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A general quantum algorithm 
for numerical integration
Guoqiang Shu 1,2*, Zheng Shan 1,2, Jinchen Xu 1,2, Jie Zhao 1 & Shuya Wang 1

Quantum algorithms have shown their superiority in many application fields. However, a general 
quantum algorithm for numerical integration, an indispensable tool for processing sophisticated 
science and engineering issues, is still missing. Here, we first proposed a quantum integration 
algorithm suitable for any continuous functions that can be approximated by polynomials. More 
impressively, the algorithm achieves quantum encoding of any integrable functions through 
polynomial approximation, then constructs a quantum oracle to mark the number of points in the 
integration area and finally converts the statistical results into the phase angle in the amplitude of the 
superposition state. The quantum algorithm introduced in this work exhibits quadratic acceleration 
over the classical integration algorithms by reducing computational complexity from O(N) to O(√N). 
Our work addresses the crucial impediments for improving the generality of quantum integration 
algorithm, which provides a meaningful guidance for expanding the superiority of quantum 
computing.
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Numerical integration is a classical and important problem with a wide range of applications in many fields of 
physics, chemistry, biology, computer and finance1–3. However, existing classical integration algorithms face high 
computational complexity, O(n), where n represents the number of points used for integration calculation over 
the interval. Fortunately, quantum algorithms exhibit acceleration superiority over classical algorithms in some 
problems. For example, Shor’s integer factorization algorithm, which shows exponential acceleration over classi-
cal algorithms4. Grover’s algorithm has quadratic acceleration over the classical algorithms in solving unordered 
database search problems5. The HHL algorithm for solving systems of linear equations also exhibits exponential 
acceleration and is widely used in machine learning and other fields6. Nevertheless, a general quantum algorithm 
for numerical integrations is still absent.

Definite integrations are commomly approximated by classical numerical methods. For example, interpolation 
integration formulas include Newton–Cotes formula, Complex quadrature formula, Romberg formula and Gauss 
formula7–9. The algebraic accuracy of Newton–Cotes formula and Complex quadrature formula is n, where n is 
the number of interpolation nodes. But when n > 7, these methods lose their effectiveness. The algebraic accuracy 
of Romberg formula is 2n, and the algebraic accuracy of Gauss formula is 2n + 1. These interpolation integration 
formulas utilize the n-order polynomials value at n interpolation points to approximate the integrations, and 
their complexity is O(n). Besides that, the monte carlo integration (MCI) method generates n random numbers 
in the integration area S. The number of random numbers in the integration area is m, thus the integration is 
approximately equal to mS/n. The complexity of MCI method is O(n) and error is O(1/√n)10, which the error can 
be reduced by key sampling and Quasi-monte carlo method, etc.11,12. R. P. Kanwal et al. presented an integration 
method using taylor expansion with the precision n13,14 and complexity O(n). In all, the complexity of these 
classical algorithms is O(n) that is high compared with quantum algorithms.

For taking advantage of quantum acceleration to reduce the complexity of classical algorithms, some quantum 
algorithms were peoposed. For example, Acioli et al. proposed a Quantum Monte Carlo (QMC)15,16 integration 
algorithm with quadratic acceleration for periodic functions17. Abrams et al. proposed a fast quantum integra-
tion algorithm by using the grover’s mean and quantum counting, which obtains exponential speed acceleration 
and quadratic acceleration in comparison with classical deterministic and probabilistic methods respectively, 
however, the function is required to be discrete Boolean type in this method18.

Shimada et al. presented the quantum coin algorithm based on the quantum supersampling algorithm achiev-
ing quadratic acceleration19,20, but the value of the functions is limited to [0,1]. Heinrich raised a quantum inte-
gration algorithm with quadratic acceleration for Sobolev-like high-dimensional function21. DeWitt-Morette 
et al. proved a quantum algorithm with exponential acceleration over deterministic classical algorithms on the 
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functions of Holder class22. Heinrich proposed a quantum integration algorithm on the Lebesgue space, which 
proves the algorithm is optimal23. Rebentrost et al. presented an optical quantum multi-dimensional integration 
algorithm, which demonstrates quadratic acceleration over MC method24. These algorithms mentioned above 
have limitations on the type of integration function. In addition, some quantum and classical hybrid integration 
algorithms have also been proposed, such as Suzuki et al. raised a hybird integration method to simplify the 
circuit depth25–27. Moreover, some are controversial over acceleration capability, such as the MCI method based 
on quantum amplitude estimation (QAE) can bring quadratic acceleration28,29, but Kaneko et al. confirmed that 
the probability distribution of the initial state coding prepared by the Grover-Rudolph method does not reflect 
the quantum advantage30.

Existing classical integration algorithms face high computational complexity and quantum algorithms face low 
generality problems, as shown in Table 1. Here, we propose a general quantum integration algorithm (GQIA) that 
eliminates these shortages showing strong universality and operability. Firstly, our algorithm quantizes the clas-
sical Monte Carlo integration process and utilizes quantum superposition to possess exponential representation 
capabilities beyond classical methods. Secondly, to construct a quantum oracle with polynomial approximation of 
the integration function, use the parallelism of quantum to count the points on the integration region, and store 
them in the phase of the quantum state. Finally, amplitude amplification and phase estimation are used to obtain 
phase information with high probability and accuracy, whereupon the integration value is calculated. Compared 
with classical integration algorithms, GQIA demonstrates the quadratic acceleration and higher computational 
accuracy. Due to the use of Monte Carlo and polynomial approximations, GQIA has no limitations on the formal 
properties of integration functions, making it more versatile than other quantum algorithms.

Methods
For more comprehensive discussions of GQIA, we begin here by briefly reviewing some relevant results from 
quantum algorithm and quantum computation theory.

Amplitude amplification
The key idea of the amplitude amplification (AA) algorithm24 originally came from an unordered database-search 
algorithm, known as Grover’s quantum algorithm5. By amplifying the amplitude of a given pure state, the algo-
rithm achieves the purpose of adjusting the measurement probability of the pure state. The specific implementa-
tion method of the algorithm is given as follows, first given an oracle Â and initial state |0�⊗n

(1)
∣

∣

∣
ψ� = Â|0�⊗n = Â

∣

∣

∣
00 . . . 0� = cos θ/2|ψ0� + sin θ/2|ψ1�

Table 1.   Performance analysis of different integration algorithms. 1 N stands for the number of points of area 

S, N =  2 k1+
k1  , and has the same meaning as other n in the table. M represents the number of point in the area 

S1. 2 α , d is real number. 3 r , d is real number. 4 δ is a constant that can be arbitrarily small.

Quantum algorithm

Suitable area Complexity Precision

GQIA Any continuous function O
(

(1/ǫ)
√
N/M

)

O

( √
N−1√

N(xl+1)ǫ

)1

Algorithm-131 Holder function O
(

(

logε−1
)1/(1+γ )

)

O
(

n−α/(d−1)
)2

Algorithm-221 Sobolev function O(n) O
(

1/n−r/(d−1)
)3

Algorithm-323 Lebesgue function
O

(

(1/ε)
p

2(p−1)

)

,

1 ≤ p < 2;
O((1/ε)), 2 ≤ p ≤ ∞

O
(

n−2+2/p
)

Algorithm-418 Any continuous function O(n) O
(

n−1
)

Photonic quantum24 Multi-dimensional integrations O((1/ε)) O
(

1/ǫδ
)4

Quantum monte carlo17 Periodic function O
(

n2−δ
)

, 0 ≤ δ ≤ 1 O(1/
√
n)

Quantum coin metho20 Function takes the value [0,1] O(n) O(1/
√
n)

Quantum supersampling19 Boolean Function O(n) O(1/n)

Classical Algorithm

Suitable Area Complexity Precision

Gauss forum7–9 High precision with fewer nodes O(n) O
(

1/x2n+1
)

Taylor expansion13,14 Each derivative of the function is known O(n) O(1/xn)

Romberg forum7–9 less computation, high precision requirements O
(

nk
)

O
(

1/x2k
)

Monte carlo10 Complex function or the form is unknown O(n) O
(

1/
√
n
)

Composite rule7–9 Degree < 8 and integration interval is large O(n) O(1/xn)

Newton–cotes forum7–9 Degree < 8 O(n) O(1/xn)
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where θ ∈ [0,π ], |ψ1 � is the target pure state and |ψ0 � is the non-target pure state. The state vector |ψ� can be 
expressed as a parameterized vector (cosθ/2, sinθ/2) on the space stretched by two basis vectors |ψ0 � and |ψ1 � . 
The purpose is to promote the amplitude of the |ψ1 � first, while reducing the amplitude of the non-target state, 
because the sum of the squares of the two probability amplitudes is 1. At this time, the measurement probability 
of the target state will also increase. This is done by flipping the quantum state |ψ� towards the direction of the 
target state |ψ1 � . i.e., making θ as much larger as possible.

In the AA algorithm, one amplitude amplification requires two flips. The first flip uses the unitary opera-
tion Sχ to flip the state |ψ� along |ψ0 � and change state |ψ� to −|ψ� . The second flip uses the unitary operation 
2|ψ��ψ | − I to flip the first result Sχ |ψ� along |ψ� . The amplitude of the final target state |ψ1 � becomes larger in 
the resulting state (2|ψ��ψ | − I)Sχ |ψ�.

The overall operation Q̂ is defined as

where (2|00 . . . 0��00 . . . 0| − I) operation means to flipping the amplitude of all quantum states but keeping the 
amplitude of |00 . . . 0� unchanged. By repeating this process many times, the quantum state |ψ� can be flipped 
to the target state |ψ1 � with an angle of θ each time. What we need to pay attention to is that the real value of θ 
does not need to be known in advance.

Phase estimation
Quantum phase estimation is an algorithm for estimating the phase information of quantum states, and it is the 
core of many quantum algorithms. Two quantum registers are necessary in the phase estimation circuit, which 
the first register requires t  qubits whose initial state is |0� and the value of t  depends on two aspects: the number 
of digits for precision and successful probability of phase estimation result.

The initial state of the second register is the prepared state |u� and the number of qubits is as many as possible 
to store |u� . The process of phase estimation is roughly divided into three steps. First, the circuit begins with t  
Hadamard gates that are applied to all qubits in the first register, and the controlled- U  operations are applied 
simultaneously on the second register, where the U-gate appears in consecutive integer powers of 2. The result-
ing state is

The second step of phase estimation is the application of inverse quantum Fourier transform on the first 
register, and this step can be accomplished in O

(

t2
)

 stages. The third and final step of phase estimation is to 
measure the state in the first register and get an estimation of ϕ . The fianl state of the first register can be written as

where ϕ̃ denotes the estimator for ϕ when measured.

Proposed methods
A General quantum integration algorithm (GQIA)
We define S as the area consisting of integration area S1 and non-integration area S2. N and M denote the number 
of points in S and S1 respectively (Fig. 1a). The core idea of GQIA is to convert a definite integration problem on 
a continuous interval [a, b] into the problem of getting the value of N*sin2(θ/2) with quantum computing. The 
phase θ that contained in the amplitude of a superposition state is obtained by phase estimation, as shown in 
Fig. 1b. To achieve integration calculation with quantum method, we need to address the following challenges.

The first problem is to encode and calculate integrable functions with quantum gate circuits. Supposing the 
function f (x) is integrable in the interval [a, b], it can be written as 

∫ b
af (x) = F(b)− F(a) = I and I is a known 

constant. However, when functions are complex or cannot be formulated, they are usually approximated by the 
linear combination of function values under some discrete points in the interval.

The integration function can be quantized by quantum coding under discreate variables after selecting appro-
priate approximation methods.

The second problem is to get the distribution of points in the area S1. The point x that meets f (x) ≤ y is 
required, and the number is recorded as M. By constructing quantum gate circuits of computation and com-
parison, the distribution of these points in S1 is acquired and stored in the amplitude of a superposition state.

|ψresult � = Q̂
∣

∣ψ� = (2|ψ��ψ | − I)Sχ
∣

∣ψ�

=
(

2Â|00 . . . 0��00 . . . 0 |Â−1 − I
)

Sχ |ψ�

= Â(2|00 . . . 0��00 . . . 0 | − I)Â−1Sχ |ψ�

(2)

(

|0� + e2π i2
t−1ϕ |1�

)(

|0� + e2π i2
t−2ϕ |1�

)

. . .

(

|0� + e2π i2
0ϕ |1�

)

2t/2
= 1

2t/2

2t−1
∑

k=0

e2π iϕk|k�

(3)
1

2t/2

2t−1
∑

j=0

e2π iϕj|j�|u� → |ϕ̃�|u�

(4)
∫ b

a
f (x)dx ≈

∑n

k=0
Akf (xk)
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The third problem is to get the ratio λ of distribution. There is no acceleration advantage to measure result 
from quantum circuit directly. Thus, by phase estimation circuit, we can acquire the phase θ with quadratic 
quantum advantage and the approximate value of the integration is S*sin2(θ/2).

The components of GQIA
Quantization of integration functions
Quantization of integration functions refers to the quantum representation of classical integration functions and 
the construction of the quantum circuits. The integrations over any interval [a, b] can be transformed into interval 
[0, 1], and the real number points (x, y) in the area S can be discretized by using k1 and k2 qubits, respectively. 
This means using bits of length k1 to represent numbers between 0 and 1, similarly, to using bits of length k2 to 
represent the value of the vertical axis y and these points evenly divide the integration interval S.

Thus, the number of discreate points is N =  2 k1+
k1 (Fig. 1a).

The researches on quantum integration algorithms are rare, and one of the obstacles is to represent integrable 
functions with quantum coding. In numerical analysis, continuous and bounded functions can be polynomials 
approximated, such as Chebyshev approximation, best square approximation8, etc. If the function f(x) has n-order 
derivatives on interval [a, b] including x0, function f(x) can be approximated with a Taylor expansion at point x0, 
which the coefficients are the n-order derivatives of the function at x0. Otherwise, the polynomial coefficients 
can be determined by taking the function values from multiple points and using the method of undetermined 
coefficients, and the function is approximated by a simple polynomial, as shown in Eq. (6)

If the first n + 1 terms are used to approximate the function, the precision of approximation is O(1/xn+1). 
Polynomial approximation is a linear combination of the power of variables and when the value of k1 of variable 
discretization is determined, the power circuit is easy to construct, that is the reason for approximating integra-
tion functions with Eq. (6). For example, the quadratic power quantum circuit (Fig. 2) can be constructed with 
Table 2.

Construction of marking oracle
The area S is divided into S1 and S2 by the function curve, and only the points in S1 are required. Here, a method 
is proposed to mark these points by constructing two quantum oracles. The first one is Uf computing f(x), which 
f (x) =

∑n
i=0 aix

i is the first n terms of the approximate polynomial.
Supposing r denotes the number of auxiliary qubits for this oracle, including q qubits representing the super-

position output of f (x) under the initial input 
∣

∣fu 〉 . The oracle needs k1 + r qubits in that way, where k1 stands for 
the number of qubits for variable x, and |φu � is the output of the auxiliary qubits.

(5)x, y) =
{

(

xi , yij
)

|i = 1, 2, . . . , 2k1 ; j = 1, 2, . . . , 2k2
}

(6)f (x) = a0 + a1 ∗ x + a2 ∗ x2 + · · · + an ∗ xn + Rn(x)

Figure 1.   Diagram of quantum integration algorithm GQIA. (a) The classical monte carlo integration(MCI), 
where S1 represents integration area, S2 stands for non-integration area. M stands for the number of points in 
the area S1, and N is the total points in S1 + S2. (b) Quantum circuit diagram of GQIA, Step1–Step5 corresponds 
to quantization of the MCI.
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The other oracle is to compare f(xi) with yij for each xi. The point (xi, yij) that meets f (xi) ≤ yij needs to be 
marked, and a comparison circuit including n CGC gates and n ICGC gates can make it32, which CGC and 
ICGC gates are quantum circuits composed of CNOT and Toffoli gates, and the CGC gate and its inverse ICGC 
are constructed with two CNOT gates and one Toffoli gate in different orders respectively (Fig. 3). Thus, the 
number of qubits is 2n + 2.

where k2 is the number of qubits required to represent y, |y� =
(

1√
2

)k2∑2k2−1
ν=0 |ν� , similarly, 

|x� =
(

1√
2

)k1∑2k1−1
u=0 |u� . If q is not equal to k2, 2+

∣

∣q− k2
∣

∣ auxiliary qubits |0�⊗2+|q−k2| are needed for this 

(7)H⊗k1 |0�⊗k1 |0�⊗r
Uf→

(

1√
2

)k1 2k1−1
∑

u=0

|u�
∣

∣fu �q|φu �r−q

(8)

UcmpUf H
⊗k1+k2 |0�⊗k1+k2 |0�⊗r+2+|q−k2|

= UcmpUf |x�|y�|0�⊗r+2+|q−k2|

= Ucmp|x�
∣

∣fu �q|φu �r−q|y�|0�⊗2+|q−k2|

= |x�
∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|√1− �|0�
+|x�

∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|√�|1�

Figure 2.   Quantum circuit of quadratic operation.

Table 2.   Binary multiplication table.

0 0 0 x3 x2 x1

0 0 0 x3 x2 x1

0 0 0 x1 * x3 x1 * x2 x1

0 0 x2*x3 x2 x1 * x2 0

0 x3 x2*x3 x1 * x3 0 0

0 c4 0 0 0 0

c5 c3 c2 c1 0 0

c5 c3 + c4 + x3 c2 c1 + x2 0 x1

Figure 3.   Structure and detailed circuits of comparator Ucmp.
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comparator. � is a real number between 0 and 1 evaluated by measurement, which representing the proportion 
of points that meet the comparison criteria and corresponding to ampulitude of the auxiliary bits, when the 
output is 1. Thus, the comparison results are obtained by evaluating the value of � , and the necessary qubit 
number of marking oracle is k1 + k2 + r + 2+

∣

∣q− k2
∣

∣.
To sum up, the marking oracle U of GQIA is made up with computation and comparation, which can be 

recorded as U = UcmpUf  . Different from direct measurement, the GQIA obtains the results by phase estimation, 
which brings quadratic acceleration33.

Extraction of results
For a quantum state in amplitude amplification (AA) algorithm29,

where |ψ1 �n is the required target state, |ψ0 �n is non-target state. Defining θ ∈ [0,π ] , so that sin2θ/2 = � and a 
unitary operator Q,

Sχ adds a negative phase before |ψ1 �n|1�, |ψ0 �n|0� keeps unchanged.

Using Q  repeated j times for the quantum state |�� gives

Similarly, from Eq. (8) we can get a quantum state |˜�� and a unitary operator ˜Q as

where

In the AA algorithm, the unitary operator ˜Q is equivalent to rotate the superposition states by angle θ , which 
can be expressed as a 2*2 dimensional matrix in the single bit case

It is easy to get the eigenvalues of ˜Q from following formula

The eigenvalues are γ1 = eiθ and γ2 = ei(2π−θ) , either one is feasible because θ has a small value and 2π − θ 
is large, making it easy to observe. In this article, it may be assumed that the value is θ and we take the case of γ1 . 
Phase estimation is to get s in ˜Q|ψ� = e2π is|ψ� , where s = θ

2π  . Supposing that we denote s with t  qubits, that is, 
s = 0.s1s2 · · · st . We can obtain the result of with inverse quantum Fourier transform(Eq. 19).

Therefore, s and � can be obtained by measuring the first t  qubits in phase estimation circuit, and the integra-
tion can be approximated with �2 · N.

(9)|�� = A|0�n|0� =
√
1− �|ψ0 �n|0� +

√
�|ψ1 �n|1�

(10)Q = −AS0A
−1 Sχ

(11)|�� = A|0�n|0� = cosθ/2|ψ0 �n|0� + sinθ/2|ψ1 �n|1�

(12)Qj|�� = cos((2j + 1)θ/2)|ψ0 �n|0� + sin((2j + 1)θ/2)|ψ1 �n|1�

(13)

|�̃� = UH⊗k1+k2 |0�⊗k1+k2 |0�⊗r+2+|q−k2|

= |x�
∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|√1−�|0�

+|x�
∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|
√
�|1�

= |a�|0� + |b�|1�

(14)˜Q = −UHS0H
−1U−1Sχ

(15)|a� = |x�
∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|√1− � = |x�
∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|cos(θ/2)

(16)|b� = |x�
∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|√� = |x�
∣

∣fu �q|φu �r−q|y�|0�⊗1+|q−k2|sin(θ/2)

(17)˜Q =
[

cosθ −sinθ
sinθ cosθ

]

(18)|γ I − ˜Q| =
∣

∣

∣

∣

γ − cosθ sinθ
−sinθ γ − cosθ

∣

∣

∣

∣

= (γ − cosθ)2 + sin2θ = 0

(19)
1√
2t

2
t−1
∑

j=0

e2π isj|j� → |s�

(20)
∫ b

a
f (x)dx ≈ (S1 + S2) · �2 = 2k1+k2 · sin2

(πs

2t

)
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Experimental evaluations
To understand GQIA, we propose a simple study case 

∫ 1
−1e

xdx.
First, the intrgration interval [−1, 1] can be transformed to interval [0, 1] , and the result is

It is known that ex = 1+ x + x2

2! + · · · + xn

n! + o(xn) with Taylor expansion, and ex can be approximated with 
the first three terms of Tylor polynomial. For special functions that cannot be Taylor expanded, other polynomial 
approximation methods could be available as mentioned in Section “Quantization of integration functions”.

Then, the oracle circuits that include calculation and comparation circuits are constructed to mark the points 
(Fig. 4b). We take the number of qubits for variable z and y, k1 = 3 and k2 = 3 respectively, thus the number of 
qubits for function 4z2 + 1 is q = 7 in Eq. (7), and the number of auxiliary qubit is r = 7 in Eq. (8).

Finally, the phase s = θ
2π

 contains the result M (Fig. 4a) is obtained by phase estimation and is estimated to 
t = 5 qubits accuracy in Eq. (19). Hence, the total number of qubits is k1 + k2 + r + t + 2+

∣

∣k2 − q
∣

∣ = 24 , and 
the experiments were implemented with IBM qiskit 32-bit simulator qasm—simulator.

The final result is θ = 4.52 , the number of the points in S is M = N · sin2 θ2 = 26 · sin2 θ2 = 25.76 , and the 
approximated value of integration is 6.125 · 25.76

26
= 2.465 . In contrast, 

∫ 1
−1e

xdx = 2.333, thus the obtained preci-
sion is 0.943. According to the precision analysis in Section “Proposed methods”, ϵ ≤ 6.283, the experimental 
precision satisfies the lower bounds of precision 

√
N−1√

N(xl+1)ǫ
 = 0.557. However, the precision of direct measurement 

fluctuates from 0.570 to 0.809 in the same situation, which demonstrates GQIA is more 
reliable and high-accuracy.

Discussion
The whole process of GQIA is divided into three steps. The first step achieves quantization of any integrable 
functions by polynomial approximation and quantum encoding, the second step constructs the oracle of mark-
ing and the third step gets the results by the phase estimation.

The first step approximates integration function with the first l + 1 terms of a simple polynomial. The number 
of qubits to compute the value of function f (x) is k1 + r , where k1 denotes the number of qubits for variable x , 

(21)
∫ 1

−1
exdx = 2

∫ 1

0
e2z−1dz

(22)2

∫ 1

0
e2z−1dz ≈

∫ 1

0
4z2 + 1dz

Figure 4.   Diagram of 
∫

1

−1
e
x
dx with GQIA. (a) The circuit of GQIA for the study case. (b) The black box(oracle) 

for the study case of GQIA.
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and r is the number of auxiliary qubits including q qubits to represent result 
∣

∣fu 〉 , where q < r . The computational 
precision is O

(

1/xl+1
)

.
In the second step, k2 is the number of qubits for variable y . When k2 is not equal to q , additional 

∣

∣k2 − q
∣

∣+ 2 
auxiliary qubits are required for the comparator circuit. Thus, the number of qubits in the first two steps is 
k1 + k2 + r +

∣

∣k2 − q
∣

∣+ 2 , and the precision keeps unchanged, O
(

1/xl+1
)

.
In the third step, t  qubits are required to estimate θ to m qubits accuracy, where t = m+ ⌈log(2+ 1/(2ǫ))⌉ . 

Thus, the number of required qubits is k1 + k2 + r +
∣

∣q− k2
∣

∣+ 2+ t . For getting the accurate value of θ with 
high probability 1− ǫ, ˜Q operator need to be implemented π4

√

2k1+k2/M  times, and the maximum execution 
number of ˜Q does not exceed 2t−1 times. Hence, t = log

(

π
4

√

2k1+k2/M
)

+ c , where c is a constant related to 

error ǫ and the upper bound of error ǫ is 2π
2t
√
M(N −M)+ π2

22t
|N − 2M| . As a result, the complexity of GQIA 

is O
(

1
ǫ

√

(

2k1+k2/M
)

)

 that is recorded as O
(

1
ǫ

√
N/M

)

33,34, and the precision is O
( √

N−1√
N(xl+1)ǫ

)

.

Conclusion
In conclusion, the GQIA we proposed for solving numerical integration, showing superiority of quantum algo-
rithm in numerical problems. Quantum encoding of any integrable functions presents strong generality by 
approximating the functions with polynomials. Furthermore, constructing oracle and converting the results to 
phase exhibit the advantages of quadratic acceleration. The GQIA provides a quantum integration algorithm 
framework based on the MCI idea, where methods such as polynomial approximation, spatial discretization, 
and oracle construction are not unique and can be further optimized and studied.

The future work worth exploring about the algorithm of this article including the following points. The GQIA’s 
circuit is relatively deep that poses challenges in running on current quantum computers, the depth of the circuit 
is mainly caused by phase estimation, and improvements or alternative algorithms can be studied. In addition, 
the polynomial approximation methods of the integration function may affect the complexity of GQIA’s oracle 
circuits. For example, GQIA mainly applies the truth table method to construct circuits, and further research 
can be conducted on polynomial circuit construction methods.

Data availability
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Code availability
The code used for obtaining the presented numerical results as well as for generating the plots is available from 
the corresponding author on reasonable request.

Received: 2 November 2023; Accepted: 30 April 2024

References
	 1.	 An, D. et al. Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. 

Quantum 5, 481. https://​doi.​org/​10.​22331/q-​2021-​06-​24-​481 (2021).
	 2.	 Griffin, P. & Sampat, R. Quantum computing for supply chain nance. In 2021 IEEE International Conference on Services Computing 

(SCC) 456–459 (IEEE, 2021).
	 3.	 Miyamoto, K. Quantum algorithms for monte carlo integration using pseudo-random numbers. In 2021 IEEE International 

Conference on Quantum Computing and Engineering (QCE) 454–455 (IEEE, 2021).
	 4.	 Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 

303332 (1999).
	 5.	 Grover, L. K. A fast quantum mechanical algorithm for database search. In 28th Annual ACM Symposium on Theory of Computing 

(1996).
	 6.	 Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 

(2009).
	 7.	 Dehghan, M., Masjed-Jamei, M. & Eslahchi, M. On numerical improvement of closed newton cotes quadrature rules. Appl. Math. 

Comput. 165(2), 251260 (2005).
	 8.	 Linz, P. Theoretical Numerical Analysis (Courier Dover Publications, 2019).
	 9.	 Burden, R. L., Faires, J. D. & Burden, A. M. Numerical Analysis (Cengage Learning, 2015).
	10.	 Leobacher, G. & Pillichshammer, F. Introduction to Quasi-Monte Carlo Integration and Applications (Springer, 2014).
	11.	 Tokdar, S. T. & Kass, R. E. Importance sampling: A review. Wiley Interdiscip. Rev. Comput. Stat. 2(1), 5460 (2010).
	12.	 Sharma, G. Pros and cons of different sampling techniques. Int. J. Appl. Res. 3(7), 749752 (2017).
	13.	 Kanwal, R. & Liu, K. A taylor expansion integral equations. Int. J. Math. Educ. Sci. Technol. 20(3), 411414 (1989).
	14.	 Yalçinbaş, S. Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 127(2–3), 

195206 (2002).
	15.	 Acioli, P. H. Review of quantum Monte Carlo methods and their applications. J. Mol. Struct. THEOCHEM 394(2–3), 7585 (1997).
	16.	 Foulkes, W., Mitas, L., Needs, R. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73(1), 33 (2001).
	17.	 Herbert, S. Quantum monte-carlo integration: The full advantage in minimal circuit depth. Preprint at https://​arxiv.​org/​abs/​2105.​

09100 (2021).
	18.	 Abrams, D. S. & Williams, C. P. Fast quantum algorithms for numerical integrals and stochastic processes. arXiv https://​arxiv.​org/​

abs/​quant-​ph/​99080​83 (1999).
	19.	 Johnston, E. R. Quantum supersampling. ACM SIGGRAPH 2016 Talks (2016).
	20.	 Shimada, N. H. & Hachisuka, T. Quantum coin method for numerical integration. Comput. Graph. Forum 39(2436), 257 (2020).
	21.	 Heinrich, S. Quantum integration in Sobolev classes. J. Complex. 19(1), 1942 (2003).

https://doi.org/10.22331/q-2021-06-24-481
https://arxiv.org/abs/2105.09100
https://arxiv.org/abs/2105.09100
https://arxiv.org/abs/quant-ph/9908083
https://arxiv.org/abs/quant-ph/9908083


9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10432  | https://doi.org/10.1038/s41598-024-61010-9

www.nature.com/scientificreports/

	22.	 DeWitt-Morette, C., Maheshwari, A. & Nelson, B. Path integration in non-relativistic quantum mechanics. Phys. Rep. 50(5), 255372 
(1979).

	23.	 Heinrich, S. Quantum summation with an application to integration. J. Complex. 18(1), 150 (2002).
	24.	 Rebentrost, P., Gupt, B. & Bromley, T. R. Photonic quantum algorithm for monte carlo integration. Preprint at https://​arxiv.​org/​

abs/​1809.​02579 (2018).
	25.	 Suzuki, Y. et al. Amplitude estimation without phase estimation. Quantum Inf. Process. 19(2), 117 (2020).
	26.	 Aaronson, S. & Rall, P. Quantum approximate counting, simplied. In Symposium on Simplicity in Algorithms (SOSA) (SIAM, 2020).
	27.	 Prakash, A. & Kerenidis, I. Method for amplitude estimation with noisy intermediate-scale quantum computers. US Patent App. 

16/892,229 (2021).
	28.	 Kaneko, K., Miyamoto, K., Takeda, N. & Yoshino, K. Quantum speedup of monte carlo integration with respect to the number of 

dimensions and its application to finance. Quantum Inf. Process. 20(5), 124 (2021).
	29.	 Brassard, G., Hoyer, P., Mosca, M. & Tapp, A. Quantum amplitude amplification and estimation. Contemp. Math. 305, 5374 (2002).
	30.	 Grinko, D., Gacon, J., Zoufal, C. & Woerner, S. Iterative quantum amplitude estimation. npj Quantum Inf. 7(1), 16 (2021).
	31.	 Novak, E. Quantum complexity of integration. J. Complex. 17(1), 216 (2001).
	32.	 Xia, H., Li, H., Zhang, H., Liang, Y. & Xin, J. An efficient design of reversible multi-bit quantum comparator via only a single 

ancillary bit. Int. J. Theor. Phys. 57(12), 37273744 (2018).
	33.	 Brassard, G., Hyer, P. & Tapp, A. Quantum counting. In International Colloquium on Automata, Languages, and Programming 

(Springer, 1998).
	34.	 Diao, Z., Huang, C. & Wang, K. Quantum counting: Algorithm and error distribution. Acta Appl. Math. 118(1), 147159 (2012).

Acknowledgements
This work was supported by Major Science and Technology Projects in Henan Province, China, Grant No.: 
221100210600. We thank, Hui Hui Sun, and Cong Cong Feng for insightful discussions as well as Bo Zhao for 
technical support. We also acknowledge useful discussions and the feedback on the manuscript from Shi Qin Di.

Author contributions
All authors developed the idea for the experiment; Z.S. performed the measurements and analyzed the data; Z.S. 
and G.Q.S. implemented the control methods. G.Q.S. and S.Y.W. carried out the numerical simulations. G.Q.S., 
S.Y.W., J.Z. and J.C.X. wrote the manuscript. All authors contributed to the discussions and interpretations of 
the results.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://arxiv.org/abs/1809.02579
https://arxiv.org/abs/1809.02579
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A general quantum algorithm for numerical integration
	Methods
	Amplitude amplification
	Phase estimation

	Proposed methods
	A General quantum integration algorithm (GQIA)
	The components of GQIA
	Quantization of integration functions
	Construction of marking oracle
	Extraction of results


	Experimental evaluations
	Discussion
	Conclusion
	References
	Acknowledgements


