
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9969  | https://doi.org/10.1038/s41598-024-60508-6

www.nature.com/scientificreports

Prediction method for the tension 
force of support ropes in flexible 
rockfall barriers based on full‑scale 
experiments and numerical 
analysis
Xin Qi 1, Lei Zhao 1* & Qing‑Cheng Meng 2

This paper proposes a prediction method for the tension force of support ropes in flexible rockfall 
barriers. The method is based on two full‑scale model tests with an impact energy of 3000 kJ, as well 
as 36 set numerical models featuring varying lengths and impact energies. From the results of full 
scale tests and numerical models, it is inferred that the tension force at the end of the support rope 
is significantly less than that at the point of impact, exhibiting an approximate Gaussian attenuation 
distribution with propagation distance. To account for the attenuation of tensile forces in support 
ropes, a tensile attenuation coefficient is defined. Through comparative analysis of data obtained 
from 36 models with varying impact energies and propagation distances, the average attenuation 
coefficient for the upper support rope is determined to be approximately 0.7, while the average 
coefficient for the lower support rope is around 0.8. Utilizing the least squares method, a prediction 
method for the tension force of support ropes in flexible rockfall barriers is established. This method 
takes into account both the propagation distance and impact energy, enabling accurate predictions of 
the tensile behavior of the ropes under different conditions. This prediction model provides valuable 
insights for engineers in the design and optimization of these flexible barriers for rockfall mitigation.

Keywords Flexible rockfall barrier, Support rope, Tension force, Propagation distance, Attenuation 
coefficient

Flexible rockfall barriers are one of the most common protection measures for falling rock  disasters1,2, which 
primarily consist of interception structures(wire ring net), support structures(steel posts), and connection 
components(support ropes, upslope anchor ropes and energy dissipating devices)3. When a falling rock impacts 
the barrier, the wire ring net changes from a relaxed state to a tensile state, and the force is transferred to the 
support ropes. Once the force reaches a certain limit, the energy dissipating devices connected to the steel wire 
ropes start to deform. Through the large deformation of the wire ring net and the yield energy dissipation of 
energy dissipating devices, the energy of the falling rock is dissipated, successfully intercepting  it4. In the effort 
of the wire ring net and the elongation of energy dissipating devices, the slippage of the support rope can reach 
several meters or even 10  m5. During the sliding process, the support ropes are mainly in contact with two com-
ponents: one is the wire ring net , which is connected via shackles to create a slippery boundary, ensuring that 
the wire ring net can free slide on the support ropes, the other is the arc plate, which is set at the end of steel post 
to increase the bending radius, ensuring the support rope slide  smoothly6 (Fig. 1a). Notably, strong nonlinear 
friction occurs at each contact place. Meanwhile, a flexible rockfall barrier typically consists of tens to hundreds 
of meters, contact effects are spread throughout the support rope, causing the tension of the support rope may 
attenuate with length (Fig. 1b).

Usually, a large number of energy dissipating devices are installed on the support  rope7,8. On the one hand, the 
energy dissipating devices provide deformation space for the support ropes, and on the other hand, their energy 
consumption accounts for more than half of the entire  system9. Typically, they are positioned near the anchor 
points where near the end of support  ropes10. Due to the attenuation characteristics of the support ropes, the 
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tension transmitted to the end is far less than the tension force at the impact point, when the tension transmitted 
to the energy dissipating devices less than its starting force, which may not be activated. So, the impact energy 
cannot be dissipated, and the tension of the support rope increases quickly, in the end, causing the support rope 
to break and the entire system  collapsed11,12 (Fig. 2).

To ensure that the flexible rockfall barrier can be used normally in practical applications, numerous scholars 
have conducted studies in view of the rockfall impact and the dynamic response of the system. For instance, 
optimized the system’s structural layout to enhance the anti-impact ability of the  barrier13,14. Studied the impact 
of rockfall at different incident angles, different places, different shapes and different friction coefficients on the 
dynamic response of the  system15–17. Investigated the influence of impact energy and momentum change on the 
impact dynamic response of the system and proposed a highly nonlinear and dynamic numerical calculation 
 method18,19.Some scholars examined the slip amount of the support rope under different rockfall impact scenar-
ios. Some scholars have carried out full-scale impact tests of protective systems with different component speci-
fications and different connection modes to reveal the basic mechanical behavior of protective  structures20–22. 
Yu et al.23 built an overall model using discrete elements, and compared the slip and tension of the support rope 
using single impact and continuous full scale tests and numerical simulations. Dugelas et al.24 proposed a buffer 
mechanics model based on deflection control, for predicting the maximum deflection of the system. These studies 
propel the development of impact dynamics in flexible protective systems.

Nevertheless, research on the attenuation of cable forces of supporting ropes is insufficient, and the mechani-
cal characteristics of supporting ropes of flexible rockfall barriers have still remained unknown. Previous studies 
have only constructed calibration tests to obtain the empirical values of safety factors of supporting ropes so 
that they cannot be extended to all engineering projects. Due to the limitation of measurement technology, in 
fact, the maximum cable force of the supporting rope has not been measured in tests up to now. Most existing 
research has only focused on the tension of local wire rope segments and the deformation of these rope segments, 
few studies have investigated the distribution and attenuation law of tension throughout the entire wire rope. 
Consequently, researching the tension force attenuation law of support ropes possesses practical significance for 
the development and application of flexible rockfall barriers.

Figure 1.  Component of flexible rockfall barrier.

Figure 2.  Broken support rope.
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Analytical model for impact force transmission in support rope
A mechanical model that simplifies the support rope and its connecting structure has been established, where the 
impact force exerted by the wire ring net on the support rope is transformed into a pulling force on the energy 
dissipating device attached to it. By employing the Duhamel integral, the longitudinal motion equation of the 
infinitesimal element of the support rope has been derived, which is Eq. (1) and is illustrated in Fig. 3.

To investigate the tension force waves in the support rope, the displacement U was taken as the unknown 
function and introduced the concept of longitudinal wave velocity C, as given by Eq. (2):

By substituting Eq. (2) into Eq. (1) and performing the derivation, the governing equation for longitudinal 
wave propagation in the support rope is derived as Eq. (3):

where τ is the delay time. Due to the existence of viscous term, the harmonic solution is used to solve Eq. (3), 
resulting in the following expression: Eq. (4).:

Letting µ = α + iβ in Eq. (4) , ignoring the unreasonable roots, then achieved:

Thus, the solution to Eq. (1) can be derived as Eq. (7):

According  to25,26, considering that the wire rope tension is comprised of a static tension component and a 
dynamic tension effect, the functional relationship between the wire rope tension T, displacement U, and its 
derivatives is derived by combining Eq. (1) and Eq. (2):

where η is the viscous damping coefficient. Equation (7) and Eq. (8) indicate that the β term in the complex value 
u represents the exponential decay of the impact force wave with increasing propagation distance L. This decay 
behavior varies with frequency. For low-frequency waves, the β is proportional to ω2 . the tension wave exhibits 
a time lag due to the viscous damping term, resulting in attenuation of the tension in the wire rope subjected to 
shock wave transmission.
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Figure 3.  Structure and wire rope micro-element model.
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Tension distribution in the support ropes
Full‑scale test
The tests were carried out at the Southwest Jiaotong University Geological Disaster Test Site (Chengdu, Sichuan, 
China). The test model has three spans, each spanning is 10 m, and the wire ring net is in a horizontal state. A 
total of four steel posts, each with a spacing of 10 m and an elevation of 5 m, are set up to support the wire ring 
net. (Fig. 4). A gantry crane was used to lift the test block weighing 9400 kg to a height of 32 m from the wire 
ring net, with the impact position being the center of the mid-span, along with the impact energy of 3000 kJ. 
The specifications for each component of the test are listed in Table 1. Two full-scale models were constructed, 
with the only difference between Model 1 and Model 2 being the configuration of the energy dissipation devices.

Numerical simulation
To accurately simulate the dynamic behavior of the flexible rockfall barrier, the commercial software LS-DYNA 
was adopted. In this section, the details of the numerical modeling technology of the main components and 
connections of the flexible rockfall barriers based on LS-DYNA are described.

Modeling of the components
Wire-ring net is modeled as an interconnected collection of rings, with each ring connected to four others using 
an automatic contact algorithm. The rings are constructed from super-strength steel wires with a diameter of 
3 mm and a yield strength of 1.770 MPa. The beam element and a piecewise elastoplastic material model are 
used to describe the element’s behavior. This behavior is defined by both the cross-sectional area and the uniaxial 
stress–strain relationship (Fig. 5a).

Steel posts play a crucial role in maintaining the overall integrity of the structure. As the posts were made 
of structural steel Q235, they could be accurately modeled using beam elements with an ideal elastic–plastic 
stress–strain curve, as shown in Fig. 5b. Therefore, the elastic modulus Es was 210 GPa, Poisson’s ratio was 0.3, 
yield stress was 235 MPa, yield strain was 0.112%, and failure strain was 26%. In the numerical model, the bound-
ary conditions of the post ends were assumed to be hinged support.

Figure 4.  Test model and parameters.

Table 1.  Specifications of the model components.

Component name Model 1 Model 2

Wire Ring net R16/3/300 R16/3/300

Upper/lower support rope 3Φ20 3Φ22

upslope anchor rope 2Φ22 2Φ22

Steel post HW250 × 250 × 8 × 12 HW250 × 250 × 8 × 12

Energy dissipator on the support rope Device1 Device2

Energy dissipator on the upslope anchor rope Device1 Device3



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9969  | https://doi.org/10.1038/s41598-024-60508-6

www.nature.com/scientificreports/

Steel wire ropes were modeled by beam elements with cable material type, so the tension-only characteristic 
was successfully modeled. The elastic modulus Es was 120 GPa, the Poisson’s ratio was 0.3, the yield stress was 
1770 MPa, and the failure strain was 0.06.

Energy dissipating devices were modeled using nonlinear springs, and the force–displacement relationship 
was defined based on a group of tests. For Device 1, the starting force was 300 kN, with an energy consumption 
of 300 kJ. For Device 2, the starting force was 250 kN with an energy consumption of 375 kJ. For Device 3, the 
starting force was 120 kN with an energy consumption of 225 kJ (Fig. 5c).

Modeling of contact
The numerical model employed the automatic contact technique based on the symmetric penalty function 
method. An automatic beam-to-surface contact algorithm was used to simulate the contact behavior between the 
test block and the wire-ring net, with a dynamic friction coefficient of 0.2 specified between these elements. To 
reduce computational time, the block was positioned at the center of the middle functional module. The initial 
velocity of the block was defined based on the impact energy as 25m/s.

The support rope is connected to the wire-ring net by shackles, which were modeled as rigid elements. The 
guided-cable relationship was employed between the shackles and the support rope to allow for sliding during 
the impact process. Additionally, the support ropes can slide along the post saddle, which was modeled using 
sliding cable elements. A friction coefficient of 0.15 was set between the support rope and the post saddle.

Impact process of the full‑scale impact test and the numerical simulation
The results of the two experiments were significantly different. In the Model 1 test, the support rope broke, result-
ing in the test block falling. By contrast, in the Model 2 test, the system successfully intercepted the test block.

During the first 0.25 s of the tests, the working state of the two models was basically the same. Upon impact 
with the test block, the wire-ring net initially underwent a V-shaped deformation, which was followed by a 
funnel-shaped deformation (Fig. 6a, e). At 0.25 s in Model 1 test, there were obvious sparks caused by friction 
at the contact point between the mid-span steel post and the steel wire rope. The lower support rope broke first 
(Fig. 6b), and the upper support rope broke 0.01 s later (Fig. 6c). In the Model 2 test, at 0.25 s, the support rope 
slid smoothly, and the energy dissipating devices on the support rope successfully initiated (Fig. 6f). Additionally, 
the energy dissipating devices on the upslope anchor rope effectively initiated, make sure the system cooperated 
and successfully intercept the test block (Fig. 6h).

After the test, it was found that in the Model 1 test, the steel post pin shaft of the central steel was seriously 
worn, and visible scratches were formed at the point where it contacted the support rope (Fig. 6d). The energy 
dissipating device on the upslope anchor rope was not activated, and the elongation length of the energy dis-
sipating device on the support rope was minimal. However, in model 2, the energy dissipating devices on both 
the upslope anchor ropes and support ropes were fully elongated (Fig. 6g).

Further examination indicated that in Model 1, the funnel-shaped deformation of the ring net did not fully 
developed before the support rope fractured, and then the vertical force transferred by the horizontal support 
rope to the end of the impacted span’s steel post was insufficient, leading to hard to start the energy dissipating 
devices of the upslope anchor rope. This blocked the net’s impact deformation and made a significant tension 
increase in the support rope at the steel post. Due to the tension wave’s transfer effect, there is a delay in the 
tension at the end of the wire rope, as a result, the energy dissipating devices at the end do not activate, and the 
support rope of the impacted span is fractured.

Tension of the wire rope
The tension of the wire rope at the end of Models 1 and 2 is individually measured and is presented in Fig. 7. It 
is evident that the tension of the support rope in Model 1 is higher than that in Model 2. At 0.25 s, the tension 
of the support rope in Model 1 increases sharply, with the lower support rope rapidly reaching a tension of 364 
kN (Fig. 7a). Following the fracture of the lower support rope at the steel post saddle, there is a rapid decrease in 
steel wire rope tension. The breaking force of two steel wire ropes with a diameter of 22 is 504  kN27, indicating 
that the steel wire rope at the steel post saddle now has a tension greater than 504 kN. Subsequently, due to the 

Figure 5.  Constitutive model adopted in the numerical simulation.
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broken of the lower support rope, all loads were transferred to the upper support rope, resulting in its immedi-
ate failure. The maximum tension supported by the upper support was 293 kN (Fig. 7b). In Model 2, both the 
upper and lower support ropes had significantly reduced peak tensions; specifically, the upper support rope 
had a peak tension of 152 kN and the lower support rope had a peak tension of 225 kN. In Model 1, there was a 
sharp increase in the tensile force of upslope anchor rope 3 due to an increase in support rope tension. However, 
in Model 2, this increase was less significant due to a coordinated change in the system. The results for upslope 
anchor rope 4 were similar in both models, with a force of only 150 kN (Fig. 7c, d).

Longitudinal distribution of the tension of support rope
Based on Model 2, the impact point is taken as the coordinate origin to investigate the longitudinal distribution 
of the tension of the upper and lower support ropes at different moments (Fig. 8). As time progresses, the tension 
in the support rope gradually increases, peaking at 0.4 s. Notably, the tension in the lower support rope surpasses 
that of the upper support rope. The tension in the upper support rope experienced a significant increase between 
0.2 s to 0.3 s, while the lower support rope’s tension significantly increased between 0.3 s to 0.4 s. The tension 
distribution of the support rope seems to follow a Gaussian distribution, as shown in Eq. (9), which clearly 
forms three regions. The tension is significantly higher in the impact span than that in the side span. At 0.4 s, 
the tension at the end of the upper support rope amounts to 142.67 kN, which is 32.9% less than the tension at 
the impact point’s 212.66 kN; and at the end of the lower support rope, the tension is 202.05 kN, experiencing a 
26.2% reduction from the impact point’s tension 273.76 kN.

where F is the tension of the support rope, x is the longitudinal coordinate, xc is the position coordinate of the 
symmetry axis, y0, and A and w are the different parameters corresponding to each moment, the parameter 
values are shown in Table 2.

(9)F = y0 + A ∗ exp
(

−
(x − xc)

2

2w2

)

Figure 6.  The impact process of Model 1 and Model 2.
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Figure 7.  Comparison of the tensile force of steel wire ropes.
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Figure 8.  Longitudinal distribution of the tension force of support rope.

Table 2.  Parameters in the fitting formula corresponding to each moment.

Upper support rope Lower support rope

0.1 s 0.2 s 0.3 s 0.4 s 0.1 s 0.2 s 0.3 s 0.4 s

y0 11.75 65.73 118.90 141.72 123.23 132.81 185.29 202.46

A 31.58 35.83 31.40 62.60 13.01 41.96 75.81 70.45

xc 0.25 0.25 0.23 0.23 0.24 0.24 0.22 0.23

w 19.94 12.47 2.56 0.72 5.71 5.92 5.64 5.52
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Influence of Elastic modulus of support rope
Due to variations in the weaving techniques and compositions of support ropes, slight differences are exhibited 
in their elastic modulus. According to the  literature27, the elastic modulus of steel wire rope is between 66 and 
150 GPa.To investigate the influence of the elastic modulus of support rope in flexible rockfall barriers, take 
model 2 as the standard model, and the other five models only change the elastic modulus of the steel wire rope, 
the elastic modulus is taken as 60 GPa, 80 GPa, 100 GPa, 150 GPa and 180 GPa respectively, other structural 
parameters remain unchanged. The impact energy remained constant at 3000 kJ for all models.

The calculation results as shown in Fig. 9 indicate that with the increase of elastic modulus, the tensile force 
of the support rope slightly increases. As the elastic modulus of the support rope increases from 60 GPa to 180 
GPa, the tensile force at the impact point of the upper support rope increases by only 3.2%, while the tensile 
force at the impact point of the lower support rope increases by 5.7%, the tensile force at the side span of the 
support rope increases by about 8.0%. It is worth noting that in each case, the ratio of the support rope tension 
at the end to the wire rope tension at the impact point is basically consistent, with the upper support rope ratio 
ranging from 0.66 to 0.68 and the lower support rope ratio ranging from 0.72 to 0.74. Therefore, the change in 
elastic modulus has a relatively little influence to the tension attenuation characteristics .

Influence of propagation distance
To investigate the influence of propagation distance on multi-span flexible rockfall barriers, six models with dif-
ferent numbers of spans (3, 4, 5, 6, 7, and 9) were established. The impact energy remained constant at 3000 kJ 
for all models. In each model, the span length was fixed at 10 m, the protective height was 5 m, and the energy 
dissipating devices were installed at a distance of 7.5 m from the side post. The impact position was at the center 
of the axis of symmetry for odd-numbered span structures, while for even-numbered span structures, it was 
at the center of the adjacent spans to the left of the axis of symmetry. The propagation distance was defined as 
the distance from the impact position to the end point of the wire rope. For even-numbered span models, the 
propagation distances on both sides were different; therefore, the average distance on both sides was taken. The 
propagation distances were 22.5 m, 27.5 m, 32.5 m, 37.5 m, 42.5 m, and 52.5 m.

Impact deformation
After impact, each structure effectively intercepted the test block, and the impact deformations are shown in 
Fig. 10. As the number of spans increased, the displacement of the rockfall decreased slightly, from 8.06 m for the 
model with three spans to 7.78 m for the model with nine spans, which is a decrease of about only 3%. Therefore, 
the effect of propagation distance on impact deformation can be ignored.

Tension attenuation
According to the analysis in Section "Tension distribution in the support ropes", the tension is significantly lower 
at the end of the wire rope compared to the impact point of the tension. To further investigate this phenomenon, 
the tension attenuation coefficient was defined as the ratio of the support rope tension at the end to the wire rope 
tension at the impact point, as shown in Eq. (12).

where Fimp is the tension force at the impact point of the support rope and Fend is the tension force at the end 
of the support rope.

The tension distribution and attenuation coefficient of the models with different span numbers are presented 
in Table 3. As the propagation distance increases, the tension at the impact point and the end of the support rope 
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Figure 9.  Influence of elastic modulus of support rope.
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decreases correspondingly. Notably, the tension at the impact point of the upper support rope decreases most 
obviously, from 212 kN to 172 kN, representing a decrease of 18%. The tension in the other positions decreases 
by approximately 12%. At the same time, there is no obvious difference in the tension attenuation coefficient of 
the upper support rope, which is approximately 0.67. The tension attenuation coefficient of the lower support 
rope increases from 0.738 to 0.774. Although the tension at the impact point and the end of the lower support 
rope decreases, the tension attenuation rate is evidently greater at the impact point of the lower support rope 
than that at the end of the rope, leading to a slight increase in the tension attenuation coefficient of the lower 
support rope.

Law of tension attenuation of the support rope
In actual engineering applications, the protective energy of a flexible rockfall barrier can vary. To investigate 
the effects of different energy levels on the tension attenuation characteristics of the support rope, numerical 
analysis models were established with protection energy levels of 1000kJ, 2000kJ, 3000kJ, and 5000kJ. The system 
configuration for each energy level is provided in Table 4. For each protective energy level, six groups of differ-
ent propagation distances were investigated, and the impact positions were consistent with the models of each 
span as previously mentioned.

Figure 10.  Displacement of the multi-span models.

Table 3.  Tension force and tension attenuation coefficient in each case.

Propagation distance /m

Upper support rope Lower support rope

Fimp/kN Fend/kN β Fimp /kN Fend /kN β

Case 1 22.50 212.66 142.67 0.671 273.756 202.048 0.738

Case 2 27.50 192.19 129.19 0.672 259.679 199.36 0.768

Case 3 32.50 188.58 126.06 0.668 255.304 196.966 0.771

Case 4 37.50 176.01 124.31 0.706 250.145 196.154 0.784

Case 5 42.50 174.05 123.08 0.707 245.483 191.709 0.781

Case 6 52.50 172.67 120.27 0.697 234.22 181.384 0.774

Table 4.  System configuration for models with different protection energy level.

Wire ring Net Upper/Lower support rope Upslope anchor rope Steel post
Energy dissipating devices on 
the support rope

Energy dissipating devices on 
the upslope anchor rope

1000kJ R12/3/300 2Φ20 1Φ18 HW200 × 200x8 × 12 Device 3 Device 3

2000 kJ R12/3/300 3Φ20 1Φ22 HW250 × 250x8 × 12 Device 3 Device 3

3000kJ R16/3/300 5Φ22 2Φ22 HW300 × 300x10 × 15 Device 2 Device 3

5000kJ R19/3/300 8Φ22 4Φ22 HW300 × 300x10 × 15 Device 1 Device 2
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Tension distribution of Support rope
The tension force of the upper and lower support ropes at the impact points and end points of each model were 
extracted and plotted in Fig. 11. The figure clearly shows that in the same model, the tension force at the impact 
point of the support rope is higher than that at the end, indicating a clear trend of tension attenuation along 
the rope.

Additionally, as the impact energy increases, the difference between the tension force at the end and the ten-
sion force at the impact point also increases. For example, in the 1000 kJ model, the tension force at the impact 
point is basically the same as that at the end. However, in the 5000 kJ model, the tension force at the impact point 
of the lower support rope is about twice the end force value.

Tensile attenuation coefficient of the support rope
The tension attenuation coefficient β of each model was computed using Eq. (7) and plotted in Fig. 12. The figure 
clearly shows that the tension attenuation coefficient β for the upper support rope is concentrated between 0.6 
and 0.8, while the tension attenuation coefficient β for the lower support rope is concentrated between 0.7 and 
0.9. These findings suggest that there is a consistent trend in the tension attenuation coefficient β for both the 
upper and lower support ropes. The average value of the tension attenuation coefficient β for the upper support 
rope is approximately 0.7, while the average value for the lower support rope is approximately 0.8.

Tension prediction
Based on the 36 models with different impact energies and different propagation distances in Section "Tension 
distribution in the support ropes" and Section "Influence of propagation distance", the tensions of the support 
ropes at the impact point are extracted respectively. Utilizing the least squares method, a mathematical model is 
fitted to describe the tensile force value at the impact point of both the upper and lower support ropes Timp−max . 
This model considers the impact energy ( Ek ) and the propagation distance of the system (L) as parameters. ( 
Eq. 13)

For the upper support rope:

(13)Timp−max = α1L
α2
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Figure 11.  Tension force distribution of the support rope.
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For the lower support rope:

where Ek is the impact energy, L is the propagation distance, and α1、α2 are the correlation coefficients.

Cross‑validation
To cross-verify the correctness of the formula, the test described in  reference13 is selected for verification. The 
test model had three spans, the propagation distance was 22.5 m, and the impact energy was 5246 kJ. In the test, 
the measured tension forces of the upper support rope and the lower support rope were 390 kN and 450 kN, 
respectively. Combined with Eq. (13) to Eq. (17), the simulated tension forces of the upper support rope and 
the lower support rope were 359 kN and 413 kN, respectively. The prediction results are slightly less than the 
experiment results, with a maximum error of 8.2%, as shown in Table 5. It indicates that the prediction method 
has sufficient accuracy.

Engineering application
A flexible rockfall barrier is proposed to be erected along a mountainous railway. After three-dimensional (3D) 
scanning of the mountain and a simulation of rockfall track in the early stage (Fig. 13a), the total length of the 
structure to be erected is 70 m, with each span of 10 m (Fig. 13b). Based on Rocfall software, using 1000 drop 
simulations, to calculate the energy of the impact of falling rocks on the flexible rockfall barrier (Fig. 13c), the 
energy range of falling rocks is 1380 kJ–1450 kJ, so the Service Energy Level (SEL) is 1500 kJ, according to EAD 
340,059-00-0106 28, the Maximum Energy Level (MEL) is 4500 kJ.

The specifications of each component in the system are consistent with the system configuration with a 
protection level of 5000 kJ mentioned in 5.2. To check the system configuration, full-scale verification tests were 
conducted. Due to site restrictions, the verification model only had three spans, and the verification model was 
completely consistent with other configuration parameters of the actual structure (Fig. 14a). Simultaneously 
established a numerical model consistent with the experimental model parameters (Fig. 14b) . At the same time, 
combined with Eq. (13) to Eq. (17), the tension of the support rope of the test verification model was estimated 
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Figure 12.  Tension attenuation coefficient of each model.

Table 5.  Comparison of the prediction and experiment results.

Literature13 (kN) Prediction method (kN) Error (%)

Upper support rope 390 359 7.9

Lower support rope 450 413 8.2
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and compared with the results of the test and numerical simulation. As shown in Fig. 15 and Table 6, the predic-
tion formula is in good agreement with the results of the numerical simulation and test. The prediction results 
are slightly larger than those of experimental and numerical simulation, with an error of 8%. The difference 
between the peak value of the internal force of the support rope obtained from the test and numerical analysis 
is small, but the internal force of the steel rope collected in the test fluctuates to a certain extent, while the time 
history of the internal force of the steel rope in the numerical analysis is relatively smooth. The reason is that the 
performance of the energy dissipating devices in practical applications is fluctuating, while the energy dissipating 
devices in the numerical analysis are an ideal working curve.

Figure 13.  Locations of the rockfall sources and the flexible barrier.

Figure 14.  Test and numerical verification.
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Figure 15.  Comparison of support rope tension.

Table 6.  Tension forces of support ropes in the 3-span model.

Test (kN) Simulation (kN) Formula (kN) Error (%)

End point of upper support rope 249.92 249.61 255.85 2.37

End point of lower support rope 325.08 326.01 340.94 4.88
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Furthermore, a 7-span numerical model of the actual structure was established (Fig. 14c). Simultaneously 
using formulas to calculate the tension forces at the impact points and the end points of the support rope based 
on the actual structure. The formula calculation results also maintain good consistency with the numerical 
analysis results, with an error of 7% (Table. 7).

Based on the formula calculation results, design suggestions are given as follows, the maximum tension at the 
impact point of the supporting rope is 426.17 kN. Considering the dynamic amplification factor of 1.5 times, it 
is suggested that the breaking force of the steel wire rope should be at least greater than 426.17*1.5 = 639.22 kN. 
The minimum tension at the end of the support rope decreases to 250.84 kN. Considering the impulse effect 
of the starting force, it is suggested that the starting force of the support rope connection energy dissipating 
devices is less than 255.84*0.8 = 204.67kN. This provides a practical approach for the selection or design of flex-
ible rockfall barriers.

Conclusion
Based on full-scale tests and numerical simulation, this paper presents a prediction method for the tensile force 
of support ropes in a flexible rockfall barrier. the following conclusions can be drawn:

1. The tension force in the support rope exhibits notable disparities between the impact span and the other side 
spans. The tension peaks in the impact area and gradually decreases on both sides. When the impact loca-
tion in the three-span model is the central point, the internal force distribution of the support rope seems 
to follow a Gaussian distribution.

2. When the impact energy remains constant but the propagation distance varies, the maximum displacement of 
the system remains relatively unchanged as the propagation distance increases. However, the tension attenu-
ation is evident, with the tension at the end of the upper support line decreasing the most significantly, by 
18%. At other positions, the tension reduction is approximately 12%. The minimum attenuation coefficient 
reaches 0.67. However, the elastic modulus of support ropes have little influence to the tension attenuation 
characteristics.

3. For structures with different impact energies and different propagation distances, the tensile force at the 
impact point of the support rope decreases in a power function as the propagation distance increases, and 
they linearly increase as the impact energy increases. Overall, the statistics reveal that the average attenua-
tion coefficient of the upper support rope is 0.7, while the average value of the attenuation coefficient of the 
lower support rope is 0.8.

4. The prediction equations of the tension force in the support rope are derived through curve fitting. These 
formulas can be employed to estimate the tensile force in a flexible rockfall barrier and provide a basis for 
structural design.

It should be clarified that the findings from this study are based on specific types of flexible rockfall barriers. 
Further studies on additional factors that could influence the tension force of the barrier are recommended. 
For example, the impact angle of rockfall, multiple rockfall impacts and rock shape may be taken into account.

Data availability
The datasets used or analysed during the current study are available from the corresponding author on reason-
able request.
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