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Multiwaves, breathers, 
lump and other solutions 
for the Heimburg model 
in biomembranes and nerves
Dilber Uzun Ozsahin 1,2*, Baboucarr Ceesay 3,4, Muhammad Zafarullah baber 3, 
Nauman Ahmed 3,10, Ali Raza 5,10, Muhammad Rafiq 6,10, Hijaz Ahmad 7,8,10,11, 
Fuad A. Awwad 9 & Emad A. A. Ismail 9

In this manuscript, a mathematical model known as the Heimburg model is investigated analytically 
to get the soliton solutions. Both biomembranes and nerves can be studied using this model. The cell 
membrane’s lipid bilayer is regarded by the model as a substance that experiences phase transitions. 
It implies that the membrane responds to electrical disruptions in a nonlinear way. The importance 
of ionic conductance in nerve impulse propagation is shown by Heimburg’s model. The dynamics of 
the electromechanical pulse in a nerve are analytically investigated using the Hirota Bilinear method. 
The various types of solitons are investigates, such as homoclinic breather waves, interaction via 
double exponents, lump waves, multi-wave, mixed type solutions, and periodic cross kink solutions. 
The electromechanical pulse’s ensuing three-dimensional and contour shapes offer crucial insight 
into how nerves function and may one day be used in medicine and the biological sciences. Our grasp 
of soliton dynamics is improved by this research, which also opens up new directions for biomedical 
investigation and medical developments. A few 3D and contour profiles have also been created for 
new solutions, and interaction behaviors have also been shown.
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Advances in nonlinear partial differential equations (NLPDEs), a powerful tool for many interdisciplinary investi-
gations, have made it possible to investigate complex physical phenomena in disciplines like fluid science, control 
theory, hydrodynamics, geochemistry, optical science, and plasma1,2. In biological systems, soliton production 
and propagation in neurons and biomembranes is crucial3,4. Accurate NLPDE solutions are critical for compre-
hending the complex mechanisms that govern these procedures.

The recent development of novel techniques for obtaining soliton solutions from NLPDEs has significantly 
improved our ability to recognize and investigate these occurrences. Finding exact soliton solutions proved to be 
an extremely successful application of the Hirota bilinear technique5,6. Among the applications of this method 
that have proved successful include the analysis of nonlinear Schrödinger equations, integrable systems, and 
optical fibers7,8. Regarding the mechanical systems that support nerves and biomembranes, the Heimburg model 
offers essential details. The nerve axon is portrayed in the model as a cylinder-shaped biomembrane that changes 
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from a fluid to a gel structure at a specific temperature below average. The soliton dynamics in this framework 
provide crucial information regarding the nature of nerve impulses, which makes it crucial to understand.

The Hirota bilinear technique9,10 is utilized in this investigation to evaluate the soliton production and propa-
gation in biomembranes and neurons employing the Heimburg model. Using this technique, we can obtain 
precise soliton solutions and learn more about how electromechanical pulses behave differently within nerves. 
This analytical method illuminates the basic concepts that underlie biological systems by studying the intricate 
interactions between biomembranes and solitons. By combining the power of the Hirota bilinear technique with 
the understanding gained from the Heimburg model, this study contributes to a clearer understanding of the 
complicated dynamics of soliton occurrences in biological systems. The findings might influence a variety of 
fields, such as biophysics, neuroscience, and bioengineering, and they might hasten the development of thera-
peutic interventions and bio-inspired technology.

The Heimburg model is an integrable differential equation, there is no general technique to solve these 
equation. Zhang et al. proposed the symbol calculation method based on neural networks to obtained the exact 
analytical solutions for the NLPDEs. The Bilinear residual network method is used to obtained the exactly explicit 
solutions for the nonlinear evolution equations11. For the first time bilinear neural network model is used to get 
the exact analytical solution for the reduced p-gBKP equation12, the different types of soliton solutions are also 
constructed by using this technique for the (3+ 1)-dimensional Jimbo-Miwa equation13. The new test functions 
Fractal solitons, arbitrary function solutions, exact periodic wave, breathers, generalized lump solutions, classical 
lump solutions and rogue waves are constructed14–16, and the interference wave and the bright and dark soliton 
are also constructed via bilinear residual network method17,18.

Khatun, et al., worked on the couple modified equal-width and Boussinesq equations constructed the soliton 
solutions by using the Sine-Gordon expansion19. Arefin, et al., investigated the closed form travelling wave solu-
tion for the non-linear evolution equations using the two-variable (G′/G, 1/G)-expansion method20. Zaman, 
et al., explored soliton wave propagation for the nonlinear coupled type Boussinesq-Burger (BB) and coupled 
type Boussinesq equations via extended tanh-function method21. Pan, et al., worked on the derivative nonlinear 
Schrödinger equation to construct the optical soliton solutions by using the extended modified auxiliary equa-
tion mapping technique22. Seadawy et al., used the extended modified auxiliary equation mapping to explored 
the optical solitons for the perturbed nonlinear fractional Schrödinger equation23 and the integrable improved 
perturbed nonlinear Schrödinger equation with type of Kerr law nonlinearity24,25. Cheemaa et al., analyzed the 
soliton solutions for the nonlinear modified Korteweg-de Vries equation using the auxiliary equation mapping 
method26.

A mathematical method utilised in the study of nonlinear systems and soliton theory is the Hirota bilinear 
transformation. It was developed by Ryogo Hirota to explore soliton of nonlinear equations, particularly PDEs 
that admit soliton solutions - localised, stable, and often interacting wave-like structures. The Hirota bilinear 
transformation’s main goal is to express NLPDEs in a bilinear form. This bilinear form facilitates the investi-
gation of the underlying dynamics and makes it possible to develop multi-soliton solutions. Once the soliton 
equation is expressed in bilinear form, solutions can be obtained by solving the resulting system of bilinear 
equations. The bilinear form facilitates the study of multi-soliton solutions, their interactions, and the underlying 
dynamics of the original soliton equation. The solutions obtained through the Hirota bilinear transformation 
provide insights into the behavior of solitons in the system described by the original equation. These solutions 
often exhibit interesting phenomena such as soliton collisions, fusion, and fission. In travelling wave theory, 
the application of asymptotic techniques helps to fully comprehend the dynamics of solitons by capturing their 
leading-order behaviour. This method also forms the basis for numerical simulations, which direct and validate 
computational studies on solitons in NLPDEs. In general, travelling wave theory shows to be an effective and 
adaptable method for understanding the complex nature of soliton occurrences in a range of nonlinear systems. 
So, under considered method is more effective our the other analytical techniques because the special types of 
solitons are generated. This approach is provided us the special types of soliton solutions such as, breather wave, 
Lump wave, multi-wave, mixed wave, M-shape, rough wave, one kink, two kink, periodic cross kink and many 
others. But method are provided us only hyperbolic, trigonometric and rational wave solutions.

But in this study we use hirota bilinear method which is efficient technique that will provided us the different 
form of solitons like, breather wave, lump wave, multiwave, M-shapes and many other interactions. The different 
types of soliton solutions for the Heimburg model. These solutions have many applications in biomembranes and 
nerves can be studied using this model. The Hirota bilinear transformation is used to construct the homoclinic 
breather waves, interaction via double exponents, lump waves, multi-wave, mixed type solutions, and periodic 
cross kink solutions. These solution have there significance in the dynamical study of biomembranes and nerves 
which also opens up new directions for biomedical investigation and medical developments. The soliton are 
plotted in 3D and contour profiles for new solutions, and interaction behaviors have also been shown. There 
plots are show the Breather waves, lump waves, multiple wave, periodic cross kink solutions. These plots have 
the physical significance in the energy propagation patterns inside the biomembranes. It’s crucial to remember, 
nevertheless, that generating real graphical representations could call for specific tools and software. A breather 
wave is an oscillating or pulsing localized disturbance that moves through the membrane. Seek for a graph that 
illustrates a spike or disturbance that occurs at a specific point along the membrane and then vanishes. Over time, 
the wave’s amplitude could change. A concentrated, non-dispersive energy package passing across the membrane 
is represented as a lump wave. Imagine a wave that propagates through the membrane without greatly expand-
ing or altering form, all the while maintaining its amplitude and shape. The coexistence of many waves in the 
membrane at various frequencies and amplitudes is referred to as multiple waves. Look for a graph that shows 
several waveforms interacting with one another inside the membrane, each with a different frequency and ampli-
tude. These plot have the significance in the theoretical and experiential study of nonlinear Heimburg model.
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The nonlinear Heimburg model will be introduced in “An overview of the model” to provide a theoretical 
basis for our study. “An overview of the method” will describe the Hirota bilinear method, which we will use 
to conduct our analysis. “Application of the method on the Heimburg model” will apply the Hirota bilinear 
method to the Heimburg model, extracting exact soliton solutions, and examining their properties. “Graphical 
presentations” will deal with the findings by presenting them in graphical illustrations and in “Conclusion” we 
conclude on our findings.

An overview of the model
Numerous mathematical models have been used to examine the propagation of electrical signals in nerve axons in 
great detail27–29. Action potential dynamics have been better understood thanks to the Hodgkin-Huxley model30, 
which is based on the reaction-diffusion equation. The more straightforward model put forth by FitzHugh and 
Nagumo has also provided a more manageable framework for studying pulse propagation30. These models, 
however, do not take into consideration how nerve conduction works mechanically. We offer the Heimburg 
model to fill up this knowledge gap, which integrates electrical and mechanical dynamics to provide a more 
comprehensive comprehension of sound transmission in nerve axons. In the Heimburg model, proteins are 
viewed as resistors and membranes as capacitors in an electrical circuit that represents the nerve axon. With the 
use of this conceptualization, we may define the voltage fluctuation across the neuron membrane as a propagating 
action potential31. Along the nerve axon, a voltage pulse is created by the ion currents the membrane produces31. 
We take into account lateral density excitations within a one-dimensional cylindrical nerve axon to take the 
mechanical elements into account. The following equation can be used to describe how sound propagates via 
nerve axons without dispersion1

where τ represents time, z denotes the position along the nerve axon, and �ρA is the difference in nerve axon 
area density between the gel state ρA and the fluid state ρ0

A. The sound velocity c =
√

1
κAs ρ

A  depends on density 

and is determined by the properties of the nerve axon. Here, κA represents a constant related to the hydrodynamic 
Euler equation.

We add a frequency-dependent sound velocity that permits the generation of solitons to the Heimburg model 
in order to account for dispersion and nonlinear effects. To accomplished this, the sound speed equation was 
modified1 as follows:

where c0 represents the velocity of small amplitude sound, α < 0 and β > 0 are constants, and �ρA is the differ-
ence in density between the gel and fluid states. We include a higher-order term −h ∂4�ρA

∂z4
 to Eq. (1) to account 

for mechanical dispersion. As a result, the following equation describes how sound travels through nerve axons,

where c0 = 1
KA
s ρ

A
0 ,

α = − 1
KA
s (ρ

A
0 )

2 , and β = 1
KA
s (ρ

A
0 )

3.

Consider the dimensionless variables u, x, and t given as: υ = �ρA

ρA0
, x = c0z√

h
, t = c20τ√

h

Using these new variables, we arrive at the dimensionless density-wave equation from Eq. (3) as follows1:

with m2 = u√
h
, b2 =

(

ρA0

)2

c20
β , and b1 =

ρA0
c20
α . Equation (4) is our required Heimburg model that we used 

in this paper. In the next section, we give an overview about the Hirota bilinear method.

An overview of the method
This section we outline the method used in the formation of the model for this paper. We start by first stating 
the general form of the nonlinear partial differential equation (NLPDE)

in this case, W is a polynomial in υ(x, t) . The following are the main phases in this method: 

Phase 1:	 Consider the following transformation32–35: 

 where m1 denotes the density pulse’s velocity. Equation (6) converts Equation (5) into the following form: 

(1)
∂2�ρA

∂τ 2
=

∂

∂z

(

c2
∂�ρA

∂z

)

,

(2)c2 = c20 + α�ρA + β
(

�ρA
)2
,

(3)∂2�ρA

∂τ 2
=

∂

∂z

(

c20 + α�ρA + β(�ρA)2
)∂�ρA

∂z
+ u

∂2�ρA

∂z2
∂�ρA

∂τ
− h

∂4�ρA

∂z4
,

(4)
∂2υ

∂t2
=

∂

∂x

(

(

1+ b1υ + b2υ
2
)∂υ

∂x

)

−
∂4υ

∂x4
+m2

∂3υ

∂x2∂t
,

(5)W(υ, υx , υt , υxx , υxt , ...) = 0,

(6)υ(x, t) = �(η), η = x −m1t,

(7)U(�, �
′
, �

′′
, �

′′′
, ...) = 0,
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 for polynomial U in �(η) having derivatives �′(η), �′′(η), �′′′(η) , etc is twice integrable differential equation.
Phase 2:	 Assume Eq. (7) has a solution of the form: 

 where f (η) is an unidentified function to be determined for our required solutions.
Phase 3:	 In this phase, we will determine �′ , �

′′
, �

′′′
, . . . , of Eq. (8) and substitute them into Eq. (7) to obtain 

an equation in terms of f (η) and its derivatives upto the fifth order. We then integrate the resulting equation 
twice to to obtained our Bilinear form.

Phase 4:	 The numerous wave structures under consideration are now inserted into the Bilinear equation gener-
ated in phase (3). Then, in each case, we expand, simplify, and collect like terms and equate them to 0. Finally, 
in each situation, we solve the set of equations to obtain the suitable solutions.

Application of the method on the Heimburg model
In this section, we used the previously stated stages to determine the various soliton generation and propagation 
in biomembranes and nerves for the Heimburg model.

We begin by considering Eq. (4), the dimensionless density-wave model. We now transform Eq. (4) to an ODE 
using the transformation υ(x, t) = �(η) , with η = x −m1t , where m1 is the velocity of the density pulse to obtain:

Next we transform Eq. (9) from an ODE to a bilinear form using the the transformation

Substituting Eq. (10) into the Eq. (9) and integrating twice we obtained the bilinear form such as

We now substitute the different wave structures we are studying into Eq. (11). Then, in each case, we expand, 
simplify, and collect like terms and equate them to 0. Finally, in each situation, we solve the set of equations to 
obtain the suitable solutions.

1. Homoclinic breather: we find some solutions using the homoclinic breather transformation such ass10,36:

Substituting Eq. (12) and its derivatives to the third order into Eq. (9), simplifying and combining like terms 
using exponential, trigonometric, and exponential-trigonometric functions, and setting each of the resulting 
expressions to 0, we can determine the values of some of the parameters as follows:

Family 1:     the constant values are taken as d1 = −d3, d5 = − d3

√
3m2

2m
2
1+4m2

1−4

m1m2
, v = m1m2

2d3
, b1 =

2
(

m
2
2m

2
1−3m2

1+3
)

m1m2
, b2 =

6
(

m
2
2m

2
1−m

2
1+1

)

m
2
1m

2
2

 , while w1, w2, d2, d4, d6 are the free parameters.
Substituting them in Eq. (12) and then in Eq. (10) the result is, obtained such as

where G =
m1m2

(

d6−
d3η
√

3m2
2m

2
1+4m2

1−4

m1m2

)

2d3
. The breather wave solution to Eq. (4) is gained as:

where K = d6m1m2
2d3

+ 1
2

√

m2
1

(

3m2
2 + 4

)

− 4(m1t − x).

Family 2 :     the constant  values  are  taken as  
w1 = 0, d1 =

√

m
2
1

(

9m2
2+8

)

−8−3m1m2

4v
, d5 =

√

m
2
1
m
2
2

(

−(9m2
2
+4)m2

1
+3

√
m
2
1(9m

2
2
+8)−8m2m1+4

)

v2

2
√
2m1m2

, b1 = −8m1m2, b2 = −
3

(

(

3m2
2−4

)

m
2
1+

√

m
2
1

(

9m2
2+8

)

−8m2m1+4

)

2
(

m
2
1−1

)  while 
w2, d2, d3, d4, d6 are the free parameters.

Substituting them in Eq. (12) and then in Eq. (10) the result is, obtained such as

(8)� =
f ′(η)

f (η)
,

(9)m1�
′′ − b1(�

′)2 − b2�(�
′)2 − �

′′ − b1��
′′ − b2�

2
�
′′ + �

′′′′ +m1m2�
′′′ = 0.

(10)� =
f ′(η)

f (η)
,

(11)−2(b2 − 6)f ′3 − 3ff ′(b1f
′ + 6f ′′ + 2m1m2f

′)+ 6f 2
(

f
′′′
+m1m2f

′′ +
(

m2
1 − 1

)

f ′
)

= 0.

(12)f = exp (−v(d1η + d2))+ w1 exp (v(d3η + d4))+ w2 cos (v(d5η + d6)).

(13)�1,1(η) =
1
2m1m2e

−m1m2(d2−d3η)
2d3 + 1

2m1m2w1e
m1m2(d3η+d4)

2d3 + 1
2

√

3m2
2m

2
1 + 4m2

1 − 4w2 sin (G)

e
−m1m2(d2−d3η)

2d3 + w1e
m1m2(d3η+d4)

2d3 + w2 cos (G)

,

(14)υ1,1(x, t) =

√

m2
1

(

3m2
2 + 4

)

− 4w2e
m1m2(d3(m1t−x)+d2)

2d3 sin (K)+m1m2

(

w1e
(d2+d4)m1m2

2d3 + 1

)

2

(

w2e
m1m2(d3(m1t−x)+d2)

2d3 cos (K)+ w1e
(d2+d4)m1m2

2d3 + 1

) ,
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The breather wave solution to Eq. (4) is gained as:

where G = v









d6 +
η

�

m2
1m

2
2

�

−(9m2
2+4)m2

1+3
√

m2
1(9m

2
2+8)−8m2m1+4

�

v2

2
√
2m1m2









and J =
vw2

√

m2
1m

2
2

(

−(9m2
2+4)m2

1+3
√

m2
1(9m

2
2+8)−8m2m1+4

)

v2

2
√
2m1m2

.

Family 3:   the constant values are taken as d1 = −d3, d5 = −id3, v = −

√

m2
1

(

9m2
2+8

)

−8−3m1m2

4d3
, b1 = −8m1m2 

while w1, w2, d2, d4, d6, b2 are the free parameters.
Substituting them in Eq. (12) and then in Eq. (10) the result is, obtained such as

The breather wave solution to Eq. (4) is gained as:

where G =

(

3m1m2−
√

m2
1

(

9m2
2+8

)

−8

)

4d3
.

2. Interaction via double exponents: we find double exponents solutions by using the transformation such 
as10,36:

By substituting Eq. (19) and its derivatives to the third order into Eq. (9), simplifying and collecting like terms 
exponential functions with the same powers, and setting each of the resulting expressions to 0, we can determine 
the values of some of the parameters as follows:

Family 1:     the constant values are taken as d1 = 1
2

(

−
√

m
2
2m

2
1 − 4m2

1 + 4−m1m2

)

, d3 = 0, b1 =

3

√

m
2
2m

2
1 − 4m2

1 + 4+m1m2, b2 = 6, while w1, w2, d2, d4, are the free parameters.

Substituting them in Eq. (19) and then in Eq. (10) the result is, obtained such as

The interaction of double exponents solution to Eq. (4) is gained as:

Family 2:   the constant values are taken as d1 = 1
2

(

−
√

(m1m2 − d3)
2 − 4

(

1−m
2
1

)

+ d3 −m1m2

)

, b1 =

−d3

√

(m1m2−d3)
2−4

(

1−m
2
1

)

+d3m1m2−d
2
3+2m2

1−2

d3
, b2 =

3

(

d3

√

(m1m2−d3)
2−4

(

1−m
2
1

)

−d3m1m2+d
2
3

)

2d23
  ,  w h i l e 

w1, w2, d2, d3, d4, are the free parameters.
Substituting them in Eq. (19) and then in Eq. (10) the result is, obtained such as

(15)�1,2(η) =
1
4

�

3m1m2 −
�

m2
1

�

9m2
2 + 8

�

− 8
�

e

−v



d2+
η

�√
m2
1(9m

2
2+8)−8−3m1m2

�

4v





− J sin (G)

e

−v



d2+
η

�√
m2
1(9m

2
2+8)−8−3m1m2

�

4v





+ w2 cos (G)

.

(16)

υ1,2(x, t) =
1
4

(

3m1m2 −
√

m2
1

(

9m2
2 + 8

)

− 8
)

e
1
4

(

√

m2
1

(

9m2
2+8

)

−8−3m1m2

)

(m1t−x)−d2v
− J sin (G(x −m1t))

e
1
4

(

√

m2
1

(

9m2
2+8

)

−8−3m1m2

)

(m1t−x)−d2v
+ w2 cos (G(x −m1t))

,

(17)�1,3(η) =
G
d3
eG(d2−d3η) + G

d3
Gw1e

−G(d3η+d4) + G
d3
iGw2 sin (G(d6 − id3η))

eG(d2−d3η) + w1e−G(d3η+d4) + w2 cos (G(d6 − id3η))
.

(18)υ1,3(x, t) = −
G
d3

(

−iw2e
(−G(d3(x−m1t)+d4)) sin (G(d6 − id3(x −m1t)))+ e(d2+d4)G + w1

)

4
(

w2e−G(d3(x−m1t)+d4) cos (G(d6 − id3(x −m1t)))+ eG(d2+d4) + w1

) ,

(19)f = w1 exp (d1η + d2)+ w2 exp (d3η + d4).

(20)

�2,1(η) =

(

−
√

m2
2m

2
1 − 4m2

1 + 4−m1m2

)

w1 exp

(

d2 + 1
2η

(

−
√

m2
2m

2
1 − 4m2

1 + 4−m1m2

))

2

(

w1 exp

(

d2 + 1
2η

(

−
√

m2
2m

2
1 − 4m2

1 + 4−m1m2

))

+ ed4w2

) .

(21)

υ2,1(x, t) = −

(
√

(

m2
2 − 4

)

m2
1 + 4+m1m2

)

w1 exp
(

d2 + 1
2

(
√

(

m2
2 − 4

)

m2
1 + 4+m1m2

)

(

m2
1t − x

)

)

2
(

w1 exp
(

d2 − 1
2

(
√

(

m2
2 − 4

)

m2
1 + 4+m1m2

)

(

x −m2
1t
)

)

+ ed4w2

) .
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The interaction of double exponents solution to Eq. (4) is gained as:

3. Lump periodic: we find some solutions using the function36

By substituting Eq. (24) and its derivatives to the third order into Eq. (9), simplifying and collecting like terms 
η , exponential functions, and trigonometric functions with the same powers, and setting each of the resulting 
expressions to 0, we can determine the values of some of the parameters as follows:

Family 1:    the constant values are taken as d1 = 0, d3 = 0, d5 = −
√

1−m
2
1√

2
, d7 = −d

2
2 − d

2
4 ,

b1 = −2m1m2, b2 = 6
 , while d2, d4, are free parameters.

Substituting them in Eq. (24) and then in Eq. (10) the result is, obtained such as

The Lump wave solution to Eq. (4) is gained as:

Family 2:     the constant values are taken as d3 = − d1d2
d4

, d5 = 0, d7 = −d22 − d24 , while d2, d4, are free 
parameters.

Substituting them in Eq. (24) and then in Eq. (10) the result is, obtained such as

The Lump wave solution to Eq. (4) is gained as:

4. Mixed type: we find mixed type solutions by using the transformation such as10,36:

By substituting Eq. (29) and its derivatives to the third order into Eq. (10), simplifying and collecting like terms, 
exponential functions, trigonometric functions and hyperbolic functions with the same powers, and setting each 
of the resulting expressions to 0, we can determine the values of some of the parameters as follows:

Family 1:  the constant values are taken as w1 = 0, w2 = 0, d3 =
√

1−m
2
1√

2v
, d5 =

√
m
2
1−1√
2v

,

b1 = −2m1m2, b2 = 6,
 while d4, d6, w3, w4, v, are free parameters.

Substituting them in Eq. (29) and then in Eq. (10) the result is, obtained such as

The mixed type solution to Eq. (4) is gained as:

(22)

�2,2(η) =
1
2w1

(

−
√

(m1m2 − d3)2 − 4
(

1−m2
1

)

+ d3 −m1m2

)

e
1
2 η

(

−
√

(m1m2−d3)2−4
(

1−m2
1

)

+d3−m1m2

)

+d2
+ d3w2e

d3η+d4

w1e
1
2 η

(

−
√

(m1m2−d3)2−4
(

1−m2
1

)

+d3−m1m2

)

+d2
+ w2ed3η+d4

.

(23)

υ2,2(x, t) =
d3w2e

d3

(

x−m
2
1
t

)

+d4 − 1
2
w1

(√

(d3 −m1m2)
2 + 4

(

m
2
1
− 1

)

− d3 +m1m2

)

e

d2−
1
2

(√

(d3−m1m2)
2+4

(

m
2
1
−1

)

−d3+m1m2

)

(

x−m
2
1
t

)

w1e

d2−
1
2

(√

(d3−m1m2)
2+4

(

m
2
1
−1

)

−d3+m1m2

)

(

x−m
2
1
t

)

+ w2e
d3

(

x−m
2
1
t

)

+d4

.

(24)f = (d1η + d2)
2 + (d3η + d4)

2 + cos (d5η + d6)+ d7.

(25)�3,1(η) =

�

1−m2
1

√
2

tan



d6 −
η

�

1−m2
1

√
2



.

(26)υ3,1(x, t) =

�

1−m2
1

√
2

tan



d6 +

�

1−m2
1(m1t − x)
√
2



.

(27)�3,2(η) =
2d1(d1η + d2)−

2d1d2

(

d4−
d1d2η
d4

)

d4

(d1η + d2)2 +
(

d4 −
d1d2η
d4

)

2 − d22 − d24 + cos (d6)
.

(28)υ3,2(x, t) =
2d21

(

d22 + d24
)

(x −m1t)

d21
(

d22 + d24
)

(x −m1t)2 + d24 cos (d6)
.

(29)
f = w1 exp (v(d1η + d2))+ w2 exp (−v(d1η + d2))+ w3 sin (v(d3η + d4))+ w4 sinh (v(d5η + d6)).

(30)�4,1(η) =

√
1−m2

1w3 cos

(

v

(

d4+
η

√
1−m2

1√
2v

))

√
2

+

√
m2
1−1w4 cosh

(

v

(

d6+
η

√
m2
1−1

√
2v

))

√
2

w3 sin

(

v

(

d4 +
η
√

1−m2
1√

2v

))

+ w4 sinh

(

v

(

d6 +
η
√

m2
1−1√
2v

)) .
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Family 2: The constant values are taken as w1 = 0, d1 =

√

m
2
1
−1

√
2v

, d3 =

√

1−m
2
1√

2v
, d5 =

√

m
2
1
−1

√
2v

, b1 = −2m1m2, b2 = 6 , 
while d2, d4, d6, w2, w3, w4, v, are free parameters.

Substituting them in Eq. (29) and then in Eq. (10) the result is, obtained such as

The mixed type solution to Eq. (4) is gained as:

Where G = d6v +
√

m2
1−1(x−m1t)√

2
.

Family 3: The constant values are taken as w1 = 0, w4 = 0, d3 = −
√

1−m
2
1√

2v
, b1 = −2m1m2, b2 =

3
(

2d21v
2+m

2
1−1

)

2d21v
2

 , 
while d1, d4, d5, d6, w2, w3, v, are free parameters.

Substituting them in Eq. (29) and then in Eq. (10) the result is, obtained such as

The mixed type solution to Eq. (4) is gained as:

Family 4: the constant values are taken as w2 = 0, w4 = 0, v =
√

1−m2
1√

2d3
, b1 = −2m1m2 , while 

d1, d2, d4, w2, w3, v, are free parameters.
Substituting them in Eq. (29) and then in Eq. (10) the result is, obtained such as

The mixed type solution to Eq. (4) is gained as:

5. Multiwave: we find multiwave solutions by using the transformation such as10,36:

(31)

υ4,1(x, t) =

√

1−m2
1w3 cos

(

d4v + 1
2

√

2− 2m2
1(x −m1t)

)

+
√

m2
1 − 1w4 cosh

(

d6v +
√

m2
1−1(x−m1t)√

2

)

√
2

(

w3 sin

(

d4v + 1
2

√

2− 2m2
1(x −m1t)

)

+ w4 sinh

(

d6v +
√

m2
1−1(x−m1t)√

2

)) .

(32)

�4,2(η) =
−
√

m2
1−1w2e

−v



d2+
η

√
m2
1−1

√
2v





√
2

+

√
1−m2

1w3 cos

�

v

�

d4+
η

√
1−m2

1√
2v

��

√
2

+

√
m2
1−1w4 cosh

�

v

�

d6+
η

√
m2
1−1

√
2v

��

√
2

w2e
−v

�

d2+
η

√
m2
1−1

√
2v

�

+ w3 sin

�

v

�

d4 +
η
√

1−m2
1√

2v

��

+ w4 sinh

�

v

�

d6 +
η
√

m2
1−1√
2v

��

.

(33)

υ4,2(x, t) =
e
d2v+

√
m2
1−1(x−m1 t)√

2

(

√

1−m2
1w3 cos (G)+

√

m2
1 − 1w4 cosh (G)

)

−
√

m2
1 − 1w2

√
2

(

e
d2v+

√
m2
1−1(x−m1 t)√

2

(

w3 sin

(

d4v + 1
2

√

2− 2m2
1(x −m1t)

)

+ w4 sinh (G)

)

+ w2

)
.

(34)�4,3(η) =
d1vw2

(

−e−v(d1η+d2)
)

−

√
1−m2

1w3 cos

(

v

(

d4−
η

√
1−m2

1√
2v

))

√
2

w3 sin

(

v

(

d4 −
η
√

1−m2
1√

2v

))

+ w2e−v(d1η+d2)

.

(35)υ4,3(x, t) = −

√

2− 2m2
1w3e

v(d1(x−m1t)+d2) cos

(

d4v + 1
2

√

2− 2m2
1(m1t − x)

)

+ 2d1vw2

2

(

w3ev(d1(x−m1t)+d2) sin

(

d4v + 1
2

√

2− 2m2
1(m1t − x)

)

+ w2

) .

(36)�4,4(η) =

d1
√

1−m2
1w1e

√
1−m2

1(d1η+d2)√
2d3

√
2d3

+

√
1−m2

1w3 cos

(√
1−m2

1(d3η+d4)√
2d3

)

√
2

w1e

√
1−m2

1(d1η+d2)√
2d3 + w3 sin

(√
1−m2

1(d3η+d4)√
2d3

)

.

(37)υ4,4(x, t) =

√

1−m2
1

(

d1w1 exp

(√
1−m2

1(d1(x−m1t)+d2)√
2d3

)

+ d3w3 cos

(√
1−m2

1(d3(x−m1t)+d4)√
2d3

))

√
2d3

(

w1 exp

(√
1−m2

1(d1(x−m1t)+d2)√
2d3

)

+ w3 sin

(√
1−m2

1(d3(x−m1t)+d4)√
2d3

)) .

(38)f = w2 cos (d3η + d4)+ w1 cosh (d1η + d2)+ w3 cosh (d5η + d6).
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By substituting Eq. (38) and its derivatives to the third order into Eq. (9), simplifying and collecting like terms 
of trigonometric functions and hyperbolic functions with the same powers, and setting each of the resulting 
expressions to 0, we can determine the values of some of the parameters as follows:

Family 1: the constant values are taken as w3 = 0, d1 =
√

m2
1−1√
2

, d3 =
√

1−m2
1√

2
 , while d2, d4, w1, w2, are 

free parameters.
Substituting them in Eq. (38) and then in Eq. (10) the result is, obtained such as

The multiwave solution to Eq. (4) is gained as:

Family 2: the constant values are taken as w3 = 0, d1 = 0, d3 = −
√

1−m2
1√

2
 , while d2, d4, w1, w2, are free 

parameters.
Substituting them in Eq. (38) and then in Eq. (10) the result is, obtained such as

The multiwave solution to Eq. (4) is gained as:

Family 3: the constant values are taken as w2 = 0, w3 = 0, d1 =
√

m2
1−1√
2

 , while d2, d4, w1, are free 
parameters.

Substituting them in Eq. (38) and then in Eq. (10) the result is, obtained such as

The multiwave solution to Eq. (4) is gained as:

Family 4: the constant values are taken as w1 = 0, w3 = 0, d3 = −
√

1−m2
1√

2
 , while d4, w2, are free 

parameters.
Substituting them in Eq. (38) and then in Eq. (10) the result is, obtained such as

The multiwave solution to Eq. (4) is gained as:

6. Periodic cross kink: we find periodic cross kink solutions by using the transformation such as10,36:

(39)�5,1(η) =

√
m2
1−1w1 sinh

(

d2+
η

√
m2
1−1

√
2

)

√
2

−

√
1−m2

1w2 sin

(

d4+
η

√
1−m2

1√
2

)

√
2

w2 cos

(

d4 +
η
√

1−m2
1√

2

)

+ w1 cosh

(

d2 +
η
√

m2
1−1√
2

) .

(40)υ5,1(x, t) =

√

m2
1 − 1w1 sinh

(

d2 +
√

m2
1−1(x−m1t)√

2

)

−
√

1−m2
1w2 sin

(

d4 +
√

1−m2
1(x−m1t)√
2

)

√
2

(

w2 cos

(

d4 +
√

1−m2
1(x−m1t)√
2

)

+ w1 cosh

(

d2 +
√

m2
1−1(x−m1t)√

2

)) .

(41)�5,2(η) =

√

1−m2
1w2 sin

(

d4 −
η
√

1−m2
1√

2

)

√
2

(

w2 cos

(

d4 −
η
√

1−m2
1√

2

)

+ w1 cosh (d2)

) .

(42)υ5,2(x, t) =

√

1−m2
1w2 sin

(

d4 −
√

1−m2
1(x−m1t)√
2

)

√
2

(

w2 cos

(

d4 −
√

1−m2
1(x−m1t)√
2

)

+ w1 cosh (d2)

) .

(43)�5,3(η) =

�

m2
1 − 1
√
2

tanh



d2 +
η

�

m2
1 − 1

√
2



.

(44)υ5,3(x, t) =

�

m2
1 − 1
√
2

tanh



d2 +

�

m2
1 − 1(x −m1t)

√
2



.

(45)�5,4(η) =

�

1−m2
1

√
2

tan



d4 −
η

�

1−m2
1

√
2



.

(46)υ5,4(x, t) =

�

1−m2
1

√
2

tan



d4 −

�

1−m2
1(x −m1t)
√
2



.
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By substituting Eq. (47) and its derivatives to the third order into Eq. (9), simplifying and collecting like terms 
of exponential functions, trigonometric functions and hyperbolic functions with the same powers, and setting 
each of the resulting expressions to 0, we can determine the values of some of the parameters as follows:

Family 1: the constant values are taken as w2 = 0, d1 = −d3, d7 =

√

1
3
d3v((b2−9)d3v+6m1m2)+m

2
1−1

v
,

d9 = 0, b1 = − 2
(

b2d
2
3v

2−3m2
1+3

)

3d3v
 , while d2, d4, d6, w1, w3, v are free parameters.

Substituting them in Eq. (47) and then in Eq. (10) the result is, obtained such as

where G =
√

(−4b1v − 9m1m2v)2 − 4
(

m2
1 − 1

)(

2b2v2 + 4v2
)

+ 4b1v + 9m1m2v.

The periodic cross kink solution to Eq. (4) is gained as:

where J =
√

(b2 − 9)d23v
2 + 6d3m1m2v + 3

(

m2
1 − 1

)

.

Family 2: the constant values are taken as w1 = 0, w2 = 0, d7 = −
√

3d21v
2−2m2

1+2√
2v

, b1 = −2m1m2, b2 = 6 , 
while d1, d2, d8, d9, w3, v are free parameters.

Substituting them in Eq. (47) and then in Eq. (10) the result is, obtained such as

The periodic cross kink solution to Eq. (4) is gained as:

Family 3: the constant values are taken as w1 = 0, d5 =

√

1−m
2
1√

2v
, d7 =

√

1−m
2
1

2v
, d9 = 0, b1 = −2m1m2, b2 = 6 , 

while d1, d2, d6, d8, w2, w3, v are free parameters.
Substituting them in Eq. (47) and then in Eq. (10) the result is, obtained such as

The periodic cross kink solution to Eq. (4) is gained as:

Graphical presentations
In this section, we look at the graphical representations of the solutions we’ve found. The wave shapes depicted 
below are graphical representations of these solutions. We thoroughly investigate the behavior and distinguishing 
aspects of the solutions produced from the Heimburg equations through detailed explanations and accompanying 

(47)
f = exp (−v(d1η + d2))+ w1 exp (v(d3η + d4))+ w2 cos (v(d5η + d6))+ w3 cosh (v(d7η + d8))+ d9.

(48)�6,1(η) =
− v(G)

4(b2v2+2v2)
e
−v

(

η(G)

4(b2v2+2v2)
+d2

)

− 1
2

√

m2
1 − 1w2 sin

(

v

(

d6 +
η
√

m2
1−1

2v

))

e
−v

(

η(G)

4(b2v2+2v2)
+d2

)

+ w2 cos

(

v

(

d6 +
η
√

m2
1−1

2v

))

+ w3 cosh (d8v)

.

(49)υ6,1(x, t) =

√
3w3Je

v(d3(m1t−x)+d2) sinh ((x −m1t)J + d8v)+ 3d3v
(

w1e
(d2+d4)v + 1

)

3
(

w3ev(d3(m1t−x)+d2) cosh ((x −m1t)J + d8v)+ w1e(d2+d4)v + 1
) ,

(50)�6,2(η) =
d1v

(

−e−v(d1η+d2)
)

−
w3

√
3d21v

2−2m2
1+2 sinh

(

v

(

d8−
η

√
3d21 v

2−2m2
1+2

√
2v

))

√
2

w3 cosh

(

v

(

d8 −
η
√

3d21v
2−2m2

1+2√
2v

))

+ e−v(d1η+d2) + d9

.

(51)

υ6,2(x, t) = −
w3

√

6d21v
2 − 4m2

1 + 4ev(d1(x−m1t)+d2) sinh

(

√

3
2d

2
1v

2 −m2
1 + 1(m1t − x)+ d8v

)

+ 2d1v

2

(

w3ev(d1(x−m1t)+d2) cosh

(

√

3
2d

2
1v

2 −m2
1 + 1(m1t − x)+ d8v

)

+ d9ev(d1(x−m1t)+d2) + 1

) .

(52)

�6,3(η) =
−

√
1−m2

1w2 sin

(

v

(

d6+
η

√
1−m2

1√
2v

))

√
2

+ 1
2

√

1−m2
1w3 sinh

(

v

(

d8 +
η
√

1−m2
1

2v

))

+ d1v
(

−e−v(d1η+d2)
)

w2 cos

(

v

(

d6 +
η
√

1−m2
1√

2v

))

+ w3 cosh

(

v

(

d8 +
η
√

1−m2
1

2v

))

+ e−v(d1η+d2)

.

(53)

υ6,3(x, t) =

√

1−m2
1e

v(d1(x−m1t)+d2)

(

w3 sinh

(

d8v + 1
2

√

1−m2
1(x −m1t)

)

−
√
2w2 sin

(

d6v + 1
2

√

2− 2m2
1(x −m1t)

))

− 2d1v

2

(

w2ev(d1(x−m1t)+d2) cos

(

d6v + 1
2

√

2− 2m2
1(x −m1t)

)

+ w3ev(d1(x−m1t)+d2) cosh

(

d8v + 1
2

√

1−m2
1(x −m1t)

)

+ 1

) .
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graphs. These studies demonstrate the system’s amazing variety of waveforms, emphasizing its potential uses in 
biomembranes and nerves. Understanding the transmission of electrical impulses and the dynamics of bio-mem-
brane structures in the context of the Heimburg model for biomembranes and nerves requires an understanding 
of breather waves, lump solitons, mixed multiwave solutions and other interactions. These are nonlinear wave 
solutions that are localised and oscillate amplitude and width on a periodic basis without changing their general 
shape. The interaction of dispersion and nonlinearity in the membrane, which influences the passage of electrical 
signals across nerve fibres, might result in these waves. Their physical importance comes from our understanding 
of how energy moves through biological membranes and is modulated, which affects the communication and 
propagation of nerve signals. These solitons may be associated with certain membrane fluctuations or structures, 

Figure 1.   3D and corresponding contour for solution υ1,1(x, t) with   d2 = 1.1, d3 = 0.5, d4 = 0.3, d6 = 2.3,

m1 = 1.1, m2 = 0.06, m4 = −1.9, w1 = 0.2, w2 = 0.8.

Figure 2.   3D and corresponding contour for solution υ1,2(x, t) with   d2 = 0.01, d3 = 1.5, d4 = 2.3,

d6 = 10.3, m1 = 0.92, m2 = 2.6, m4 = 1, v = 0.5, w1 = 0.2, w2 = 2.5.

Figure 3.   3D and corresponding contour for solution υ1,3(x, t) with   d2 = 0.1, d4 = 1, d3 = 1.01, d6 = 0.3,

m1 = 0.1, m2 = 1.1, m4 = 1.6, v = 0.5, w1 = 10.2, w2 = 6.5.
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contributing to both signal transmission and membrane structural integrity. The importance is in comprehending 
how these localised structures remain stable and persistent in the intricate dynamics of biomembranes and neu-
rons. The Figs. 1, 2, and 3 are drawn for the breather waves while Fig. 4 are the interaction of double exponents. 
The Figs. 5 and 6 clearly show the lump wave solutions. The Figs. 7, 8 and 9 give us the solitary waves by the mixed 
type solutions. Figure 10 also shows the limps in their interaction, while Figs. 11 and 12 explore the multiwaves. 
Figure 13 provided us with the dark soliton while Fig. 14 bright soliton. The Figs. 15, 16, 17 and 18 give us the 
periodic cross solution in their behaviors. These solutions are very attractive and helpful for the dynamic study 
of the Heimburg model and their interaction in medicine and the biological sciences.

Figure 4.   3D and corresponding contour for solution υ2,1(x, t) with   d2 = 3.1, d4 = 1.1, m1 = −1.5,

m2 = 0.36, w1 = 3.5, w2 = 3.2.

Figure 5.   3D and corresponding contour for solution υ2,2(x, t) with   d2 = 2.1, d3 = 2.1, d4 = 0.1, m1 = 2.5,

m2 = 1.36, w1 = 0.5, w2 = 0.2.

Figure 6.   3D and corresponding contour for solution υ3,1(x, t) with   d6 = 0.6, m1 = 16.1.
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Conclusion
This study, used the Hirota Bilinear technique to explain soliton formation and propagation in biomembranes 
and nerves offers vital insights into the complex process of nerve impulse generation and transmission. This 
approach effectively found the exact travelling wave solutions to the Heimburg model of neurology, revealing 
innovative and different features such as kink, homoclinic wave, lump, mixed wave, multi wave and periodic-wave 
solutions. The significance of these results cannot be underestimated, because they offer insight into one of the 
most exciting issues in current biophysics-the basic mechanism that underpins life itself, the nerve impulse. This 
study has enhanced not just neurophysiology, but also mathematical physics as well. Furthermore, the graphical 

Figure 7.   3D and corresponding contour for solution υ3,2(x, t) with   d1 = 2.5, d2 = 2.5, d4 = 1.5, d6 = 0.6,

d7 = 1.7, m1 = 0.2.

Figure 8.   3D and corresponding contour for solution υ4,1(x, t) with   d4 = 6.1, d6 = 4.1, m1 = 0.5, v = 1.5,

w3 = 1.6, w4 = 1.5.

Figure 9.   3D and corresponding contour for solution υ4,2(x, t) with   d2 = 2.1, d4 = 0.1, d6 = 0.1,

m1 = 0.05, v = 0.25, w2 = 1.03, w3 = 1.08, w4 = 1.6.
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representations of the travelling wave solutions suggest the obtained unique profiles modulate into pulse patterns 
as they propagate through the axon. This dynamic behaviour gives crucial information for precisely understand-
ing and managing the nerve impulse magnitude. The solutions obtained in this study are very remarkable because 
they have not being found in previous studies. The use of Mathematica 11.1 to validate these facts strengthens 
their accuracy and dependability. In the future, these analytic representations of solitary solutions offer possibili-
ties for prospective applications in medicine and biosciences. They could be a useful tool for precise regulation of 
pulse magnitudes in nerve conduction, allowing for more investigation and breakthroughs in the understanding 
and treatment of many neurological disorders. Wave propagation issues in biomembranes and neurons, on the 

Figure 10.   3D and corresponding contour for solution υ4,3(x, t) with   d1 = 4.1, d2 = 0.5, d4 = 0.5,

v = 0.003, w2 = 1.6, w3 = 0.99.

Figure 11.   3D and corresponding contour for solution υ4,4(x, t) with   d4 = 4.1, m1 = 2.5.

Figure 12.   3D and corresponding contour for solution υ5,1(x, t) with   d2 = 1.01, d4 = 1.05, m1 = 0.4,

w1 = 6.1, w2 = 4.5.



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10180  | https://doi.org/10.1038/s41598-024-60689-0

www.nature.com/scientificreports/

other hand, remain fascinating and challenging. More research is needed to expand on the foundation established 
by this study and other similar studies, and move further into the complexities surrounding this phenomena. In 
conclusion, the use of the Hirota Bilinear Method has made a substantial contribution to understanding the com-
plexities of soliton formation and propagation in biomembranes and neurons. The findings of this study provide 
hope for both fundamental scientific understanding and future practical applications in the realms of medicine 
and bioscience. As we seek to investigate the intriguing issues of wave propagation in biomembranes, we go on 
an investigation to gain a better understanding of life’s fundamental processes. For the future work this study is 
helpful to obtained the different types of soliton solutions for the NLPDEs while the bilinear residual network 
method14–18 is also powerful technique to obtained the exact solutions for the integrable differential equations.

Figure 13.   3D and corresponding contour for solution υ5,2(x, t) with   d2 = 4.1, d4 = 0.5, m1 = 0.65,

w1 = 0.51, w2 = 0.29.

Figure 14.   3D and corresponding contour for solution υ5,3(x, t) with   d4 = 0.5, m1 = 0.855.

Figure 15.   3D and corresponding contour for solution υ5,4(x, t) with   d2 = 1.5, m1 = 0.9.
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Figure 16.   3D and corresponding contour for solution υ6,1(x, t) with   b2 = 1.2, d2 = 0.1, d3 = 0.067,

d4 = 2.1, d8 = 0.1, m1 = 0.5, m2 = 0.6, v = 0.5, w3 = 0.4, w1 = 1.98.

Figure 17.   3D and corresponding contour for solution υ6,2(x, t) with   d1 = 0.1, d2 = 0.62, d8 = 2.3,

d9 = 0.9, m1 = −2.9, v = 2.5, w3 = 8.6.

Figure 18.   3D and corresponding contour for solution υ6,3(x, t) with   d1 = 0.1, d2 = 0.62, d6 = 0.03,

d8 = 0.02, m1 = 0.05, v = 4.5, w2 = 0.6, w3 = 0.5.
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