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ZleepAnlystNet: a novel deep 
learning model for automatic 
sleep stage scoring based 
on single‑channel raw EEG data 
using separating training
Nantawachara Jirakittayakorn 1,2, Yodchanan Wongsawat 3 & Somsak Mitrirattanakul 4*

Numerous models for sleep stage scoring utilizing single-channel raw EEG signal have typically 
employed CNN and BiLSTM architectures. While these models, incorporating temporal information 
for sequence classification, demonstrate superior overall performance, they often exhibit low per-class 
performance for N1-stage, necessitating an adjustment of loss function. However, the efficacy of such 
adjustment is constrained by the training process. In this study, a pioneering training approach called 
separating training is introduced, alongside a novel model, to enhance performance. The developed 
model comprises 15 CNN models with varying loss function weights for feature extraction and 1 
BiLSTM for sequence classification. Due to its architecture, this model cannot be trained using an end-
to-end approach, necessitating separate training for each component using the Sleep-EDF dataset. 
Achieving an overall accuracy of 87.02%, MF1 of 82.09%, Kappa of 0.8221, and per-class F1-socres (W 
90.34%, N1 54.23%, N2 89.53%, N3 88.96%, and REM 87.40%), our model demonstrates promising 
performance. Comparison with sleep technicians reveals a Kappa of 0.7015, indicating alignment with 
reference sleep stags. Additionally, cross-dataset validation and adaptation through training with the 
SHHS dataset yield an overall accuracy of 84.40%, MF1 of 74.96% and Kappa of 0.7785 when tested 
with the Sleep-EDF-13 dataset. These findings underscore the generalization potential in model 
architecture design facilitated by our novel training approach.

Sleep is a physiological state characterized by reduced motility and sensory responses to external stimuli across 
various species1. The quality of sleep significantly impacts both physical and mental health2, cognitive function3, 
and work efficiency4. Sleep disorders, deprivation, and disruptions from lifestyle factors such as shift work and 
jet-lag can lead to serious health risks, e.g., cardiovascular, respiratory, neurological, etc.5, and cause tremendous 
life-threatening incidents like vehicle and industrial accidents6. An estimation of 50–70 million people in the 
U.S. have confronted sleep problems7, affecting over 60% of adults8. Polysomnography (PSG) is the diagnostic 
gold standard in capturing electrical signals including electroencephalogram (EEG), electro-occulogram (EOG), 
electromyogram (EMG), and electrocardiogram (ECG), along with mechanical signals like airflow, sound, pres-
sure, and body position. These signals help identify specific sleep issues, such as obstructive sleep apnea identified 
through respiratory events9, whereas snoring is observed by the sound recording signal. The sleep stage scoring 
process is an essential component of several assessments related to sleep quality and problems.

Sleep stage scoring, also termed sleep stage classification, is a process of labeling 30-s PSG epochs compris-
ing EEG, EOG, and chin EMG signals. In 1968, Rechtschaffen and Kales introduced a manual for sleep stage 
scoring which has been called the R&K classification10. Later, in 2007, the American Academy of Sleep Medicine 
(AASM) introduced the AASM classification and is still extensively used11. Although with similar EEG frequency 
characteristics, these standards differ. According to the AASM, sleep stages include rapid eye movement (REM) 
and non-rapid eye movement (NREM)11. NREM is subdivided into N1, N2, and N3. Nightly recorded PSG 
is analyzed by a sleep technician, where each epoch must be manually labeled with one sleep stage and other 
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related events which is time consuming and tremendous labor intensive. The meticulous scoring process limits 
patient throughput and increases workloads of sleep technicians for score finalizing. Moreover, several studies 
have reported varying levels of agreement among different sleep technicians12–20. Overall agreement levels have 
ranged from 61.1 to 92.2%, which indicates human errors within the scoring process. Consequently, several 
efforts have been made to develop automatic sleep stage scoring systems to assist technicians, hence, reducing 
workload, scoring duration, and human errors while accommodating more patients on sleep monitoring21–42.

Automated sleep stage classification systems can be categorized into two main types of learning: shallow 
learning, and deep learning43. Shallow learning involves learning a process where features extraction is based on 
human expert knowledge. In contrast, deep learning conducts feature extraction directly from raw data. Both 
approaches are then followed by classifiers to label the sleep stage.

In shallow learning, meaningful features are extracted by humans drawing upon their knowledge of both 
signal processing and sleep stage scoring manual. The extracted features span in time, frequency, and time–fre-
quency domains, including non-linear features21–27,29,35,39,41. Various classification models are utilized to classify 
these extracted features ranging from traditional machine learning models such as k-nearest neighbor (kNN)35, 
support vector machines (SVM)21,27,33, decision tree25, and random forest24,29, to artificial neural networks 
(ANNs), and deep learning models which excel in the feature-based approach23.

A multitude of combinations between the extracted features and classification models can be generated. 
However, a comparative review on sleep stage classification methods22 highlighted five models that used tra-
ditional machine learning models as state-of-the-art models44–48 and conducted experiments by implementing 
these models on healthy subjects and REM behavioral disorder (RBD) patients. The authors pointed out that the 
combination of time–frequency domain and entropy features with random forest classifier obtained the high-
est average overall accuracy in both healthy subjects (87.06%) and RBD patients (69.05%). Another review49 
underscored an important capability of ANNs, which are suitable for solving of non-linear problems and do 
not require special transformation of data prior to use. The authors reviewed that ANNs have the potential to 
differentiate sleep stages. One ANN system50 which used central EEG, two EOG, and one chin EMG channels 
for classifying sleep stages attained 80% overall agreement and 0.72 Cohen’s kappa coefficient in distinguishing 
movement time (MT), W, N1, N2, N3, and REM. However, it comes up with unexplainable in design because 
there are no standard guidelines to determine the number of hidden layers and neurons in the network. Most 
developers have found them by trial-and-error method and based on their experience51. Even if deep learning 
workflow is implemented to distinguish sleep stages based on feature-based approach23. The multi-layer per-
ceptron followed by the recurrent neural network was inputted by several features in frequency domain from a 
single-channel EEG could obtain overall accuracy of 85.92% with macro F1-score of 80.50%.

Although sleep stage classification systems based on shallow learning have achieved superior performance, 
they also require extensive knowledge of signal processing and sleep stage manuals. Deep learning-based systems, 
on the other hand, are believed to take benefit from minimal knowledge requirements regarding signal processing 
and sleep stage manuals43. These systems can learn features directly from raw input data without prior knowl-
edge, but the non-interpretability of the results and the more computational duration are required as trade-off. 
The raw data is fed into a network of filters and pooling layers to extract representative features while reducing 
dimensionality. Subsequently, these representative features are passed into the last layer, typically a softmax layer, 
to calculate the probability of each class and identify sleep stage. Deep learning models are based on artificial 
neural networks but differ primarily in architecture, which refers to the arrangement of neuronal connections. 
Various architectures including autoencoders39,52, deep neural networks (DNNs)23, convolutional neural net-
works (CNNs)26,31,34,40,41,53–57, recurrent neural networks (RNNs)58, and combinations among them30,36–38,59–63 
are employed in sleep stage classification. Despite the popularity of deep learning models and their comparable 
performance to traditional machine learning models, accurately classifying the N1-stage remains challenging 
due to the similarity of N1 and REM stages, especially with single channel EEG data.

To address the similarity between N1 and REM stages, a contextual input uses surrounding epoch data for 
classification, termed as a many-to-one classification scheme has been introduced31,40. Some researchers have 
incorporated recurrent neural networks (RNN), particularly long short-term memory (LSTM), to capture infor-
mation from neighboring temporal sequences in the classification task27,30,32,36–38. Evidence has showed improve-
ment in the classification performance39. Bidirectional LSTM (BiLSTM) is predominantly applied to learn similar 
sleep stage transition, which mirrors sleep technicians who follow the AASM standard11. Dong23 combined LSTM 
with hand-crafted engineered features resulting in promising performance with overall accuracy 85.92%, MF1 
80.50%, and F1-score for N1 was 56.31%, REM was 86.12%; however, this method used extracted features as the 
input. Consequently, Supratak et al.37 introduced DeepSleepNet for automatic sleep stage scoring based on raw 
single-channel EEG with automatic feature extraction. It employed a two-step training model where initially 
learned feature extraction of EEG signal was subsequently finetuned with BiLSTM. The results demonstrated 
overall accuracy of 82.00%, and MF1 of 76.90% using single-channel raw EEG signal. The F1-score for N1 and 
REM were 46.60%, 82.40%, respectively. Other groups utilized multiple signals, combining EEG with either EOG 
or EMG or both, and achieved higher F1-score of N1 and REM. Even with the addition of only one more EOG 
signal52,54,64, the highest F1-score of N1 and REM were 56% and 93%, respectively as demonstrated by Perslev 
et al.64, by incorporating just one EOG signal as the input.

According to DeepSleepNet by Supratak37, it was trained with two-step approach. Firstly, the representative 
feature extraction part was trained, followed by fine-tuning the sequential classification part. This method may 
incorporate the effects of sleep sequence on the feature extraction, which has already been well trained by the 
training data. Overfitting may occur within feature extraction due to the number of sequences in classification 
since sleep stage transition events are lesser than continuum events. Additionally, DeepSleepNet-Lite by Fiorillo 
et al.65 applied only the first representative feature extraction part of DeepSleepNet. It showed slightly superior 
performance with enormous model complexity by using 3 consecutive epochs to label the central epoch, which 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9859  | https://doi.org/10.1038/s41598-024-60796-y

www.nature.com/scientificreports/

differs from DeepSleepNet that requires the entire night’s data. This classification can be categorized as many-
to-one classification scheme31, and both previous and next epochs seems to contain some important features 
for classifying the central epoch as well. With these two ideas—the effects of sleep sequence on the feature 
extraction and the importance of features from the previous and the next epochs on the current epoch—it has 
been determined that separating training along with data manipulation can enhance the performance of sleep 
stage classification.

The issue of distinguishing between N1 and REM is also an important concern in this study. Typically, N1 
epochs significantly comprise fewer instances compared to the others resulting in data imbalance. This imbalance 
can cause certain classes to be underrepresented during model training leading to reduced importance assigned 
to their associated features. It is sought to be addressed by adjusting the weights of specific classes to increase 
their importance. In other words, the importance of N1 is elevated to be equal to the sum of the others. However, 
this approach may have drawbacks, as it tends to prioritize the emphasized class while neglecting others, hence, 
introducing errors in another form. To mitigate this, it is necessary to employ multiple models, which each model 
focuses on an individual class to ensure equal importance across all classes. This model design cannot be trained 
using either end-to-end or fine-tuning processes. Therefore, separating training is introduced and employed to 
enable the training of designed model and evaluate its performance.

As suggested in the literature review43, evaluating a model’s performance by solely overall accuracy is insuf-
ficient, at least agreement with the scorer is required. The interrater reliability among sleep technicians has been 
quantified using Cohen’s kappa coefficient in meta-analysis study which resulted in an overall value of 0.7666. 
Additionally, Cohen’s kappa coefficients for each stage vary with values reported as 0.70, 0.24, 0.57, 0.57, and 
0.69, for W, N1, N2, N3, and REM respectively. These findings serve as rough criteria for assessing consistency 
between automatic sleep stage classification and human scorers. Previous studies have developed models based 
on consensus scoring among five sleep technicians on DOD-H dataset19,20. Fiorillo et al.19 reported a Cohen’s 
kappa coefficient of 0.82 among five sleep technicians while Guillot et al.20 demonstrated a 79.9% agreement. 
These studies have estimated the consensus-scoring through soft agreement using their respective methods. In 
this study, the interrater reliability (consistency) between the developed model and sleep technicians through 
statistical analysis is also focused on.

The primary objective of this study is to develop a novel deep learning model for automated sleep stage scoring 
utilizing single-channel raw EEG data and separating training to enhance model performance and efficiency. This 
study also aims to investigate the interrater reliability of sleep stage scoring across the dataset, developed model, 
and other sleep technicians. This comparison may be used to evaluate the consistency and agreement among 
raters in determining sleep stages while obtaining clinical applicability of the developed model. Eventually, cross 
dataset validation will be used to validate the developed model’s generalization.

Results
The model named ZleepAnlystNet consisted of two main parts: representative feature extraction and sequential 
sleep stage classification (Fig. 1 on the left column), detailed in the ‘Methods’ section. These two parts under-
went separate training during the model training procedure (Fig. 2B, C). The developed model was trained and 
evaluated using Sleep-EDF-13 and Sleep-EDF-18 datasets. Model evaluation involved subject-wise k-fold cross-
validation with k values of 20 and 10, respectively.

Developed model performance
Figure 3A–D depicts the performance of the model under various input conditions. The Fpz-Cz channel of the 
Sleep-EDF-13 dataset exhibited the highest overall accuracy (87.02%), MF1 (82.09%), average precision (82.36%), 
and average recall (81.95%). Across all input conditions, the N1-stage consistently showed the lowest per-class 
F1. The model tended to misclassify the N1-stage as W, N2, and REM across all input conditions. However, 
when compared to other conditions, the per-class F1-score of the Fpz-Cz channel of the Sleep-EDF-13 dataset 
was the highest, reaching 90.34%, 54.23%, 89.53%, 88.96%, and 87.40% for W, N1, N2, N3, and REM stages, 
respectively. Figure 3E provides an overview of the total number of epochs used, including both included and 
excluded epochs for model evaluation.

Comparison between performances of developed model and existing models
For a systematic comparison, it is crucial to control the environmental conditions, which includes the dataset 
used, EEG input specifications such as channel and total number of epochs, and evaluation strategies. Hence, 
the Slee-EDF-13 dataset was selected due to its limited records and consistent subject amount facilitating leave-
one-subject-out cross-validation for equitable comparisons across studies. Models with single-channel data input 
were exclusively considered to ensure fair performance comparisons with our proposed model.

From Table 1, it became evident that the developed model, ZleepAnlystNet, achieved the highest overall 
accuracy and MF1 percentage in both conditions, utilizing Fpz-Cz and Pz-Oz inputs from the Sleep-EDF-13 
dataset. Specifically, ZleepAnlystNet attained an overall accuracy of 87.02% and 85.07%, and MF1 of 82.09% 
and 79.08%, respectively for Fpz-Cz and Pz-Oz inputs. The kappa coefficient indicating superior performance 
equaled 0.8221, which equivalent to EEGSNet employing spectrogram image input28. Notably, the per-class 
F1-score demonstrated ZleepAnlystNet’ superior performance in classifying sleep stages N1, N2, and N3 using 
Fpz-Cz input with values of 54.23%, 89.53%, and 88.96%, respectively. Furthermore, ZleepAnlystNet achieved 
F1-score of 90.34% and 87.40% for W and REM stages, respectively, using Fpz-Cz input. However, for the Pz-Oz 
input, ZleepAnlystNet exhibited the highest performance in REM-stage compared to existing models utilizing 
the same input.
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Efficacies of model training approach and data manipulation
To investigate the efficacies of training approach and data manipulation, two scenarios were simulated: scenario 
A—separating training and end-to-end training, and scenario B—several combinations of data manipulation 
sets. In both scenarios, the Fpz-Cz channel of the Sleep-EDF-13 dataset was utilized as input.

For scenario A, the 15 individual CNN models were changed into a single CNN model for feature extraction 
without employing a specific weighted loss function tailored to sleep stage. Additionally, a single BiLSTM model 
received input from 5 features per epoch extracted by the CNN model. The architectural design of the CNN 
model was illustrated in Fig. 1 (on the right column). In the case of separating training approach, the single CNN 
model underwent training with data manipulation set A. Following this, the BiLSTM model was trained with the 
output from the CNN model. Conversely, in the case of end-to-end training, the same CNN and BiLSTM models 
were interconnected into CNN + BiLSTM. The CNN + BiLSTM model was trained using data manipulation set 
A. Further details were fully provided in the ‘Methods’ section. As summarized in Table 2, separating training 
yielded notably superior performance (exceeding 5%) across both overall and per-class metrics.

For scenario B, data manipulation sets were investigated. Our proposed model consisted of three sets of 
CNN models: P-models, C-models, and N-models. Each set comprised 5 class-specific CNN models, all shar-
ing the same architecture (Fig. 1 on the right column) but varying in the loss functions used during model 
training. The distinguishing factor among the three sets of the CNN models was the input they received. The 
C-models, referred to as the set of the ‘Current’ models, were trained using data manipulation set A (Fig. 2A), 
while the P- and N-models utilized sets B and C, respectively. Within this scenario, different combinations of 
data manipulation were investigated. Each combination involved training the BiLSTM model with sets of CNN 
models corresponding to the manipulated input data. For example, in the case of using only set A, the C-models 
were trained with data manipulation set A, and the BiLSTM model was subsequently trained using the output of 
the trained C-models generated by feeding data manipulation set A. Only 5 features per epoch, not all datapoints 

Figure 1.   Overview of ZleepAnlystNet. The left column illustrates the prediction process from a complete EEG 
signal sequence to an entire sleep stage sequence. Three sets of CNN models called P-, C-, and N-models are 
exhibited. Color frames representing signal shifting for each set of CNN models. The middle column displays 
the composition of class-specific models in each set of CNN models. The right column presents the architecture 
of each CNN model in class-specific models. While all class-specific models share the same architecture, they 
vary in the weights of loss function.
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of the signal, were sent through the BiLSTM model. On the other hand, in the case of combining set A and set 
B, the C-models were trained with data manipulation set A while the P-models were trained with set B. During 
the BiLSTM training, 10 features per epoch were sent through the model. The specific hyperparameters were 
explained in the ‘Methods’ section. In total, seven combinations were evaluated including: only set A; only set 
B; only set C; set A + set B; set A + set C; set B + set C; and set A + set B + set C. Table 2 shows that overall metrics 
displayed slightly different performance (within 1% of difference) upon each condition, while the developed 
condition exhibited the highest accuracy of 87.02% with MF1 of 82.09%. In terms of per-class metrics, N1 clas-
sification consistently exhibited the lowest performance across all conditions. The highest per-class F1-score was 
found in the developed condition, while the second highest was found in sets A and B condition which was a 
combination of two sets of the ‘Current’ and the ‘Previous’ models.

The interrater reliability
Figure 4A–E illustrates the sleep architecture of the same recording scored by different scorers: A) depicts the 
sleep stage as scored in the dataset, B) shows the model prediction, and C) to E) represent the sleep stage scored 
by three other sleep technicians. In the first condition, consistency agreement between the dataset scoring and 
the model prediction was strong (κ = 0.8221, 95% CI of κ = 0.8177 − 0.8264, p-value < 0.001). In the second condi-
tion, interrater agreement among three sleep technicians was moderate (κ = 0.6976, 95% CI of κ = 0.6946–0.7006, 
p-value < 0.001). In the subsequent condition, the interrater agreement between scoring in the dataset and 3 sleep 
technicians was also moderate (κ = 0.7129, 95% CI of κ = 0.7108–0.7150, p-value < 0.001). Lastly, the consistency 
agreement between the model prediction and the three sleep technicians was moderate (κ = 0.7015, 95% CI of 
κ = 0.6994–0.7036, p-value < 0.001).

Figure 2.   Data manipulation and training processes. (A) Data manipulation process by involving the 
combination of signal S and target Y, resulting in input X. (B) Training of CNN separated by sleep stage. The 
input X of CNN models are one whole sequence of EEG signal. (C) Training of BiLSTM model. The input X for 
the BiLSTM model is the output of the trained CNN models arranged in the original sequence of EEG signal, 
generated from feeding the entire EEG signals. Signal manipulation and specific set of the models, P-, C-, and 
N-models are utilized.
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Cross‑dataset validation
Cross-dataset validation was implemented using 200 recordings sampled from SHHS1 and SHHS2, 100 records 
from each dataset, ensuring comparability between results and the developed conditions. As mentioned, the 
primary objective of this study was to focus on separating training approach so the systematic evaluation across 
dataset was not provided. However, 200 records were sufficient for a preliminary investigation of the idea. After 
inputting 200 records into the models in all folds, the best fold in each condition was further tested using the 
full SHHS1 dataset, consisting of 6,441 records, as pilot study. The number of SHHS dataset epochs used in this 
study, in the case of 200 records, is given in Supplementary Fig. S1C.

Supplementary Tables S1–S8 present the evaluation results of 60 models trained using both Fpz-Cz and Pz-Oz 
of the Sleep-EDF-13 and the Sleep-EDF-18 datasets on both C3-A2 and C4-A2 of the SHHS dataset. Totally, 
8 cases of the combinations between datasets used for model training and evaluation were generated which 
comprised of training from 2 channels of both Sleep-EDF-13 and Sleep-EDF-18 datasets and evaluated on 2 
channels of SHHS dataset. The two highest overall and per-class model evaluation metrics were observed in com-
bination case 4 (Supplementary Table S4) and case 5 (Supplementary Table S5). According to case 4, 20 models 
were trained with the Pz-Oz channel of the Sleep-EDF-13 dataset and evaluated with the C4-A1 channel of the 
SHHS dataset, 200 records. The overall metrics for model evaluation were as follows: 64.25% for overall accuracy 
(ACC); 56.40% for MF1; 0.4965 for Kappa; 62.38% for overall average of precision (APR); and 57.14% for the 
overall average of recall (ARC). For per-class metrics of model evaluation, the following per-class F1-score was 
reported due to sleep stage: W (61.75%); N1 (20.24%); N2 (69.03%); N3 (64.60%); and REM (66.36%). Accord-
ing to case 5, 10 models were trained with the Fpz-Cz channel of the Sleep-EDF-18 dataset and evaluated with 
the C3-A2 channel of the SHHS dataset, 200 records. It revealed the following overall metrics: 63.06% for ACC; 

Figure 3.   Model performance metrics. Confusion matrices, overall evaluation metrics, and per-class evaluation 
metrics of the developed model trained by the Sleep-EDF dataset. (A) Fpz-Cz channel of Sleep-EDF-13. (B) 
Pz-Oz channel of Sleep-EDF-13. (C) Fpz-Cz channel of Sleep-EDF-18. (D) Pz-Oz channel of Sleep-EDF-18. (E) 
Dataset details and numbers of epochs utilized in model training and evaluation.
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53.44% for MF1; 0.4859 for Kappa; 63.22% for APR; and 57.12% for ARC. The per-class F1-score was as follows: 
W (62.17%); N1 (26.04%); N2 (71.75%); N3 (42.86%); and REM (64.37%). The average values of other overall 
and per-class metrics for each case with their standard deviations are exhibited in Supplementary Figs. S2 and 
S3. When running with full SHHS1 dataset, the best model in 20 models from case 4, fold-13, demonstrated an 
overall accuracy of 67.51%, MF1 of 59.43%, Kappa of 0.6148, APR of 64.91%, and ARC of 58.19%. The per-class 
F1-score was 67.00%, 25.02%, 72.10%, 67.14%, and 65.89%, for W, N1, N2, N3, and REM respectively (Supple-
mentary Table S4, the bottommost). For case 5, fold-9, the model showed an overall accuracy of 67.45%, MF1 
of 57.35%, Kappa of 0.6100, APR of 63.35%, and ARC of 58.94%. The per-class F1-socres were 70.08%, 29.59%, 
74.55%, 45.80%, and 66.76%, for W, N1, N2, N3, and REM respectively.

Consequently, the developed model was newly trained with 200-recordings SHHS dataset to evaluate its 
architecture potentiality. Both the C3-A2 and the C4-A1 channels were separately trained and model perfor-
mance was then assessed.

Supplementary Fig. S1A, B represent the model performance of two input conditions, the C3-A2 and the 
C4-A1 channels of the SHHS dataset. The lowest overall and per-class metrics were observed in the C4-A1 
channel, with ACC of 83.75%, MF1 of 73.40%, Kappa of 0.7682, APR of 77.12%, and ARC of 71.56%. Per-class 
F1-score due to each class was as follows: W (89.42%), N1 (33.02%), N2 (84.23%), N3 (76.76%), and REM 
(83.56%). The N1-stage exhibited the lowest per-class F1-score, while the N2-stage showed the highest.

Discussion
This study primarily aims to develop a novel sleep stage scoring model based on single-channel raw EEG data 
using a novel training approach called separating training. Model performance was assessed using the Sleep-
EDF-13 and the Sleep-EDF-18 datasets incorporating the Fpz-Cz and the Pz-Oz channels input separately. As 
secondary objective, interrater reliabilities were compared among model prediction, dataset scoring, and scoring 
by three other well-trained sleep technicians. Additionally, to investigate the feasibility of generalization, cross-
dataset validation was conducted using the SHHS dataset comprising the C3-A2 and the C4-A1 channels. The 
model’s potential was evaluated by training with the SHHS dataset, using the C3-A2 and the C4-A1 channels 
independently.

The developed model, ZleepAnlystNet, comprises two main parts: the feature extraction part and the sleep 
stage classification part. For feature extraction, 15 CNN models were utilized, organized into 3 data manipula-
tion sets and focused on capturing time-invariant features. These sets, named set A, set B, and Set C, integrated 
raw EEG signals from different epochs with dataset scoring. In set A, EEG signal from the current epoch was 
mapped with the sleep stage of the current epoch while in set B and C, EEG signal from the previous and the 
next epochs were also mapped with the sleep stage of the current epoch. Each data manipulation set was used to 
train their corresponding set of CNN models: C-models, P-models, and N-models using set A, set B, and set C, 
respectively. In C-, P-, and N-models comprised five class-specific models for each sleep stage: W, N1, N2, N3, 
and REM models. During model training, distinct weights of loss function corresponding to each sleep stage 

Table 1.   Comparisons of model performance including numbers of training parameters, overall evaluation 
metrics, and per-class evaluation metrics between the developed model and the existing models in the 
literature. The input channel was separated as either Fpz-Cz or Pz-Oz. Bold values indicate the highest value 
for each metric.

Model References
Training 
parameters Architecture Input channel Input type

ACC​ MF1

Kappa (κ)

F1 score (%)

(%) (%) W N1 N2 N3 REM

ZleepAnlystNet – 2,48,500 CNN + BiLSTM Fpz-Cz Time series 87.02 82.09 0.8221 90.34 54.23 89.53 88.96 87.40

DeepSleepNet 37  ~ 24.7 M CNN + BiLSTM Fpz-Cz Time series 82.00 76.90 0.76 84.70 46.60 85.90 84.80 82.40

XSleepNet 63  ~ 5.8 M BiLSTM Fpz-Cz Time series 86.30 80.60 0.81 90.20 51.80 88.00 86.80 83.90

SleepEEGNet 30  ~ 2.6 M CNN + BiLSTM Fpz-Cz Time series 84.26 79.66 0.79 89.19 52.19 86.77 85.13 85.02

SingleChan-
nelNet

69 n/a CNN Fpz-Cz Many-to-Many 86.20 n/a 0.81 n/a n/a n/a n/a n/a

Joint Classifica-
tion

31 n/a CNN Fpz-Cz One-to-Many 81.90 73.80 0.74 n/a n/a n/a n/a n/a

TinySleepNet 38  ~ 1.3 M CNN + LSTM Fpz-Cz Time series 85.40 80.50 0.80 90.10 51.40 88.50 88.30 84.30

EEGSNet 28  ~ 0.6 M CNN + BiLSTM Fpz-Cz Spectrogram 
Image 86.82 81.57 0.82 90.76 52.41 88.78 87.00 87.89

DeepSleepNet-
Lite

65  ~ 0.6 M CNN Fpz-Cz Many-to-One 84.00 78.00 0.78 87.10 44.40 87.90 88.20 82.40

IITNet 36 n/a CNN + BiLSTM Fpz-Cz Many-to-One 83.90 77.60 0.78 87.70 43.40 87.70 86.70 82.50

Yang B., et al 57 n/a CNN + CRF Fpz-Cz Time series 85.20 77.70 0.79 88.90 40.60 87.70 86.70 85.00

Yang B., et al 57 n/a CNN + BiL-
STM + CRF Fpz-Cz Time series 85.20 78.10 0.79 88.10 42.40 87.20 87.80 85.00

ZleepAnlystNet – 2,48,500 CNN + BiLSTM Pz-Oz Time series 85.07 79.08 0.79 89.95 47.72 88.02 82.83 86.87

SleepEEGNet 30 ~ 2.6 M CNN + BiLSTM Pz-Oz Time series 82.83 77.02 0.77 90.27 44.64 85.74 81.55 82.88

DeepSleepNet 37 ~ 24.7 M CNN + BiLSTM Pz-Oz Time series 79.80 73.10 0.72 88.10 37.00 82.70 77.30 80.30
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were applied, which resulted in the separate training of 15 individual CNN models. Sleep stage classification 
involved utilizing a single BiLSTM with 128 hidden units that was informed by the output of the trained three 
sets of CNN models. To evaluate the developed model, k-fold cross-validation was employed using both datasets; 
20-fold for Sleep-EDF-13 and tenfold for Sleep-EDF-18.

The justification for formulating the suggested model, which incorporates the distinct separating training 
technique, stems from a range of systematic considerations. Initially, an inspiration was drawn from Phan et al.31 
who is one of the pioneers, as far as our knowledge, in organization classification schemes by dividing them 
into one-to-one, many-to-one, many-to-many, and they suggested one-to-many classification scheme in their 
work, Joint Classification. This model reached an overall accuracy of 81.9% and MF1 of 73.8%. The concept of 

Figure 4.   Comparison of sleep stage scoring among dataset, model predictions, and three other sleep 
technicians. (A) Dataset scoring. (B) Model predictions. (C)–(E) sleep technicians scoring. * indicates 
significant differences.
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many-to-one classification in sleep stage scoring has been adopted since it mimics the recommendation fol-
lowing the guidelines11. Subsequently, the model called DeepSleepNet-Lite proposed by Fiorillo et al.65, which 
employed the first representative feature extraction part of DeepSleepNet37, employed many-to-one classification 
scheme using only three consecutive PSG-epoch and achieved high performance in the Sleep-EDF-13 dataset 
with an overall accuracy of 84.0% and MF1 of 78.0%. These two models, Joint Classification and DeepSleepNet-
Lite, extracted the representative features then classified the extracted features into sleep stage sequence, and 
achieved high performance. Therefore, it seems that previous and next epochs also have some important or key 
features to classify sleep stage of the current epoch. Moreover, DeepSleepNet proposed by Supratak et al.37 and 
SleepEEGNet proposed by Mousavi et al.30 were the models that had BiLSTM connected with CNNs for extracting 
the representative feature following by classification of sleep stage with the involvement of temporal informa-
tion. The former model obtained an overall accuracy of 82.0% and MF1 of 76.9% while the latter model reached 
84.26% and 79.66%, respectively in the Sleep-EDF-13 dataset. SleepEEGNet also came up with higher per-class 
performance (F1) in N1-stage at 52.19% which was trained from the Fpz-Cz channel. This led to the conclusion to 
our rationale that the temporal information had a huge impact on the improvement of the model’s performance. 
Supratak et al.37 was the first group that introduced two-step training in model training process. This training 
begins with training the CNNs and then fine-tuning with BiLSTM but adjusting the learning rate of CNNs by 
reducing it during the fine-tuning. With this, DeepSleepNet initially learns the representative features from PSG 
epoch. Subsequently, the BiLSTM was trained while the weights of CNNs remain to be trained simultaneously. It 
can be assumed in our thought that the representative features receive more attention during the model training 
process. Next, SleepEEGNet by Mousavi et al.30 is one of the earliest groups to address the issue of data imbalance 
by modifying the loss function. This modification led to a significantly high F1-score of 52.19% for N1-stage. Its 
structure was a CNN interconnected with BiLSTM with an attention decoder. Furthermore, our consideration 
extends to an alternative model known as EEGSNet, which was introduced by Li et al.28 that preprocessed the 
raw data into spectrogram, time–frequency features. The model training was end-to-end with an auxiliary clas-
sifier so the CNN model for feature extraction received weight-adjustment during the model training process 
from two main pathways, the one from auxiliary classifier and another one from sequence classifier. The former, 
from auxiliary classifier, indicates that the model was trained from the current epoch while the latter indicates 
that the model was trained to adapt itself to sleep stage sequence. EEGSNet reached an overall accuracy of 
86.82% and MF1 of 81.57% which were higher than the earlier mentioned models; moreover, per-class F1-score 
for N1-stage was 52.41%. However, from our point-of-view, the adjustment of CNN models’ weights based on 
temporal information imposes additional learning tasks on CNNs, as they must learn both epoch patterns and 
sequences. This drastically increases the function on CNNs required, leading to more complexity, and requiring 
more data for training in which overfitting potentially occurs. EEGSNet28 dramatically mitigates the impact of 
temporal information by incorporating an auxiliary classifier to aid in weight adjustment during training. Addi-
tionally, it utilizes two residual connection blocks allowing weight adjustment to propagate up to the topmost 
block. This enables effective training of the model even with considerable model depth. Both DeepSleeNet37 
and SleepEEGNet30 share a similar CNN architecture which is two-branch hierarchical convolution blocks con-
nected by two layers of BiLSTM. However, DeepSleepNet included shortcut connections via a fully connected 
layer which resulted in a higher model complexity of approximately 24.7 million parameters while SleepEEGNet 
consumed around 2.6 million parameters.

With all the aforementioned factors, it was considered that the incorporation of the representative features 
from both previous and next epoch should be included in the sleep stage classification of the current epoch; 
therefore, three sets of the CNN models named C-, P-, and N-models were generated in accordance with three 
sets of data manipulation called set A, set B, and set C, respectively for three sets of the CNN models. Further-
more, data imbalance problems among sleep stages should be addressed with the adjustment of loss function. 
Consequently, the weighted loss functions, which were specific to each sleep stage, were developed resulting in 
class-specific models. The class-specific models were composed of W, N1, N2, N3, and REM according to the 
sleep stage. These five class-specific models were then involved in the three sets of the CNN models upon data 
manipulation. The inclusion of an auxiliary multi-task classifier in the EEGSNet28 training regimen suggests that 
isolating and training each component individually could lead to increased efficiency. Coupled with the adjust-
ment of weights for each class using weighted loss functions, necessitated the application of separating training 
because of both the idea and the model’s structure. While concerns regarding time consumption in real-world 
applications may arise due to this approach, our study did not focus on this aspect as the model was designed 
for offline prediction, so systematic experiments related to time consumption are not conducted. However, it 
is feasible to make a real-time one since the result of set A + set B indicated. Furthermore, due to the model’s 
structure utilizing future epochs in classification, it is non-causal system, so the real-time prediction is impos-
sible upon the definition. However, the time spent in feed-forward process was recorded, which was 0.136 s per 
record for each of the 15 CNN models, totaling 2.04 s. Additionally, 0.58 s were spent on the BiLSTM model. 
This made the total of 2.62 s per 1 record, approximately.

According to the results, training the developed model with the Fpz-Cz channel of the Sleep-EDF-13 dataset 
showed slightly superior or comparable performance to the existing models. The overall metrics exhibited an 
overall accuracy of 87.02%, MF1 of 82.09%, and Kappa of 0.8221 while the per-class F1-score indicated 90.34%, 
54.23%, 89.53%, 88.96%, and 87.40% for W, N1, N2, N3, and REM stages, respectively. The kappa coefficient of 
0.8221 indicated strong reliability according to McHugh67 or near-perfect agreement according to Landis and 
Koch68. This result supports that the developed model demonstrated high-level performance. However, a decrease 
in model performance in N1-stage is anticipated due to data imbalance, which has been a major concern in 
automatic sleep stage scoring model development and confronted by several studies30,31,33,37,69. The Pz-Oz EEG 
channel’s performance was 3–5% lower than Fpz-Cz across metrics. This performance trend—superior overall 
and per-class metrics but weaker N1 results, and Pz-Oz underperforming Fpz-Cz—was consistent for both the 
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Sleep-EDF-13 and the Sleep-EDF-18 datasets. Therefore, comparison of the developed model performance with 
existing models was mainly performed by using the Fpz-Cz channel of the Sleep-EDF-13 dataset as input because 
it offers direct comparison, in which the numerical data reported in across studies with leave-one-subject-out 
cross-validation strategy. Another rationale is that several existing models have reported their models’ perfor-
mance with the Fpz-Cz channel of the Sleep-EDF-13 dataset for benchmarks.

Performance comparison between the developed and existing models was necessary to evaluate its effective-
ness. However, all randomized factors must be controlled, for example the subject in the evaluation. For obvi-
ous comparison, the dataset condition must remain consistent across all models. The selected existing models 
included DeepSleepNet37, SleepEEGNet30, SignleChannelNet69, Joint Classification and Prediction Model31, 
and EEGSNet28. All mentioned models utilized the Sleep-EDF-13 dataset as input for training and evaluation. 
Majority of them utilized and reported merely the Fpz-Cz channel for evaluation, except SleepEEGNet30 and 
DeepSleepNet37 having reported both. The results revealed that the developed model showed slightly superior or 
comparable performance in all overall metrics including accuracy, MF1, and kappa coefficient among all existing 
models across both channels. For per-class metrics, stage N1, N2, and N3 exhibited the highest performance 
but stage W and REM showed marginally 0.40% lower than EEGSNet28. This suggests that the developed model 
may be used for automatic sleep stage scoring and could redefine a new benchmark performance for sleep stage 
scoring model development. As for Pz-Oz, the proposed model has the highest performance among the existing 
models, except for sleep stage N1 with 0.32% lower than SleepEEGNet30. This emphasizes that the developed 
model has high performance for sleep stage scoring using single-channel raw EEG data without preprocessing 
procedures.

The developed model’s enhanced performance is attributed to two main factors: separating training approach 
and addressing data imbalance with specific loss function weights. By differentiating feature extraction and 
sequential classification, separating training may improve performance by allowing targeted training on essen-
tial representative features without the influence of sleep stage sequences. According to end-to-end training, 
the hyperparameters of the feature extraction model may acquire certain effects from the training of sequential 
sleep stage classification. This issue was avoided by separating training. Furthermore, using specific weighted 
loss functions to alleviate data imbalance ensured improved feature extraction. The obvious evidence of this 
issue can be found in direct comparison between scenario A case of separating training and scenario B case of 
the current models (set A) only. Since the representative features of each sleep stage are different, the weighted 
loss function specific to each sleep stage provided better features for each sleep stage. Together, these strategies 
enable our model to achieve high performance, potentially setting a new benchmark. Moreover, the separating 
training and model design helped mitigate overfitting by reducing model complexity. The designed CNN mod-
els extract distinct features for each epoch without learning the sleep stage sequence simultaneously, requiring 
fewer hyperparameters than other models. One CNN model contains 2,500 trainable parameters. There are 15 
CNN models in total making 37,500 trainable parameters. Combining with 211,000 trainable parameters of one 
layer of BiLSTM results in a total of 248,500 trainable parameters. Whereas the other models revealed 10-times 
higher trained variables of 1.3 M to 24.7 M70. Despite this, the developed model performance is comparable to 
existing models.

To understand the impact of training approaches, an analysis was conducted comparing separating training to 
end-to-end training. Similar conditions like CNN models, dataset, EEG channel, and evaluation procedure were 
applied with different training approaches. The results indicated that separating training provided higher model 
performance than end-to-end training. Moreover, the efficacy of the loss function weights was also obviously 
indicated by comparison between separating training case in scenario A and the Current data manipulation set 
case in scenario B. The results revealed that performance in N1-stage in loss function weights case reached higher 
performance. Furthermore, the influence of various data manipulation sets on model training and prediction was 
examined. Although different data manipulation sets and their combinations were inputted into the model, its 
performance difference was under 1% for most evaluation metrics. This suggests that the developed model has 
potential for real-time scoring, especially with data manipulation sets A and B utilizing past and current EEG 
data, but the architecture must be changed to causal system. However, sleep stage scoring is typically conducted 
by sleep technicians, hence, model performance should be juxtaposed with technician performance.

Results from the three sleep technicians scoring the Sleep-EDF-13 dataset revealed a moderate agreement 
upon McHugh threshold67, deemed acceptable for medical applications. The findings emphasized human error 
issues that generally rose in the AI field. Further analysis comparing dataset scores with the three sleep techni-
cians yielded consistent moderate agreement. However, the developed model showed strong agreement with 
the dataset, indicating that it accurately learned the scoring procedure. An evaluation of consistency reliability 
between the model and the three sleep technicians found comparable results. This suggests that the developed 
model could be a valuable tool to aid sleep technicians in sleep stage classification. In addition, several studies 
have developed their models based on multi-scored dataset19,20 by training with consensus calculated among 
sleep technicians. This point is of interest to include heterogeneity of sleep technicians in the model training 
and requires further study.

To assess the developed model’s generalization in preliminary, cross-dataset validation was performed using 
all trained models from Sleep-EDF and SHHS datasets. The results displayed a lower performance compared 
to the original condition. However, when newly trained with the randomized SHHS dataset, the performance 
was comparable to the initial condition. This suggests the developed model exhibits generalizability but requires 
training on a large and diverse dataset to achieve it. Training on a small dataset appears insufficient for achieving 
generalization. Possible reasons include different recording equipment, acquisition criteria, and montage varia-
tions in recording process as mentioned in the literature43. These differences mean a single training environment 
might not capture all signal variations. Including both the large-size dataset and the heterogeneity of the training 
data enables more generalizability, evidence with Supplementary Fig. S1 and the literature52,64.
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Our proposed model and separating training approach bring multiple distinct benefits to the task of auto-
matic sleep stage classification. Notably, the model boasts easy scalability. It can be improved simply by assessing 
features to gauge their importance for each class. This enables the elimination of non-essential elements and 
the integration of other significant features, thereby streamlining progress on a variety of issues. Additionally, 
the model design enables error analysis to provide valuable insights into its performance and enables targeted 
improvements to enhance accuracy. Moreover, the model demonstrates a trend towards specificity in particular 
class. One potential method for further improvement is to selectively enhance accuracy in specific classes, par-
ticularly focusing on the N1-stage. Even post-processing during the inference phase as employed by Yang et al.57 
can be applied to improve the performance. Despite these advantages, our proposed model does have certain 
limitations. The lengthy training process is a huge drawback. Training our model requires a substantial amount 
of time because it involves training multiple models separately; however, parallel processing is enabled for both 
training and implementation of the proposed model.

Finally, the study’s important limitations consist of 2 main concerns. Firstly, the interrater reliability can be 
conducted merely using the Sleep-EDF-13 dataset. However, the remaining datasets including Sleep-EDF-18 
and 200 recordings of SHHS were absent due to the high number of recordings within the dataset. Nonetheless, 
the Sleep-EDF-13 dataset has 42,369 epochs which are sufficient to assess interrater reliability. Secondly, the 
developed model is unable to explain the extracted features. The conventional machine learning model aims 
to perform classification tasks using engineered-base features, thus all extracted features can be defined and 
explained by humans. However, the features in this study were performed by the developed model utilizing raw 
EEG signal. The developed model learned the features in raw time-series; therefore, it remains unexplainable as 
unknown features. The thorough comprehension of model behavior and its learnt features is one of the active 
study areas in deep learning. This field of study has the potential to significantly advance the development of 
the model. Despite the recognized constraints, this study retains a robust empirical foundation and substantive 
validity in its scholarly contributions.

Conclusion
The proposed model named ZleepAnlystNet comprising feature extraction and sequential classification consists 
of 15 CNN models interconnected with one BiLSTM model. The 15 CNN models are categorized into three sets 
of CNN models named P-models, C-models, and N-models. Each set contains five class-specific models for 
each sleep stage: W, N1, N2, N3, and REM models, trained from specific weights of loss function for each class. 
Separating training was used for each individual CNN model and BiLSTM model. The overall accuracy of 87.02%, 
MF1 of 82.09%, Kappa of 0.8221, and the per-class F1-socres of 90.34%, 54.23%, 89.53%, 88.96%, and 87.40%, 
for W, N1, N2, N3, and REM respectively, are achieved. Total trainable parameters are 248,500 formulated from 
211,000 of BiLSTM and 2,500 of each CNN. Approximately 2.04 s per record is spent in the feed-forwarding 
process. The advantages of proposed model with separating training are scalability, uncomplicate identification 
of significant features, facilitation of error analysis, and specific target improvements because the model can be 
separately analyzed. However, it comes up with substantial amounts of time spent for training multiple models.

Methods
This study aimed to develop a deep learning model for automated sleep stage scoring based on single-channel raw 
EEG signal. The approach involved separating the training process into two main phases: first, the extraction of 
representative features, and second, the sequential learning of sleep stage classification. Additionally, the inter-
rater reliability across three distinct scenarios was investigated comprising the scoring of the dataset conducted 
by experienced sleep technicians, scoring predicted by the developed model, and scoring carried out by three 
other sleep technicians. The developed model, named ZleepAnlystNet, consisted of three sets of CNN models, 
each set comprising of 5 class-specific CNN models, for representative feature extraction and one BiLSTM model 
for sequence classification. The input of each CNN model was the EEG signal, while that of BiLSTM model was 
the output of all trained CNN models including 75 features per epoch. Model performance was then evaluated 
and compared with the existing model using the same dataset.

Dataset
Sleep-EDF dataset71,72 which are open-access public dataset was utilized in model training and evaluation pro-
cesses. This dataset has been provided in 2 versions: Sleep-EDF-13 and Sleep-EDF-18. The former contributed 
in 2013 composed of 61 PSG recordings, while the latter contributed in 2018 composed of 197 PSG recordings. 
It is divided into 2 datasets separately recorded from 2 studies, which are sleep cassette or SC and sleep telemetry 
or ST. The SC dataset was the study of age effects on sleep in healthy participants while the ST dataset was the 
study of temazepam effects on sleep. Therefore, the SC dataset was selected to train and evaluate the performance 
of the developed model, ZleepAnlystNet. The number of files of SC dataset is dependent on the version. For 
Sleep-EDF-13, version 1 comprises 39 PSG recordings of 20 participants while Sleep-EDF-18 version 2 has 153 
PSG recordings of 78 participants. The PSG recordings of SC dataset are composed of two bipolar EEG channels, 
namely Fpz-Cz and Pz-Oz with sampling rate of 100 Hz, along with one EOG channel (horizontal) with sampling 
rate of 100 Hz and one preprocessed submental EMG channel with sampling rate of 1 Hz. The recorded PSG 
files were scored according to R&K classification10 by well-trained sleep technicians consisting of wake, REM, 
stage 1, stage 2, stage 3, and stage 4, with abbreviation of W, R, 1, 2, 3, and 4 respectively. There are two stages, M 
and ‘?’, being movement and not scoring epochs. However, the AASM classification11 was implemented in this 
study, so the merger of stage 3 and 4 into NREM 3 or N3 was applied. M and ‘?’ stages were removed when the 
feature extraction model was trained prior to epoch-wise shaffling and changed to W while the sequence clas-
sification model was trained due to requirement of BiLSTM sequence learning. Only five sleep stages involving 
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W, N1, N2, N3, and REM were included in model training and evaluation processes. The total number of epochs 
in each sleep stage of both Sleep-EDF-13 and Sleep-EDF-18 are shown in Table 1. In this study, all the records 
were trimmed 30 min before and after in-bed duration including in the model training and model evaluation 
because there were long periods of wake (W) at the start and the end of each record in case of 24-h recording.

The ZleepAnlystNet was designed to carry out sleep stage classification using a single-channel raw EEG signal 
as input. Therefore, both the Fpz-Cz and the Pz-Oz channels were separately passed through the model for model 
training and evaluation as the separate models.

ZleepAnlystNet
The developed model is named ZleepAnlystNet consisting of 2 main parts which are a feature extraction part 
organized by a set of CNN models to pick up the representative features of each sleep stage, and a classification 
part that is occupied by BiLSTM model to generate sleep stages of targeted epoch.

CNN models for feature extraction
For representative features extraction, three sets of CNN models, named P-models, C-models, and N-models, 
were established to extract time-invariant features from the input data which was the single-channel EEG sig-
nal of the Sleep-EDF dataset. P-models referred to as the set of the ‘Previous’ models, while C-, and N-models 
referred to as the set of the ‘Current’ models, and the ‘Next’ models, respectively. Each set contains five class-
specific models, named W, N1, N2, N3, and REM models (Fig. 1 on the middle column). In total, 15 distinct 
CNN models are involved which share the same architecture as shown in Fig. 1 (on the right column) but brought 
about the different weights of loss function calculating to relieve class imbalance problem. Normally, N2-stage is 
the dominant stage during sleep with few numbers of N1-stage. Therefore, the weights of loss function of each 
sleep stage were dissimilarly calculated. The designed architecture consisted of two sets of layers represented 
by CNN1 and CNN2. Each set of layers included a convolution layer, a rectified linear unit (ReLU) activation 
function layer, a batch normalization layer, and a max-pooling layer. The input data was a 1 × 3000 image which 
was 30-s epoch of the single-channel raw EEG and was passed through the CNN models.

The first set of layers, the CNN1, had been designed as follows: the input was firstly fed to a convolution layer 
composed of 10 filters with the filter size of 1 × 55, after which a ReLU activation function layer was implemented 
to the convoluted data. The output had undergone batch normalization to maintain stable training. Lastly, a max-
pooling layer with a pool size of 1 × 16 was applied to reduce spatial dimension. The output was then forwarded 
to the second set of layers, the CNN2, which had been established in the same fashion as the CNN1 but different 
in the number of filters and filter size in the convolutional layer of 5 and 1 × 25, respectively. After the output had 
passed the second max-pooling layer, it was flattened and subsequently underwent two fully connected or dense 
layers, which were composed of neural nodes of 10 and 5 nodes, respectively, and separated by an activation 
function layer (ReLU). Finally, a softmax layer was applied to generate the probability of each sleep stage as a 
feature vector of 5 features which were prepared for sequence classification in the BiLSTM model.

All 15 CNN models had the same architecture but were trained in different data manipulations and different 
weights of loss function for every single class of sleep stage. Three data manipulation sets called set A, set B, and 
set C (Fig. 2). Set A was referred to as the ‘Current’ set. They involved the combination of the signal from the 
current epoch and the target which was also the sleep stage score of the current epoch. Set B was labeled as the 
‘Previous’ data because it involved the combination of the signal from the previous epoch and the target which 
remained the sleep stage score of the current epoch. Lastly, set C was called the ‘Next’ set because the input was 
a signal from the subsequent epoch and the target was the sleep stage score from the current epoch. Three sets of 
data manipulation, set A, B, and C, occurred prior to shuffling epoch-wise to generate training and test datasets 
and utilized to train corresponding C-, P-, and N-models.

For each data manipulation, five class-specific models were trained, each with specific weights 
assigned to particular sleep stages. It can be designated as  Netc where c ∈ {W ,N1,N2,N3,REM} , i.e. 
NetW ,NetN1,NetN2,NetN3,NetREM . Netc represented the class-specific model for class c which was specifically 
trained for class c by adjusting the weight of the loss function that is particular to class c . The adjustment of the 
weight was conducted to maximize the importance of particular sleep stages from the others. The loss function 
used in the model training was cross-entropy loss which had been modified as in the Eq. (1):

where N is the total number of epochs, Yni is the probability of epoch number n that had sleep stage class i which 
the value was either 0 or 1 due to the sleep stage score of the input, Ŷni is the probability of epoch number n that 
model predicted for class i which was generated by softmax layer during model training process which the value 
was in range of 0 to 1, K was 5 due to 5 classes classification, and wi is the weight used in loss function calculation 
for class i . The weighted loss function for a specific class i or wi for Netc can be calculated as Eqs. (2) and (3).

(1)loss = −
1

N

N∑

n=1

K∑
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where pi is the proportion of class i which i ∈ {W ,N1,N2,N3,REM} , N is the total number of epochs, and Nc 
is the total number of epochs of the particular sleep class c.

BiLSTM model for sequence classification
After feature extraction process, which involved feeding the EEG signal into the 15 CNN models, a sequence 
of the output is generated. Each epoch of the EEG signal yielded 75 features produced by these CNN models. 
Among these features, 5 features were derived from the softmax layer of each individual CNN model (Fig. 1 on 
the right column at the bottom part). The sequence of 75 features per epoch from the entire EEG signal were 
utilized to train the BiLSTM model.

The sequence classification model was designed to consist of a BiLSTM layer with 128 hidden units to cap-
ture the temporal sequence dependencies of the input data. Following the BiLSTM layer, a fully connected layer 
with 5 neurons was put to pull the BiLSTM output and changed them to a lower-dimensional representation 
corresponding to the five sleep stages: W, N1, N2, N3, and REM. Finally, a softmax layer was placed to calculate 
the probability of each sleep stage, where the highest probability was determined as the predicted sleep stage. 
The BiLSTM architecture is shown in Fig. 1 (on the left column).

Training process
In this study, a separating training approach was introduced to train the proposed model. Consequently, a total 
of 15 CNN models and a BiLSTM model were trained separately. Each CNN model received single-channel raw 
EEG signal as input, sampled at a rate of 100 Hz (Fig. 2B). On the other hand, the input for the BiLSTM model 
comprised the outputs from the 15 CNN models, which were 75 features per epoch. These features were organ-
ized in alignment with the original sequence of epochs. For example, the first set of 75 features represented the 
output of the first EEG signal epoch processed by the 15 CNN models, and this pattern continued for subsequent 
epochs (Fig. 2C). However, certain epochs in the dataset were excluded during training of the CNN models due 
to their original scoring. These excluded epochs needed to be reintroduced into the sequence during training 
of the BiLSTM model with appropriate modifications of their label. Nonetheless, these epochs were excluded 
during model evaluation.

Initially, each CNN model was trained utilizing MATLAB R2022a on an Intel Core i9-10,900 CPU @ 2.80 
GHz with an Nvidia GeForce RTX 2070 Super GPU. A batch size of 64 PSG-epochs was utilized for training. The 
validation-stop criterion was set to discontinue training when 10 consecutive validations showed no improve-
ment. Validation occurred every 150 iterations performing one round. The maximum training-epoch was capped 
at 1000 training-epochs. The Adam optimizer was employed with the initial learning rate of 0.001. The data used 
to train the model were epoch-wisely shaffled and divided into a training set for 70% and validation set for 30% 
or all epochs included. Both M, and ‘?’ scored epochs were excluded during this training process.

Finally, the BiLSTM model was trained to recognize the sleep stage sequence and assign a score to each epoch. 
The input of the BiLSTM model was the output from feeding of EEG signal in original sequence into the 15 CNN 
models with respective to the data manipulation. The training process was implemented in MATLAB R2022a on 
the Intel Core i9-109000 CPU @ 2.80 GHz with the Nvidia GeForce RTX 2070 Super GPU. The batch size was 
4 sequences which each sequence representing one record. The validation-stop criterion was triggered when 10 
consecutive validations failed to show improvement. Validation occurred every 10 iterations constituting one 
round. The maximum training-epoch was set at 1,000 training-epochs. The Adam optimizer was applied with the 
initial learning rate of 0.01. The data used to train the model were divided into 90% for the training set, and 10% 
validation set. Both M and ‘?’ were changed to W to complete the sequence of the recording but were excluded 
during the model evaluation process.

Model evaluation
To evaluate the model performance, a total of 15 CNN models and the BiLSTM model were interconnected as 
shown in Fig. 1 on the left column. The input signal consisted of a single-channel raw EEG signal. The signal 
underwent shifting process to the right resulting in the duplication of signal in the first epoch and the deletion 
of signal in the last epoch (Fig. 2A, set B) and was inputted to the set of the ‘Previous’ models. The original sig-
nal remained unchanged and was inputted in the set of the ‘Current’ models. Similarly, the signal underwent a 
leftward shift leading to the duplication of the signal in the last epoch and the deletion of signal in the first epoch 
(Fig. 2A, set C) and was inputted to the set of the ‘Next’ models. The model’s output was a sequence of sleep 
stage with respect to the original sequence of EEG signal. This classification scheme is sequence-to-sequence 
classification or many-to-many classification.

The assessment of model performance was evaluated employing subject-wise cross-validation, specifically the 
leave-one-subject-out strategy which led to the certainty that the training and test data were independent from 
each other. For Sleep-EDF-13, a 20-fold cross-validation was implemented which involved 19 subjects into the 
training set and 1 subject into the test set. This process was repeated for 20 rounds, with each subject serving as 
the test set once. For Sleep-EDF-18, a tenfold cross-validation was applied. During the training of the BiLSTM, 
both M and ‘?’ scored epochs were incorporated. However, during the evaluation of model performance, these 
epochs were excluded, and only the original scores of the five sleep stages were considered for assessment.

For comprehensive evaluation of the developed model feasibility, both per-class and overall parameters were 
utilized. Per-class metrics consisted of F1-score which was the harmonic mean of precision and recall. Precision 
was ratio between the true positives and all the predicted as positives and can be called positive predictive value. 
Recall was ratio between the true positive and relevant element or the model’s ability to correctly identify true 
positive, also referred to as true positive rate or sensitivity. On the other hand, overall metrics involved accuracy 
(ACC), which quantified the proportion of correct predictions out of the total number of the predictions; macro 
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F1-score (MF1), the average of the per-class F1 score; Cohen’s Kappa coefficient (κ), the consistency between 
model prediction and sleep stage scored in the dataset; average precision or the average of per-class precision; 
and average recall or the average of per-class recall.

Model analysis
The developed model was designed with a separating training approach with three data manipulations: set A, set 
B, and set C (Fig. 2A), to provide the time-invariant features for classification tasks. To investigate the effective-
ness of the training approach and the effect of data manipulation for feature extraction, two separated scenarios 
were consequently used as mock-ups including scenario A and scenario B, which referred to as separating train-
ing and end-to-end training, and several combinations of sets of data manipulation, respectively.

Efficacy of separating training and end‑to‑end training
For scenario A, the effectiveness of the training approach was investigated in benefits between the training 
approaches. In case of separating training, a single CNN model which the architecture was the same as repre-
sented in Fig. 1 (on the right column) was trained separately from BiLSTM. Consequently, the BiLSTM model 
with the same architecture represented in Fig. 1 (on the left column) was trained. Only data manipulation set 
A was utilized in this scenario. The hyperparameters of both CNN and BiLSTM models used during training 
process were the same as reported in the ‘Training process’ sub-section. However, the weighted loss function due 
to sleep stage was not applied in this case. Therefore, five features in total were used as the representative features 
to train BiLSTM model. On the other hand, in case of end-to-end training, both CNN and BiLSTM models were 
interconnected, maintaining the same architectures as in the case of separating training. The hyperparameters 
and the training process were the same as CNN training explained in the ‘Training process’ sub-section. The 
Fpz-Cz channel of Sleep-EDF-13 was the input of this mock-up simulation.

Efficacy of sets of data manipulation in CNN training
For scenario B, the effectiveness of data manipulation used for the training of CNN models was assessed. To 
remind, the developed model consisted of 15 distinct CNN models which were allocated by 2 factors. The first 
factor was class-specific in CNN models which the models were trained by adjusting the weighted loss function 
and they were divided into 5 sets. The second factor was data manipulation divided into 3 sets (Fig. 2A). For 
instance, our proposed model consisted of 15 CNN models and BiLSTM model connected. Of which 15 CNN 
models were three sets of data-manipulated models called P-models, C-models, and N-models which abbre-
viated from the set of the ‘Previous’ models, the set of the ‘Current’ model, and the set of the ‘Next’ models, 
respectively. Each set of data-manipulated models contained five class-specific models which were trained with 
the weighted loss function adjusting to the corresponding sleep stage classes. Each data manipulation set was 
used to train their respective set of data-manipulated models. The details were provided in the ‘CNN models for 
feature extraction’ sub-section.

Testing conditions were established based on seven sets: using only set A, set B, and set C; using combina-
tions like set A + set B, set A + set C, set B + set C, and set A + set B + set C. Each condition used a particular set 
of data to train the corresponding models. For example, in the condition set A + set B, data set A was used to 
train the set of the ‘Current’ models, and data set B was used to train the set of the ‘Previous’ models. All three 
sets of the ‘Previous’, ‘Current’, and ‘Next’ models were composed of five class-specific models with the weighted 
loss functions. All conditions employed separating training approach. The training process was explained in the 
‘Training process’ sub-section. The performance was considered using the Fpz-Cz channel of Sleep-EDF-13.

Manual scoring by sleep technician
All PSG files in Sleep-EDF-13 were separately scored by three well-trained sleep technicians. A total of 39 files 
in the SC study were scored once again with blinding of the sleep stage scoring from the dataset by every sleep 
technician according to the AASM scoring manual11.

Cross‑dataset validation
Another dataset called the Sleep Heart Health Study (SHHS) was utilized for cross-dataset validation. The SHHS 
was a multi-center cohort study implemented by the National Heart Lung and Blood Institute to determine the 
cardiovascular and other consequences of sleep-disordered breathing73,74. This dataset was composed of 2 subsets 
which were SHHS1 and SHHS2 consisting of 6,441 and 3,295 recordings respectively. The former, SHHS1, was 
contributed between 1995 and 1998. The latter, SHHS2, took place between 2001 and 2003. The PSG recording 
was composed of 2 EEG channels which were C3-A2 and C4-A1 with sampling rate of 125 Hz; right and left 
EOGs at sampling rate of 50 Hz; a submental EMG sampled at 125 Hz; and other standard PSG signals. The 
scoring procedure of this dataset was conducted under the R&K standard10, therefore the same combination 
procedure of N3 and N4 was applied to take totally 5 sleep stages in the classification task. The dataset used in 
the cross-dataset validation process was evenly random from both SHHS1 and SHHS2 for 200 recordings in 
total having 100 recordings each.

All trained models by the Fpz-Cz and the Pz-Oz channels of both the Sleep-EDF-13 and the Sleep-EDF-18 
datasets. The Sleep-EDF-13 dataset contributed 40 models, with 20 models for each channel, while the Sleep-
EDF-18 dataset contributed 20 models, with 10 models for each channel. These models were employed for 
sleep stage classification of the randomized 200 records from the SHHS dataset to simulate an unseen data 
situation. Model evaluation used both C3-A2 and C4-A1 as input channels. Overall and per-class evaluation 
parameters were consequently used to investigate the model performance. Following evaluation across all folds, 
the fold yielding the highest performance in each condition was selected, resulting in four models, two from 
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the Sleep-EDF-13 dataset and two from the Sleep-EDF-18 dataset. Subsequently, all 6,441 records of the SHHS1 
dataset were fed into these four models to evaluate performance. This cross-dataset validation process aimed to 
investigate the feasibility of generalization of the separating training approach which is the focus in this study. 
Therefore, a fully systematic evaluation was not included in this study.

Moreover, the developed model underwent additional training using the randomized 200 records from the 
SHHS dataset, with both C3-A2 and C4-A1 employed as input channels for both model training and evaluation. 
This process resulted in the creation of two new models. Subsequently, a five-fold cross-validation process was 
employed to evaluate the performance of these newly trained models. The total number of epochs of all 200 
recordings from SHHS dataset is exhibited in Supplementary Fig. S1C.

Statistical analysis
Descriptive statistics were utilized to express the model performance explained in ‘Model evaluation’ and ‘Cross-
dataset validation’ sub-sections which are comparable to the existing sleep stage scoring models in the literature. 
Cohen’s kappa statistic was used to interpret the interrater reliability between scoring in the dataset and the 
model prediction. Fleiss kappa statistic was used to interpret the interrater reliability of more than 2-rater con-
ditions which consisted of (a) among 3 sleep technicians, (b) between scoring in the dataset and 3 sleep techni-
cians, and (c) between the model prediction and 3 sleep techniques. Kappa coefficient was calculated with 95% 
confidence intervals. The degree of agreement was considered as None (κ = 0 − 0.20), Minimal (κ = 0.21 − 0.39), 
Weak (κ = 0.40 − 0.59), Moderate (κ = 0.60 − 0.79), Strong (κ = 0.80 − 0.90), and Almost Perfect (κ was above 0.90) 
according to McHugh67. A two-tailed z-test was conducted to evaluate the coincidence of reliability. A p-value 
of less than 0.05 was considered significant.

Data availability
Sleep-EDF-13 and Sleep-EDF-18 datasets have been archived with appropriate blind identification process. 
Access for the datasets were obtained via online: https://​www.​physi​onet.​org/​conte​nt/​sleep-​edfx/1.​0.0/. SHHS 
have been archived by the National Sleep Research Resource. Access for download in this URL: https://​www.​
sleep​data.​org/​datas​ets/​shhs.

Code availability
The code used for model training was generated with Deep Network Designer app in MATLAB. The detail of 
model architecture in the Methods section was sufficient to be independently replicated. The model evaluation 
process was a simple code to generate confusion matrix from the testing dataset. Therefore, the code was not 
provided due to sufficient detail for replication.
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