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Animal behavior on auto
Researchers can’t sit their laboratory mice or fruit flies down and ask them how they’re feeling or why they’re 
behaving in a particular way. Instead, humans are left to observe and interpret the various clues their animals 
provide. Can machines help?

Ellen P. Neff

Charles Darwin once wrote that facial 
expressions are universal. Pain can 
be read on a human’s face, and on the 

faces of many animals. That’s the basis of the 
various grimace scales, pain scoring systems 
first applied to the lab mouse (a white CD1 
outbred mouse, to be specific1). A mouse in 
pain will tighten its eyes, scrunch up its nose 
and cheeks, and flatten its ears and whiskers.

Perhaps researchers (often, 
undergraduates) make the same face 
sometimes when they’re set to the task of 
scoring pain or the myriad of other visual 
tasks needed to classify what an animal is 
doing. Behavioral phenotyping has long 
relied heavily on manpower, whether to 
score a behavior, time it, or just to identify 
what it is to begin with from ever increasing 
hours of lab recordings.

Take the ultrasonic vocalizations of 
rodents, for example. These can be a 
reflection of an animal’s affective state, says 
Kevin Coffey, a postdoctoral researcher 
at the University of Washington. Audio 
can be converted into sonograms—visual 
representations of frequency by time—from 
which a human can distinguish different 
types of ultrasonic calls. But data adds up 
quickly: one animal might call a few times in 
a three hour recording; another, thousands. 
“It was too much to do by hand,” he says.

It’s a common refrain, but the burden 
is starting to shift from man to machine. 
When Annalisa Scimemi, a neuroscientist 
at SUNY Albany in upstate New York, 
wanted to break down grooming behavior, 
she looked to machine learning. Grooming 
is a natural, stereotyped behavior in 
rodents that is often used as a measure of 
compulsive tendencies, but measuring it 
had been tedious, involving long stretches 
of a time with a stop watch in hand. 
Computer vision—that is, a machine’s 
ability to ‘see’ and identify objects in 
a picture or video, was improving and 
computers were doing quite well at 
distinguishing shapes and colors, Scimemi 
says. Machine learning algorithms, 
meanwhile, could roughly follow animals 
around a cage or arena, but the features she 
needed to track were indistinguishable from 

body fur and capable of changing shape, 
thus tripping up the computers. So the lab 
added distinguishing features, painting 
mouse hands (after much training to make 
the process less stressful to the mice) with 
fluorescent colors that the computer could 
more easily see. The simple solution worked 
to their satisfaction to automatically track 
grooming behavior—they built a graphical 
user interface (GUI) for the software they 
dubbed M-Track2 and published the  
open-source code for the tool on GitHub, 
an immense open-source code repository.

“It was, I think, a very creative idea at 
the time,” says Scimemi. That time was 
2016. In just a few short years since, there 
have been tremendous advances, she says. 
“Looking forward, it would be useful 
to have the same tracking accuracy, but 
without introducing these marker colors… 
I think that can be done now.” Things are 
moving fast.

“The deep learning field has really 
pushed what is possible,” says Mackenzie 

Mathis. Mathis, now a fellow at The 
Rowland Institute at Harvard, wanted to 
track individual mouse fingers in order to 
connect the brain to motor outputs. No 
matter how she tried to add little stickers 
to her animals’ fingers or paint their nails, 
existing tools couldn’t manage the right 
level of specificity. “At the beginning, 
there was always something that I had to 
sacrifice because I couldn’t quite measure 
what I wanted to measure,” she says. For  
a time, she instead turned to building 
robotic joysticks that the mice could 
be trained to pull—at least those could 
provide high enough temporal and spatial 
precision to allow her to follow where the 
hand was in space, she says. Nonetheless, 
she still found herself with terabytes of 
collected data.

Deep learning, a type of machine 
learning, brought DeepLabCut3, neural 
network-based pose estimation software 
that’s capable of distinguishing mouse 
digits, and then some. Coffey built a 

Reaching for it: Deep learning algorithms are expanding what’s possible for keeping track of animal 
behavior. DeepLabCut, pictured in action with a reaching mouse hand, can estimate a variety of 
features across many different animals without a user having to annotate every frame in a video.  
Credit: M. Mathis, DeepLabCut
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tool called DeepSqueak4 to pore over all 
those sonograms, and Alexander Tuttle, 
a postdoctoral fellow at the University 
of North Carolina, has been applying 
deep learning to automate the work of 
grimace scale scoring5 If you can train an 
undergraduate to do it, you can train a 
computer with enough examples, he says. 
New applications are emerging regularly.

Algorithms are indeed becoming more 
sophisticated and networks are reaching 
deeper, letting computer scientists and 
biologists alike start to tackle their data 
processing problems in new ways. Even 
still—no pain, no gain?

Deep machine learning neural 
convolutional network…what?
The lingo can be tricky. In general terms, 
‘machine learning’ is using statistics to 
find patterns in big data sets in order to 
accomplish a specific task, says Kristin 
Branson, a researcher at the Howard 
Hughes Medical Institute Janelia Research 
Campus. In supervised form, it is a process 
through which a computer algorithm 
takes input from a user and then implicitly 
learns criteria it can use to classify new 
data accodingly. A few years ago, Branson 
had found herself with flies to follow—
thousands of them. Manually annotating 
videos was going to be too much to tackle, 
so she and her lab developed a tool they 
call JAABA, based on supervised machine 
learning6 to do the labeling for them. They 
used to JAABA to annotate 20,000 fly videos 
and then link the labeled behaviors to 
responsible neurons in different parts of the 
brain—a feat that would have been nearly 
impossible by hand.

The premises of machine learning go 
back decades—the term was coined in 1959. 
Deep learning approaches have arrived in 
the past few years. Deep learning is a type 
of machine learning that goes a bit, well, 
deeper, taking higher dimensional data and 
passing it through a series of layers that 
processes the information and determines 
an output. Users designate training data and 
set weights that then guide the algorithm 
to the desired outcome. Deep learning 
algorithms are often based on artificial 
neural networks that parse connections in 
the data back and forth, akin to neurons 
in the brain “We’re still very much short 
of what the brain can do, of course,” says 
Mackenzie Mathis. “But in that sense, it’s 
very much inspired by that.”

Not unlike the workings of the brain, 
neural networks are a little bit of a black 
box still, says Francisco Romero Ferrero, 
a PhD student in Gonzalo de Polavieja’s 
lab at the Champalimaud Foundation in 

Lisbon who helped build the idtracker.
ai tool7. The underlying architectures of 
different neural networks can vary, but 
many deep learning algorithms used with 
images or video fall into the category of 
convolutional neural networks, an approach 
that takes advantage of the structure present 
in natural images, he says. A convolutional 
algorithm takes an input from one layer, 
performs some calculations, and then passes 
that information on to another level. The 
idtracker.ai tool for example, designed to 
keep track of multiple animals in a video, 
uses two convolutional networks: one sorts 
out which animal is which when they touch 
or cross while a second keeps track of 
individual identities.

From man to mouse, by way of machine
Applying such computer concepts in 
the first place might seem daunting, but 
researchers need not start from scratch. 
“There is so much energy put into these 
networks,” says Coffey. “We just applied 
it.” Prompted by his principle investigator 
John Neumaier’s insistence that the lab 
automate the process of picking calls out 
from noise in their recordings, their lab 
technician Russell Marx started exploring 
existing options. They eventually chose a 
convolutional neural network called Faster 
R-CNN, which was designed for self-
driving cars. In the automated automotive 
world, cars need to process what’s in a large 

scene that’s constantly changing; they do so 
through something called ‘region proposal,’ 
Coffey says. In DeepSqueak, the network 
is looking for the peaks that correspond to 
a vocalization on a sonogram rather than 
say, the sidewalk or another car. That’s an 
advantage over previous software to define 
calls, which were often based on template 
matching and could be easily disrupted 
by background noise, he says. A separate 
classification network can then take on  
the work of separating the calls into 
different categories.

Tuttle, a behavioral neuroscientist 
by training, shares a similar story. With 
undergraduate Mark Molinaro, Tuttle 
dove in to GitHub until they found a deep 
learning network they could cobble together 
into what they needed to start automating 
grimace scale scoring. In the first iteration 
of the automatic Mouse Grimace Score 
(aMGS) tool, published just last year, they 
used Google’s Inception V3 model to 
sort white mice into ‘pain’ and ‘no pain’ 
categories. Now working with collaborators 
who come from a more computer science-
focused background, they’ve switched to 
the YOLO network—‘You Only Look Once.’ 
(“Computer scientists definitely have a sense 
of humor when they name their software,” 
says Tuttle.) He presented preliminary data 
at the American Pain Society Meeting in 
April that suggests the revised YOLO-based 
network is up to about 80% accuracy for 
identifying pain in both white and (much 
more commonly used) black mice; with 
additional training and tweaking, they hope 
to match the 90% accuracy of their first 
paper by the summer. YOLO is also offering 
more nuance, sorting faces into no/low, 
moderate, and high pain read outs, he says.

DeepLabCut takes its inspiration from 
a human pose estimation tool called 
DeeperCut and is built on a ResNet 
(short for ‘residual neural network’). Its 
developers also took advantage of a concept 
called transfer learning, pre-training the 
DeepLabCut neural network with a trove 
of existing images from the ImageNet 
database. “We take a network that’s already 
learned another task,” says Mackenzie 
Mathis “We’re just refining it and saying, 
‘Okay, you already know what lots of things 
look like, but we just want you to find all 
the fingers.” DeepLabCut can reach human 
labeling accuracy with only about 200 
training images.

Under supervision
Learning algorithms don’t run entirely on 
autopilot—training is an important aspect. 
“In supervised machine learning, you  
have a very specific task that you’re trying 

Sorting out songs: Rodent ultrasonic vocalizations 
occur beyond human hearing, but tools like 
DeepSqueak can up the throughput of sorting 
through recordings. Credit: K. Coffey, DeepSqueak
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to accomplish,” says Branson. The user 
knows what the output should be and can, 
in theory, label all their data accordingly; 
to be a help, the computer must learn to do 
the same in a predictable way. But, “it’s a 
basic assumption of machine learning that 
the distribution of your training data is 
exactly the same as the distribution of your 
test data. And if that’s not the case, then 
machine learning could fail completely,” says 
Branson. If an algorithm encounters a totally 
novel scene for example, it can struggle with 
how to label it. Training can be even more 
important with more complex networks. 
That said, “one thing that’s remarkable 
about deep learning is it has a huge number 
of parameters, but it doesn’t over-fit as 
much as we think it should,” she says. “A 
current field of interest in machine learning 
is understanding why deep networks, in 
particular deep convolutional networks, 
work as well as they do.”

To get an algorithm up to speed, users 
first define classifiers that describe a 
particular aspect of their data. They then 
manually label a set of training images. 
The learning algorithm then searches for 
a classifier function that can predict these 
labels from the input training image. If it 
makes the correct predictions, according to 
whatever accuracy threshold the investigator 
thinks is appropriate for their particular 
question, the tool can be ground truth-ed 
against a novel set of investigator-labeled 
images that it has not seen before. In JAABA 
for example, the user annotates what the 
animal is doing, such as a fly walking or 
jumping, and then the tool implicitly learns 
criteria that distinguish those behaviors. 
Users can always go back and add some 
more training rounds or, in the case of 
neural networks, continue to tweak the 
weights of the network before setting the 
tool to the task of labeling new data.

How much training is needed depends 
on the algorithm. Deep learning approaches 
intended for visual data of humans for 

example usually need very large training 
sets because humans look quite different 
from one another, says Talmo Pereira, 
a PhD student at Princeton University 
who has been working on the LEAP pose 
tracking tool8 with Mala Murthy and Joshua 
Shaevitz’ labs. Most lab animals are much 
more homogenous in both appearance and 
behavior, meaning a neural network can rise 
to par with a smaller training set. LEAP’s 
algorithms were built from scratch but were 
inspired by ‘stacked hourglass’ networks, 
which are used in techniques to create heat 
maps from user inputs that can then predict 
where a particular feature is in each frame as 
its processed through the network. For best 
performance, some manual preprocessing 
is involved—the animals should be more or 
less centered within the video, Pereira says, 
but their network can be trained with as few 
as 100 user-labelled frames.

Up and running
Behind the scenes, there can be a lot going 
on—the current iteration of DeepLabCut, 
for example, consists of about 16,000 lines 
of code, says co-developer Alexander 
Mathis (he too found himself frustrated 
with existing tracking capabilities, wanting 
to follow just a mouse’s nose along an odor 
trail). A user doesn’t necessarily need to 
directly interact with all that though. Many 
of the developers of machine learning 
based-tools for the animal lab have had 
user-friendliness in mind and have spent 
considerable time on point-and-click 
graphical user interfaces (GUIs) that can 
make the underlying algorithms accessible 
to the less computer-savvy.

Building a good GUI can be challenging 
though in and of itself. “That was really 
the bigger thing than getting the neural 
networks to work,” says Coffey. The first 
release of DeepSqueak worked beautifully  
in their hands, he says, but issues arose  
with other user’s systems, their audio files, 

and the way that they record their animals. 
“The hardest part was definitely making 
it a…turnkey solution for anybody. It 
was easy to make it work for us,” he says. 
Alexander Mathis recalls the time spent just 
making sure DeepLabCut would function 
across different operating systems. “That is 
actually quite a headache, to be frank,” he 
says. “You just need a lot a testing, and you 
need to do the same kind of testing in all the 
different platforms.”

The tools can be run from most any 
computer, but speed can become an 
issue without a machine that has graphic 
processing unit (GPU), the technological 
advance that has been a big contributor 
to the deep learning field, says Pereira. 
GPUs are a type of hardware that consists 
of multiple processing cores; individually, 
each core isn’t as fast as that of a central 
processing unit, he says, but because power 
can be combined across the cores, the speed 
at which a network performs its calculations 
increases. “You could do it with basically any 
computer but without a GPU, it’ll be very 
slow,” says Coffey. GPUs vary in quality (and 
expense), but are becoming more common 
in research facilities and even laptops in 
recent years. “We haven’t found anybody 
that…didn’t have at least one machine in the 
lab that has some GPU in it,” says Coffey. 
For those still without, moving the software 
to the cloud, such as through Amazon 
Web Servers or Google Cloud Services, 
is an option several tool developers are 
considering for their users.

For users that want to tinker themselves, 
the code underlying the various tools is 
often open online. “I think deep learning 
did so well because of the openness of the 
computing community,” says Alexander 
Mathis. “People share their codes all the 
time.” GUIs can help eliminate (or at least 
minimize) the learning curve, but those 
with more computer expertise can modify 
the code to suit their own needs and also 
help troubleshoot issues to improve the 
tools further.

Algorithms in action
Romero Ferrero and his colleagues in 
de Polavieja’s lab have been working on 
the problem of tracking the individual 
identities of multiple animals in a group. 
One individual is easy to follow around 
at this point, but when multiple animals 
touch or occlude one another, computers 
can get mixed up. An early version (early 
being 2014) of the idTracker software used 
‘shallow’ machine algorithms to identify 
the visual footprint of an individual animal 
against a consistent background and then 
keep track of it as it moved amongst other Following flies: An illustration of how LEAP figures out limb locations in a frame. Credit: T. Peirera, LEAP
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conspecifics. It worked with about 5 to 10 
animals at a time. But animal behavior can 
change as the size of the group grows—
deep learning let the lab increase the scale. 
The deep learning iteration, idtracker.
ai, can keep track of up to 100 individuals 
(they stopped at 100, Romero Ferrero says, 
because for fishes, the tanks were getting 
small; for flies, it was a challenge just to get 
that many into an arena in the first place). 
Users input the video and parameters to 
separate the animals from the background 
and the algorithm automatically selects the 
training data and identifies the animals 
through the video. Much information can 
be gained by studying the trajectories of 
animals in a group—the de Polavieja lab, for 
example, studies concepts like aggression 
and transfer learning, in which animals with 
experience at performing a task are mixed 
with novices.

But (most) animals are much more 
than a center of mass facing a particular 
direction (the basis by which many 
tracking algorithms follow an animal’s 
location over time)—there are limbs and 
fingers, wings and tails that the animals 
use to communicate and interact with 
their environment that can also reveal 
interesting information. For Pereira, the idea 
of applying deep learning to his research 
was to ‘take a modern spin on the study 
of animal behavior.” More specifically, to 
connect the brain to its outputs via natural 
behaviors rather than artificial assays, such 
as T-mazes or lever pressing, that were 
designed to control for variability but that 
don’t necessarily reflect an animals’ natural 
behavior and instincts. Ten years ago, ‘state 
of the art’ for measuring natural behavior 
was hand scoring, he says, an approach 
that goes back decades but that can be 
somewhat arbitrary in nature and quickly 
become complicated when the ‘behavior’ in 
question isn’t clear cut. The more accurately 
and objectively that you can measure a 
behavior, the better your understanding can 
be of neural activity and the computations 
the brain itself is performing, he says. In 
particular, they are interested in fly courtship 
and will be using LEAP to help tease apart 
the cues in fly wings during the ritual, with 
the intent to then manipulate the brain and 
see how behavior changes as a result.

“I’m really happy to see is that there 
are a lot more neuroscientists caring 
about behavior,” says Branson. In the 
past, behavior was often condensed down 
into one number, but people are realizing 
that’s an oversimplification, she says. “It’s 
really nice to see…all of these tools being 
developed, and people using them.”

DeepSqueak and the aMGS too will be 
put to use for scientific questions in their 

developers’ labs—the former, as a means 
to measure neurological conditions related 
to the serotonin system as well as drugs 
of abuse; the latter, for understanding the 
mechanisms of pain and how to treat it. 
Both might also have welfare applications. 
Coffey suggest DeepSqueak might be 
helpful for monitoring distress in rodent 
colonies—humans can’t actually hear USVs, 
but machines can. Managing and treating 
pain in experimentally manipulated animals 
is a priority across disciplines.

Emerging tools need not only apply 
to new studies. Prior recordings can 
often be re-analyzed, as could old data 
languishing on forgotten hard drives. 
The Mathis’ mention collaborators at a 
nonhuman primate lab who in the past 
would spend months training their animals 
to wear stickers on their arms; they are 
now returning to that data to follow the 
limb in its entirety, not just a few select 
points, such as the wrist. “It’s a beautiful 
re-use of data,” says Mackenzie Mathis. 
Nor will some of these tools just to the 
‘traditional’ lab species, either. Coffey has 
seen researchers apply DeepSqueak to 
animals like lemurs and dolphins. The pose 
estimators abound with examples applied 
to bees, giraffes, cheetahs, horses... “There’s 

no stipulations on what type of animals 
it can track,” Mackenzie Mathis says of 
DeepLabCut. “As long as you can see it, you 
can track it.”

Where to next?
Machine learning has arrived in the animal 
lab, and it’s changing the way researchers 
handle the drudgery of data processing. 
For example, a six-hour cocaine self-
administration session that would 60 hours 
of manual processing can be now completed 
in about 15 minutes, says Coffey. But as 
demands on manual labor diminish, new 
questions are arising about all that neatly 
labeled and categorized data. “What do 
you do with it?” asks Coffey. “How do you 
relate it back to behavior?” Not that that’s 
necessarily a bad problem to have. “For 
me, there’s always this hope: maybe, one 
day, one can really spend 80% of the time 
doing science, and not 95% of the time on 
extracting the data that one needs from an 
experiment,” says Alexander Mathis. The 
time spent building the tools (and helping 
new users learn them) has been time well 
spent, but the developers all seem ready to 
turn their algorithms to their own research 
questions in earnest.

Who’s who? Deep learning takes animal tracking to more animals. Idtracker.ai, pictured with  
zebrafish, can follow up to 100 animals at a time without losing track of identity.  
Credit: F. Romero Ferrero, idtracker.ai
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As researchers work through algorithms 
and build the GUIs on top of them, the 
rapid pace of machine learning highlights 
the importance of interdisciplinary learning 
and lab work. “I think the emergence of 
these fields should probably ring the bell 
that the boundaries between disciplines are 
much more fluid than probably they were 20 
years ago,” says Annalisa Scimemi at SUNY 
Albany. “It’s a good time to be creative, but 
also it’s a good time to break boundaries 
between disciplines.” It’s important that 
biologists and computer scientists come 
together, she says; the former might not 
know how to code, while the latter might 
lack the biological context to develop the 
right tools for the biological question at 
hand. Branson makes sure to have both in 
her lab, such as her JAABA co-developer 
Alice Robie. “I’m a computer scientist, 
who knows a little bit about biology. Alice 
is a biologist who knows about computer 
science, and so we can talk to each other. But 
I think we also help each other translate the 
two fields that we are specialized in,” says 
Branson. That can make it easier to make 
the most appropriate tweaks to the data 
collection in order to make the computer 
analysis easier on the tail end, says Robie.

There are a lot of labs working on 
machine learning applications for the 

animal lab—this article provides just a 
few examples—and many are endeavoring 
towards similar goals. “All of these 
researchers right now are building sort of 
their own neural networks, but we also 
might be tracking really similar behaviors,” 
says Mackenzie Mathis. Given how open 
the community can be, she suggests that 
continuing to share networks in the future 
could help standardize efforts across 
labs, an important element to improving 
reproducibility of results. “I think that’ll be 
a really useful thing, not only for…speed 
of training, but for consistency,” she says. 
“People will be really analyzing data in a 
similar way.”

With all the effort out there, especially 
as it becomes easier and easier for biologists 
to apply computer concepts to their work, 
a word of caution is merited as interested 
users look for the ‘best’ tools. “We’re still 
in the Wild West,” says Tuttle. “I think 
that we have to be very careful in what we 
use and sort of decide on the most robust 
models.” The tools are built by humans and 
like anything built by humans, there is the 
potential for bias, he says. One lab’s code to 
approach a particular problem will differ 
from another’s and it will take time and 
lots of testing from multiple labs to sort 
through any hidden flaws in the underlying 

algorithms. Bias, however, may be just 
as present across the different humans 
who have long borne the brunt of manual 
phenotyping in the past. “If we can get a 
computer to be as accurate as a human being 
in doing what an undergraduate can, then 
it’s going to be good for us,” Tuttle says.

The larger field of machine learning is 
pacing ever onward. “Deep learning  
is really changing the way that people  
will do science,” says Mackenzie Mathis. 
“But it’s also hard to predict because it 
moves so fast.” ❐
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