-limited quantum computers. Further, it remains an open 
research question of how quantum DL models, such as quantum convolutional neural networks57 can be utilized, 
enabling the proposed quantum filter to achieve high-precision quantum denoising and classification with the 
increasing capability of superconducting qubit technology in the biomedical domain.

Note on the application of QSF in quantum communication and quantum internet
Quantum noise has been a bottleneck for problems in NISQ computing, such as quantum communications and 
quantum internet58. Within the realm of quantum internet58, there’s remarkable scope for quantum architecture, 
including utilising both unentangled and entangled structures. Additionally, scalable models for distributed 
gate-model quantum computation in near-term quantum systems have been put forward59. Literature suggests 
that valuable information in the context of the quantum internet often exhibits noisy characteristics, with one of 
the primary sources of error being the circuit complexity at the gate level. To address this, the proposed quan-
tum smoothing filter could be beneficial, particularly for reducing gate complexity and noise in the quantum 
internet setting.

Conclusion
A quantum smoothing filter is proposed for denoising information-bearing signals corrupted by observation 
noise. The proposed quantum algorithm exploits the penta-diagonal banded-Toeplitz matrix structure for sparse 
decomposition of the Hamiltonian matrix, which augments the quantum gate-complexity advantage compared 
to the standard Hamiltonian simulation. Compared with classical filtering techniques such as DWT and EMD, 
the quantum filter shows an advantage in run-time complexity. A study is performed on ECG signal denoising, 
and the performance analysis is given with accuracy and complexity for the proposed quantum filter framework. 
The results reported in this article show potential applications for signal filtering with large dimensions, such as 
ECG, using near-term quantum computers.

Data availability
The datasets supporting the current study are taken from the publicly available PhysioNet database43.
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