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Exploring expected values 
of topological indices of random 
cyclodecane chains for chemical 
insights
Bai Chunsong 1, Anisa Naeem 2, Shamaila Yousaf 2, Adnan Aslam 3, Fairouz Tchier 4 & 
Abudulai Issa 5*

Chemical graph theory has made a significant contribution to understand the chemical compound 
properties in the modern era of chemical science. At present, calculation of the topological indices is 
one of most important area of research in the field of chemical graph theory. Cyclodecane is a cyclic 
hydrocarbon with the chemical formula C

10
H
20

 . It consists of a ring of ten carbon atoms bonded 
together in a cyclical structure. Cyclodecane chains can be part of larger molecules or polymers, where 
multiple cyclodecane rings are connected together. These molecules can have various applications 
in chemistry, materials science, and pharmaceuticals. This article aims to determine expected values 
of some connectivity based topological indices of random cyclodecane chains, containing saturated 
hydrocarbons with at least two rings. It also compares these descriptors using explicit formulae, 
numerical tables and present graphical profiles of these comparisons.
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Chemical graph theory is a branch of graph theory that focuses on the study of graphs to model and understand 
molecular structures and chemical reactions. In this context, atoms are represented as vertices (nodes), and 
chemical bonds are represented as edges connecting these vertices. It provides a powerful framework for under-
standing molecular structures, properties, and reactions, and plays a central role in many areas of chemistry, 
biochemistry, and materials science. Chemical graph theory is used to predict molecular structures based on 
connectivity information. Algorithms such as the Morgan algorithm or the famous Wiener index can be used 
to generate molecular structures or predict properties like molecular shape, size, and symmetry. QSAR studies 
correlate the chemical structure of molecules with their biological activity or other properties. Graph-based 
descriptors derived from chemical graphs, such as topological indices, connectivity indices, and molecular 
fingerprints, are utilized to quantify structural features and predict biological activity.

A topological index is a numerical value assigned to a molecular structure based solely on its topology, or 
connectivity pattern, without considering bond lengths or angles. These indices are used in chemical graph theory 
and quantitative structure-activity relationship (QSAR) studies to correlate molecular structure with physical, 
chemical, or biological properties. Topological indices provide a simplified representation of molecular structure, 
facilitating the comparison of molecules and the prediction of their properties. There are many degree and dis-
tance based topological indices introduced in literature but some of them are better because of their correlation 
with chemical properties such as high boiling point, strain energy and stability. The degree based topological 
indices link specific physicochemical characteristics of several chemical substances. For more detail on various 
topological indices, see1–11. The name molecular descriptor was introduced for the Z-index12. For details, see13–15. 
The quantitative structure property relationship (QSPR) and the quantitative structure activity relationship 
(QSAR) are two areas in which topological indices have particularly vital role in mathematical chemistry16,17.

A graph ϒ is made up of two finite sets, vertices and edges. The degree of the vertex υ is the number of edges 
that incident at vertex υ in ϒ and it is denoted by the symbol d(υ) . For basic terminologies related to graph 
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theory, the readers can see10. The Randić index18, first introduced by Milan Randić in 1975, measures molecular 
branching of chemical compounds in graph theory. The mathematical formula of Randić index is

It is useful in quantitative structure-activity relationship (QSAR) studies in chemistry, correlated with proper-
ties like boiling points, enthalpies, and molecular weights. It captures information about molecular structure 
branching and connectivity, making it a valuable tool in chemical graph theory and molecular graph analysis. 
Details on these applications can be found in the books19–21. The General Randić index22, also known as the 
General Randić connectivity index, is an extension of the Randić index, focusing on the molecular branching of 
chemical compounds. The general Randic index of a graph ϒ is defined as

The Atom-Bond Connectivity (ABC) index23 is a mathematical tool in chemistry used to analyze the structure 
of molecules, measure their complexity. The mathematical formula of ABC index is

It is used in Quantitative Structure-Activity Relationship studies, molecular descriptors and cheminformatics to 
study interactions, describe molecules and analyze chemical data24,25. The Atom-Bond Sum Connectivity (ABS) 
index26 is a topological index used in chemical graph theory to quantify the molecular structure of chemical 
compounds. It provides a numerical descriptor of molecular structure, useful in computational chemistry, quan-
titative structure-activity relationship studies, and other areas. It captures information about atom connectivity 
and bond types, enabling correlation with molecular properties and activities. It is defined as

The geometric arithmetic index27, which combines geometric and arithmetic mean values of molecular graph 
properties, helps chemists understand molecule structural characteristics and predict their behavior in chemical 
processes or biological activities. The geometric arithmetic index of a graph ϒ has the mathematical formula

The paper is structured as follows: In Section “Materials and methods”, we discuss the 2D and 3D models of 
cyclodecanes and their properties. We explain the construction of random cyclodecane chains, and we have 
obtained general formulas for some connectivity-based topological indices. In Section “Main results and discus-
sions”, we compute explicit expressions for the connectivity-based topological indices of random cyclodecane 
chains. The expressions for the expected values of these topological descriptors are obtained for some special 
cases. An analytical comparison between the expected values of these topological descriptors is presented in 
Section “Comparison between the expected values of topological descriptors”. Finally, the conclusion section 
summarizes the article.

Materials and methods
Cyclodecane is a ten-carbon ring with ten membered rings, with two possible isomers, cis-cyclodecane and 
trans-cyclodecane (see Fig. 1). It undergoes Bergmann cyclization to produce diradical products that inhibit 
cell replication and interact with DNA. The 2D chemical structure of cyclodecane, also known as the skeletal 
formula, is the standard notation for organic molecules. Carbon atoms are located at the corner(s) and hydrogen 
atoms are not indicated. Each carbon atom is associated with enough hydrogen atoms to form four bonds. The 
3D chemical structure image of cyclodecane uses a ball-and-stick model, displaying atom positions and bonds. 
The radius of spheres is smaller than rod lengths, allowing for a clearer view of atoms and bonds. In comparison 
to typical polymers, cyclodecane-based monomers enable polymer synthesis, resulting in unique polymers with 
cyclodecane-containing characteristics. Cyclodecane may impact the crystal structure of certain compounds, 
particularly those with coordination complexes or molecular assemblies, affecting the packing arrangement and 
overall properties of the crystal lattice. The chemical structure of a molecule contains the arrangement of its 
atoms and the bonds that hold them together. Cyclocodecane has 30 bonds, including 10 non-hydrogen bonds 
and 1 ten-numbered ring. The 2D and 3D models of cyclodecane chains are depicted in Fig. 1. The structure 
of the cyclodecane chain is chemical as well. Some of the characteristics of cyclodecane chains are: Molecular 
Weight 140.27 g/mol, Melting Point 10.0◦C , Boiling Point 202.0◦C , Health Risk 0.33 mg/L, Water Solubility 25◦C 
and Vapour Pressure 0.56 mmHg.

Researcher have focused on hydrocarbons and their derivatives because of their simple structure have two 
components carbon and hydrogen. Numerous kinds of hydrocarbon derivatives can be obtained by substitut-
ing their molecular hydrogen atoms with various other atomic groups. Plants contains a significant amount of 

(1)R(ϒ) =
∑

υ,ν∈E(ϒ)
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∑
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precious hydrocarbons and some of these hydrocarbons properties are important in the production of chemical 
raw material and fuel. A cycloalkane with the chemical formula C10H20 is cyclodecane. When an edge is used to 
join the two or more decagons then it is known as cyclodecane chain. A random cyclodecane of length k is a chain 
containing k decagons which are connected to each other by edge in a random way. We use the notation CDCk 
to denote a random cyclodecane chain containing k decagons. Figure 2 shows the unique cyclodecane CDCk for 
k = 1, 2 . There are five possible ways to connect a terminal decagon with the cyclodecane chain CDCk−1 with 
probability δ1 , δ2 , δ3 , δ4 , and δ5 = 1− δ1 − δ2 − δ3 − δ4 respectively. A random selection is made from one of 
the five possibilities at each step (q = 3, 4, 5, ..., k) : 

(i)	 CDCq−1 → CDC
1
q with probability δ1.

(ii)	 CDCq−1 → CDC
2
q with probability δ2.

(iii)	 CDCq−1 → CDC
3
q with probability δ3.

(iv)	 CDCq−1 → CDC
4
q with probability δ4.

(v)	 CDCq−1 → CDC
5
q with probability δ5 = 1− δ1 − δ2 − δ3 − δ4.

For k = 3 , we have five different possible cyclodecane chains (see Fig. 3). The five different configurations of 
cyclodecane chains CDC1

k+1 , CDC
2
k+1 , CDC

3
k+1 , CDC

4
k+1 and CDC5

k+1 are shown in Fig. 4. For results on the 
expected values of different topological indices of random structures see28–38.

In this section, we compute the expected values of geometric-arithmetic index, atom-bound connectivity 
index, atom-bound-sum connectivity index, Randić index and general Randić index for CDCk chain having k 
decagons. Consider CDCk to be the cyclodecane chain formed from CDCk−1 , as illustrated in Fig. 4. We use 
the notation υij to denote the number of edges of CDCk whose end vertices have degree i and j respectively. The 
structure of the chain CDCk clearly shows that it comprises only (2, 2), (2, 3), and (3, 3) type edges. To calculate 
these indices for the chain CDCk , we need to find the edges of the type υ22(CDCk) , υ23(CDCk) and υ33(CDCk) . 
Using this information, Eqs. (1), (2), (3), (4) and (5) can be written as:

(6)GA(CDCk) = υ22(CDCk)+ 0.9798υ23(CDCk)+ υ33(CDCk),

(7)ABC(CDCk) = 0.7071υ22(CDCk)+ 0.7071υ23(CDCk)+ 0.6667υ33(CDCk),

(8)ABS(CDCk) = 0.7071υ22(CDCk)+ 0.7746υ23(CDCk)+ 0.8165υ33(CDCk),

Figure 1.   2D and 3D models of cyclodecanes.

Figure 2.   Cyclodecane chains for k = 1 and k = 2.
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Main results and discussions
For k ≥ 3 , the cyclodecane chain CDCk is a random structure. It follows GA(CDCk) , ABC(CDCk) , ABS(CDCk) , 
R(CDCk) and GR(CDCk) are random variables. We use the notaions EGA(CDCk) = E[GA(CDCk)] , 
EABC(CDCk) = E[ABC(CDCk)]  ,  EABS(CDCk) = E[ABS(CDCk)]  ,  ER(CDCk) = E[R(CDCk)]  a n d 
EGR(CDCk) = E[GR(CDCk)] to denote their expected values respectively.

(9)R(CDCk) = 0.5υ22(CDCk)+ 0.4082υ23(CDCk)+ 0.3333υ33(CDCk),

(10)GR(CDCk) = 4
γ υ22(CDCk)+ 6

γ υ23(CDCk)+ 9
γ υ33(CDCk).

Figure 3.   The five types of cyclodecane chain for k = 3.

Figure 4.   The five different configurations in cyclodecan for k > 3.
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Theorem 1  Let k ≥ 2 , then the expected value of the Geometric-Arithmetic index of CDCk is

Proof  For k = 2 , we get EGA(CDC2) = 20.9192 which is indeed true. Let k ≥ 3 , then there are five possibilities.
a) If CDP−k1 −→ CDC

1
k , then υ22(CDC1

k) = υ22(CDCk−1)+ 7 , υ23(CDC1
k) = υ23(CDCk−1)+ 2 and 

υ33(CDC
1
k) = υ33(CDCk−1)+ 2 . Using these values in Eq. (6), we get

b) If CDCk−1 −→ CDC
2
k , then υ22(CDC2

k) = υ22(CDCk−1)+ 6 , υ23(CDC2
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
2
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (6), we get

c) If CDCk−1 −→ CDC
3
k , then υ22(CDC3

k) = υ22(CDCk−1)+ 6 , υ23(CDC3
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
3
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (6), we get

d)If CDCk−1 −→ CDC
4
k , then υ22(CDC4

k) = υ22(CDCk−1)+ 6 , υ23(CDC4
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
4
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (6), we get

e) If CDCk−1 −→ CDC
5
k , then υ22(CDC5

k) = υ22(CDCk−1)+ 6 , υ23(CDC5
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
5
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (6), we get

Thus, we have

Since E[EGA(CDCk)] = EGA(CDCk) , it follows that

Finally, solving the the recurrence relation by using the initial condition E(CDC2) = 20.9192 , we get

	�  �

Theorem 2  Let k ≥ 2 , then the expected value of the atom-bound connectivity index of CDCk is

Proof  For k = 2 , we get EABC(CDC2) = 14.81 which is indeed true. Let k ≥ 3 , then there are five possibilities.
a) If CDCk−1 −→ CDC

1
k , then υ22(CDC1

k) = υ22(CDCk−1)+ 7 , υ23(CDC1
k) = υ23(CDCk−1)+ 2 and 

υ33(CDC
1
k) = υ33(CDCk−1)+ 2 . Using these values in Eq. (7), we get

b) If CDCk−1 −→ CDC
2
k , then υ22(CDC2

k) = υ22(CDCk−1)+ 6 , υ23(CDC2
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
2
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (7), we get

c) If CDCk−1 −→ CDC
3
k , then υ22(CDC3

k) = υ22(CDCk−1)+ 6 , υ23(CDC3
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
3
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (7), we get

d)If CDCk−1 −→ CDC
4
k , then υ22(CDC4

k) = υ22(CDCk−1)+ 6 , υ23(CDC4
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
4
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (7), we get

EGA(CDCk) = k(0.0404δ1 + 10.9192)− 0.0808δ1 − 0.9192.

GA(CDC1
k) = GA(CDCk−1)+ 10.9596.

GA(CDC2
k) = GA(CDCk−1)+ 10.9192.

GA(CDC3
k) = GA(CDCk−1)+ 10.9192.

GA(CDC4
k) = GA(CDCk−1)+ 10.9192.

GA(CDC5
k) = GA(CDCk−1)+ 10.9192.

EGA(CDCk) =δ1GA(CDC
1
k)+ δ2GA(CDC

2
k)+ δ3GA(CDC

3
k)+ δ4GA(CDC

4
k)

+ (1− δ1 − δ2 − δ3 − δ4)GA(CDC
5
k)

=GA(CDCk−1)+ 0.0404δ1 + 10.9192.

EGA(CDCk) = EGA(CDCk−1)+ 0.0404δ1 + 10.9192.

EGA(CDCk) = k(0.0404δ1 + 10.9192)− 0.0808δ1 − 0.9192.

EABC(CDCk) = k(7.7377− 0.0404δ1)+ 0.0809δ1 − 7.0711.

ABC(CDC1
k) = ABC(CDCk−1)+ 7.6973.

ABC(CDC2
k) = ABC(CDCk−1)+ 7.7377.

ABC(CDC3
k) = ABC(CDCk−1)+ 7, 7377.

ABC(CDC4
k) = ABC(CDCk−1)+ 7.7377.
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e)If CDCk−1 −→ CDC
5
k , then υ22(CDC5

k) = υ22(CDCk−1)+ 6 , υ23(CDC5
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
5
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (7), we get

Thus, we have

since E[EABC(CDCk)] = EABC(CDCk) , it follows that

Finally, solving the the recurrence relation by using the initial condition E(CDC2) = 14.81 , we get

	�  �

Theorem 3  Let k ≥ 2 , then the expected value of the atom-bound-sum connectivity index of CDCk is

Proof  For k = 2 , we get EABS(CDC2) = 15.2286 which is indeed true. Let k ≥ 3 , then there are five possibilities.
a) If CDCk−1 −→ CDC

1
k , then υ22(CDC1

k) = υ22(CDCk−1)+ 7 , υ23(CDC1
k) = υ23(CDCk−1)+ 2 and 

υ33(CDC
1
k) = υ33(CDCk−1)+ 2 . Using these values in Eq. (8), we get

b) If CDCk−1 −→ CDC
2
k , then υ22(CDC2

k) = υ22(CDCk−1)+ 6 , υ23(CDC2
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
2
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (8), we get

c) If CDCk−1 −→ CDC
3
k , then υ22(CDC3

k) = υ22(CDCk−1)+ 6 , υ23(CDC3
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
3
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (8), we get

d)If CDCk−1 −→ CDC
4
k , then υ22(CDC4

k) = υ22(CDCk−1)+ 6 , υ23(CDC4
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
4
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (8), we get

e)If CDCk−1 −→ CDC
5
k , then υ22(CDC5

k) = υ22(CDCk−1)+ 6 , υ23(CDC5
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
5
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (8), we get

Thus, we have

Since E[EABS(CDCk)] = EABS(CDCk) , it follows that

Finally, solving the the recurrence relation by using the initial condition E(CDC2) = 15.2286 , we get

	�  �

Theorem 4  Let k ≥ 2 , then the expected value of the Randić index of CDCk is

ABC(CDC5
k) = ABC(CDCk−1)+ 7.7377.

EABC(CDCk) =δ1ABC(CDC
1
k)+ δ2ABC(CDC

2
k)+ δ3ABC(CDC

3
k)+ δ4ABC(CDC

4
k)

+ (1− δ1 − δ2 − δ3 − δ4)ABC(CDC
5
k).

=ABC(CDCk−1)− 0.0404δ1 + 7.7377.

EABC(CDCk) = EABC(CDCk−1)− 0.0404δ1 + 7.7377.

EABC(CDCk) = k(7.7377− 0.0404δ1)+ 0.0809δ1 − 7.0711.

EABS(CDCk) = k(8.1575− 0.0256δ1)+ 0.0512δ1 − 1.0864.

ABS(CDC1
k) = ABS(CDCk−1)+ 8.1319.

ABS(CDC2
k) = ABS(CDCk−1)+ 8.1575.

ABS(CDC3
k) = ABS(CDCk−1)+ 8.1575.

ABS(CDC4
k) = ABS(CDCk−1)+ 8.1575.

ABS(CDC5
k) = ABS(CDCk−1)+ 8.1575.

EABS(CDCk) = δ1ABS(CDC
1
k)+ δ2ABS(CDC

2
k)+ δ3ABS(CDC

3
k)

+ δ4ABS(CDC
4
k)+ (1− δ1 − δ2 − δ3 − δ4)ABS(CDC

5
k).

= ABS(CDCk−1)− 0.0256δ1 + 8.1575.

EABS(CDCk) = EABS(CDCk−1)− 0.0256δ1 + 8.1575.

EABS(CDCk) = (k)(8.1575− 0.0256δ1)+ 0.0512δ1 − 1.0864.

ER(CDCk) = k(0.0169δ1 + 4.9663)− 0.0338δ1 + 0.0337.
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Proof  For k = 2 , we get ER(CDC2) = 9.9663 which is indeed true. Let k ≥ 3 , then there are five possibilities.
a) If CDCk−1 −→ CDC

1
k , then υ22(CDC1

k) = υ22(CDCk−1)+ 7 , υ23(CDC1
k) = υ23(CDCk−1)+ 2 and 

υ33(CDC
1
k) = υ33(CDCk−1)+ 2 . Using these values in Eq. (9), we get

b) If CDCk−1 −→ CDC
2
k , then υ22(CDC2

k) = υ22(CDCk−1)+ 6 , υ23(CDC2
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
2
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (9), we get

c) If CDCk−1 −→ CDC
3
k , then υ22(CDC3

k) = υ22(CDCk−1)+ 6 , υ23(CDC3
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
3
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (9), we get

d)If CDCk−1 −→ CDC
4
k , then υ22(CDC4

k) = υ22(CDCk−1)+ 6 , υ23(CDC4
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
4
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (9), we get

e) If CDCk−1 −→ CDC
5
k , then υ22(CDC5

k) = υ22(CDCk−1)+ 6 , υ23(CDC5
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
5
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (9), we get

Thus, we have

Since E[ER(CDCk)] = ER(CDCk) , it follows that

Finally, solving the the recurrence relation by using the initial condition E(CDC2) = 9.9663 , we get

	�  �

Theorem 5  Let k ≥ 2 , then the expected value of the general Randić index of CDCk is

Proof  For k = 2 , we get ER(CDC2) = 16(4γ )+ 4(6γ )+ 9γ which is indeed true. Let k ≥ 3 , then there are five 
possibilities.

a) If CDCk−1 −→ CDC
1
k , then υ22(CDC1

k) = υ22(CDCk−1)+ 7 , υ23(CDC1
k) = υ23(CDCk−1)+ 2 and 

υ33(CDC
1
k) = υ33(CDCk−1)+ 2 . Using these values in Eq. (10), we get

b) If CDCk−1 −→ CDC
2
k , then υ22(CDC2

k) = υ22(CDCk−1)+ 6 , υ23(CDC2
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
2
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (10), we get

c) If CDCk−1 −→ CDC
3
k , then υ22(CDC3

k) = υ22(CDCk−1)+ 6 , υ23(CDC3
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
3
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (10), we get

d)If CDCk−1 −→ CDC
4
k , then υ22(CDC4

k) = υ22(CDCk−1)+ 6 , υ23(CDC4
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
4
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (10), we get

e) If CDCk−1 −→ CDC
5
k , then υ22(CDC5

k) = υ22(CDCk−1)+ 6 , υ23(CDC5
k) = υ23(CDCk−1)+ 4 and 

υ33(CDC
5
k) = υ33(CDCk−1)+ 1 . Using these values in Eq. (10), we get

R(CDC1
k) = R(CDCk−1)+ 4.9832.

R(CDC2
k) = R(CDCk−1)+ 4.9663.

R(CDC3
k) = R(CDCk−1)+ 4.9663.

R(CDC4
k) = R(CDCk−1)+ 4, 9663.

R(CDC5
k) = R(CDCk−1)+ 4, 9663.

ER(CDCk) =δ1R(CDC
1
k)+ δ2R(CDC

2
k)+ δ3R(CDC

3
k)+ δ4R(CDC

4
k)

+ (1− δ1 − δ2 − δ3 − δ4)R(CDC
5
k)

=R(CDCk−1)+ 0.0169δ1 + 4.9663.

ER(CDCk) = ER(CDCk−1)+ 0.0169δ1 + 4.9663.

ER(CDCk) = k(0.0169δ1 + 4.9663)− 0.0338δ1 + 0.0337.

EGR(CDCk) = k[(4γ − 2(6γ )+ 9
γ )δ1 + 6(4γ )+ 4(6γ )+ 9

γ ] − 2(4γ − 2(6γ )+ 9
γ )δ1 + 4(4γ )+ 4(6γ )− 9

γ
.

GR(CDC1
k) = GR(CDCk−1)+ 7(4γ )+ 2(6γ )+ 2(9γ ).

GR(CDC2
k) = GR(CDCk−1)+ 6(4γ )+ 4(6γ )+ 9

γ
.

GR(CDC3
k) = GR(CDCk−1)+ 6(4γ )+ 4(6γ )+ 9

γ
.

GR(CDC4
k) = GR(CDCk−1)+ 6(4γ )+ 4(6γ )+ 9

γ
.
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Thus, we have

Since E[EGR(CDCk)] = EGR(CDCk) , it follows that

Finally, solving the the recurrence relation by using the initial condition E(CDC2) = 7(4γ )+ 2(6γ )+ 2(9γ ) , 
we get

	�  �

We now focus on the unique cyclodecane chains CFk , CGk , CHk , CIk and CJk (see Fig. 5). These chains can 
be obtained from CDCk as special cases by taking the value of one of the probability δi = 1 and the remaining 
probabilities 0 at each step, where i = 1, 2, . . . , 5 . We use Theorems 1, 2, 3 and 4 to calculate the topological 
indices for these five specific chains.

Corollary 6  Let k ≥ 2 , then we have

•	 EABC(CFk) = 7.6973k − 6.990.
•	 EABS(CFk) = 8.1319k − 1.0352.
•	 EGA(CFk) = 10.9596k − 1.
•	 ER(CFk) = 4.9832k − 0.0001.
•	 EABC(CGk) = ABC(CHk) = ABC(CIk) = ABC(CJk) = 7.7377k − 7.0711.
•	 EABS(CGk) = ABS(CHk) = ABS(CIk) = ABS(CJk) = 8.1575k − 1.0864.
•	 EGA(CGk) = GA(CHk) = GA(CIk) = GA(CJk) = 10.9192k − 0.9192.
•	 ER(CGk) = R(CHk) = R(CIk) = R(CJk) = 4.9663k + 0.0337.

GR(CDC5
k) = GR(CDCk−1)+ 6(4γ )+ 4(6γ )+ 9

γ
.

EGR(CDCk) =δ1GR(CDC
1
k)+ δ2GR(CDC

2
k)+ δ3GR(CDC

3
k)+ δ4GR(CDC

4
k)

+ (1− δ1 − δ2 − δ3 − δ4)GR(CDC
5
k)

=GR(CDCk−1)+ [(4γ )− 2(6γ )+ 9
γ ]δ1 + 6(4γ )+ 4(6γ )+ 9

γ

EGR(CDCk) = EGR(CDCk−1)+ [4γ − 2(6γ )+ 9
γ ]δ1 + 6(4γ )+ 4(6γ )+ 9

γ
.

EGR(CDCk) =k[(4γ − 2(6γ )+ 9
γ )δ1 + 6(4γ )+ 4(6γ )+ 9

γ ]
− 2(4γ − 2(6γ )+ 9

γ )δ1 + 4(4γ )+ 4(6γ )− 9
γ
.

Figure 5.   Five special cyclodecane chains with k decanes.
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Comparison between the expected values of topological descriptors
In this section we compare the expected values for the Randić, general Randić, atom-bound connectivity, atom-
bound-sum connectivity and geometric-arithmetic indices for random cyclodecane chain having same prob-
abilities. Tables 1, 2, 3, and 4 provides the numerical values of the expected values of these topological descriptors 
for different values of the probability function δ1 . It is easy to observe that the value of geometric-arithmetic index 
is always greater than the other topological descriptors in all the cases. The comparison of the expected values of 
these topological descriptors can be seen in Figs. 6 and 7. Now, we give an analytical proofs for the comparison 
of the expected values of the considered topological descriptors.

Theorem 6  If k ≥ 2 , then E[ABS(CDCk)] > E[ABC(CDCk)].

Table 1.   The expected values of topological indices for δ1 = 1.

k E
GA

E
ABC

E
ABS

E
R

4 42.8384 23.6799 31.4924 19.9327

5 53.798 31.4963 39.6242 24.9159

6 64.7576 39.1936 47.7562 29.8991

7 75.7172 46.8909 55.8881 34.8823

8 86.6768 54.5882 64.02 39.8655

9 97.6364 62.2855 72.1519 44.8487

10 108.596 69.9828 80.2838 49.8319

11 119.5556 77.6801 88.4157 54.8151

12 130.5152 85.3774 96.5476 59.7983

13 141.4748 92.0747 104.6795 64.7815

Table 2.   The expected values of topological indices for δ1 = 0.

k E
GA

E
ABC

E
ABS

E
R

4 42.7576 23.8797 31.5436 19.8989

5 53.6768 31.6174 39.7011 24.8652

6 64.596 39.3551 47.8586 29.8315

7 75.5152 47.0928 56.0161 34.7978

8 86.4344 54.8305 64.1736 39.7641

9 97.3536 62.5682 72.3311 44.7304

10 108.2728 70.3059 80.4886 49.6967

11 119.192 78.0436 88.6461 54.663

12 130.1112 85.7813 96.8036 59.6293

13 141.0304 93.519 104.9611 64.5956

Table 3.   The expected values of topological indices for δ1 = 1/2.

k E
GA

E
ABC

E
ABS

E
R

4 42.798 23.83935 31.518 19.9158

5 53.7374 31.55685 39.6627 24.89055

6 64.6768 39.27435 47.8074 29.8653

7 75.6162 46.99185 55.9521 34.84005

8 86.5556 54.70935 64.0968 39.8148

9 97.495 62.42685 72.2415 44.78955

10 108.4344 70.14435 80.3862 49.7643

11 119.3738 77.86185 88.5309 54.73905

12 130.3132 85.57935 96.6756 59.7138

13 141.2526 93.29685 104.8203 64.68855
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Proof  The statement is true for k = 2 . Now, we prove that the statement is true for k > 2 . By using Theorems 2 
and 3, we have

	�  �

Theorem 8  If k ≥ 2 , then E[GA(CDCk)] > E[R(CDCk)].

Proof  The statement is true for k = 2 . Now, we prove that the statement is true for k > 2 . By using Theorem 1 
and 4, we have

E[ABS(CDCk)] − E[ABC(CDCk)] =(k)(8.1575− 0.0256δ1)+ 0.0512δ1 − 1.0864

− (k)(7.7377− 0.0404δ1)− 0.0809δ1 + 7.0711

=(k)(0.4198+ 0.0148δ1)− 0.0297δ1 + 5.9847 > 0.

Table 4.   The expected values of topological indices for δ1 = 1/4.

k E
GA

E
ABC

E
ABS

E
R

4 42.7778 23.85952 31.5308 19.90735

5 53.7071 31.587125 39.6819 24.877875

6 64.6364 39.314725 47.833 29.8484

7 75.5657 47.041325 55.9841 34.818925

8 86.495 54.769925 64.1352 39.78945

9 97.4243 62.497525 72.2863 44.759975

10 108.3536 70.225125 80.4374 49.7305

11 119.2829 77.952725 88.5885 54.701025

12 130.2122 85.680325 96.7396 59.67155

13 141.1415 93.407925 104.8907 64.642075

Figure 6.   Graphical comparison between the expected values of topological indices.
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	�  �

Theorem 9  If k ≥ 2 , then E[GA(CDCk)] > E[ABS(CDCk)]

Proof  The statement is true for k = 2 . Now, we prove that the statement is true for k > 2 . By using Theorem 1 
and 3, we have

	�  �

Theorem 10  If k ≥ 2 , then E[ABC(CDCk)] > E[R(CDCk)]

Proof  The statement is true for k = 2 . Now, we prove that the statement is true for k > 2 . By using Theorem 2 
and 4, we have

	�  �

Corollary 11  If k ≥ 2 , then E[GA(CDCk)] > E[ABS(CDCk)] > E[ABC(CDCk)] > E[R(CDCk)]

Proof  The result follows from Theorem 7, 8, 9 and 10. 	�  �

Conclusion
In this research, the expected values of Randić index, general Randić index, atom-bound connectivity index, 
atom-bound-sum connectivity index and geometric-arithmetic index for a random cyclodecane chain are com-
puted and analyzed. Along with numerical and graphical representations of these indices in random cyclodecane 
chains, we also provide analytical proofs for comparisons indicating that the geometric-arithmetic index has the 
highest expected value of the other three topological indices.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 18 March 2024; Accepted: 23 April 2024

E[GA(CDCk)] − E[R(CDCk)] =(k)[(0.0404δ1 + 10.9192)] − 0.0808δ1 − 0.9192

− (k)[(0.0169δ1 + 4.9663)] + 0.0338δ1 − 0.0337

=(k)(5.9529+ 0.0235δ1)+ 0.1146δ1 − 0.9529 > 0.

E[GA(CDCk)] − E[ABS(CDCk)] =(k)[(0.0404δ1 + 10.9192)] − 0.0808δ1 − 0.9192

− (k)(8.1575− 0.0256δ1)− 0.0512δ1 + 1.0864

=(k)(2.7617+ 0.066δ1)− 0.132δ1 + 0.1672.

E[ABC(CDCk)] − E[R(CDCk)] =(k)(7.7377− 0.0404δ1)+ 0.0809δ1 − 7.0711

− (k)[(0.0169δ1 + 4.9663)] + 0.0338δ1 − 0.0337

=(k)(2.7714− 0.0573δ1)+ 0.1147δ1 − 7.1048.

Figure 7.   3D plots of E[GA], E[ABS], E[ABC] and E[R].
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