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Microsatellite instability-high (MSI-H) is a tumor-agnostic biomarker for immune checkpoint inhibitor
therapy. However, MSI status is not routinely tested in prostate cancer, in part due to low prevalence
and assay cost. As such, prediction of MSI status from hematoxylin and eosin (H&E) stained whole-
slide images (WSIs) could identify prostate cancer patients most likely to benefit from confirmatory
testing to evaluate their eligibility for immunotherapy and need for Lynch syndrome testing. Prostate
biopsies and surgical resections from prostate cancer patients referred to our institution were
analyzed. MSI status was determined by next-generation sequencing. Patients sequenced before a
cutoff date formed an algorithm development set (n = 4015, MSI-H 1.8%) and a paired validation set
(n = 173, MSI-H 19.7%) that consisted of two serial sections from each sample, one stained and
scanned internally and the other at an external site. Patients sequenced after the cutoff date formed a
temporally independent validation set (n = 1350, MSI-H 2.3%). Attention-based multiple instance
learningmodels were trained to predict MSI-H fromH&EWSIs. The predictor achieved area under the
receiver operating characteristic curve values of 0.78 (95%CI [0.69–0.86]), 0.72 (95%CI [0.63–0.81]),
and 0.72 (95%CI [0.62–0.82]) on the internally prepared, externally prepared, and temporal validation
sets, respectively, showing effective predictability and generalization to both external staining/
scanning processes and temporally independent samples. While MSI-H status is significantly
correlated with Gleason score, the model remained predictive within each Gleason score subgroup.

Prostate cancer is the secondmost common cancer in the United States,
with approximately one in eight men receiving a prostate cancer
diagnosis in their lifetime, and represents the fifth most common cause
of cancer mortality1. Despite an increasing number of targeted and
immunotherapy treatment options in cancer overall2, the use of these
modalities has lagged in prostate cancer. Neither comprehensive next-
generation sequencing (NGS) testing nor mismatch repair (MMR)

protein immunohistochemistry (IHC) is standard of care and testing
rates are low, since they typically cost several hundred to several
thousand dollars and utilize several slides of tissue3. Testing frequency
in prostate cancer is in contrast with colorectal cancer, for example,
where the higher prevalence of mismatch repair deficient (dMMR) and
microsatellite instability-high (MSI-H) has allowed testing to become
standard4.
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MSI-H is a biomarker caused by a deficiency in DNA mismatch
repair and is associated with response to immune checkpoint inhibitor
therapy.While there is not currently a prostate cancer specific approval,
pembrolizumab, a PD-1 inhibitor, has a tumor-agnostic approval for
use in unresectable or metastatic MSI-H or dMMR solid tumors.
However, NCCN Guidelines currently recommend MMR/micro-
satellite instability (MSI) testing only for metastatic castration-resistant
prostate cancer5, ESMO and PanAsia guidelines state that testing may
be considered for this population6. Collectively, these result in sig-
nificant metastatic or high-risk regional cancer patients that are not
outwardly recommended for testing under current guidelines. In
prostate cancer, MSI-H is uncommon and has been reported at only
2–3% prevalence7,8. However, overall response rates to immune
checkpoint inhibitors of 25–60%, including durable responses, have
been reported across several small studies in this subgroup of
patients7,9,10. Biomarker-unselected prostate cancer populations have
shown limited benefit from immune checkpoint inhibitors, high-
lighting the critical importance of biomarker testing for MSI-H or
dMMR for prostate cancer immunotherapy to enrich for responders
despite its low prevalence11–13.

While MSI testing is not routinely performed for prostate cancer
patients, prostate cancer diagnosis nearly always involves a tissue
biopsy with hematoxylin and eosin (H&E)-stained slides and residual
formalin-fixed paraffin-embedded (FFPE) tissue, which can be used for
NGS or IHC stains. The H&E stained slides are increasingly being
digitized as whole slide images (WSIs) to assist pathology workflows

and for archival purposes. Therefore, predicting MSI status from H&E
WSIs is potentially impactful for identifying patients who are likely
MSI-H and may benefit from confirmatory testing for their MSI status
to evaluate their eligibility for immunotherapy and/or Lynch syndrome
testing.

The application of machine learning onWSIs has been studied for
predicting MSI-H in colorectal and gastric cancers14–16. However, MSI
prediction in prostate cancer has been less well studied, with lower
prevalence and lack of testing in the standard of care posing challenges
to collecting sufficient positive samples. This absence of testing in
standard care also creates an unmet need to identify MSI-H/dMMR
tumors, and H&E-based machine learning models could assist in
narrowing down the population to be tested so that it becomes feasible
to do so. Moreover, the generalizability of histopathology machine
learning algorithms across multi-site staining and scanning char-
acteristics remains a significant challenge, and validating algorithm
performance across external pre-analytic characteristics remains
important for algorithm utility17.

In this study, we developed a machine-learning model to predict
MSI-H from a large, real-world prostate cancer cohort containing
WSIs, clinical data,molecular testing results, and IHC assay results.We
directly validated the generalizability of the predictor to stain and
scanner characteristics by evaluating performance on an externally
prepared dataset composed of a serial section of each slide from the
internal validation set but stained at a different site and scanned using a
different scanner model. We also validated the model’s generalizability

Table 1 | Patient characteristics in data cohorts

Overall Training set Paired validation set Temporal validation set

Variable MSI-
H, N = 138a

MSS,
N = 5400a

p-valueb MSI-
H, N = 73a

MSS,
N = 3942a

MSI-
H, N = 34a

MSS,
N = 139a

MSI-
H, N = 31a

MSS,
N = 1319a

Age at collection date 71 (65, 76) 66 (60, 73) <0.001 71 (64, 76) 66 (60, 72) 71 (65, 76) 68 (61, 73) 69 (63, 77) 68 (61, 74)

Unknown 14 892 – 6 524 1 16 7 352

Race 0.5

Asian (%) 3 (4.2) 67 (2.7) – 1 (2.9) 56 (2.9) 1 (4.8) 1 (1.3) 1 (6.7) 10 (2.0)

Black or African Amer-
ican (%)

11 (15) 472 (19) – 2 (5.7) 355 (19) 4 (19) 11 (15) 5 (33) 106 (21)

White (%) 57 (80) 1942 (78) – 32 (91) 1494 (78) 16 (76) 63 (84) 9 (60) 385 (77)

Unknown 67 2919 – 38 2037 13 64 16 818

Histology 0.6

Adenocarcinoma (%) 136 (99) 5315 (98) – 71 (97) 3874 (98) 34 (100) 135 (97) 31 (100) 1306 (99)

Carcinoma (%) 1 (0.7) 17 (0.3) – 1 (1.4) 15 (0.4) 0 (0) 1 (0.7) 0 (0) 1 (<0.1)

Neuroendocrine (%) 1 (0.7) 51 (0.9) – 1 (1.4) 40 (1.0) 0 (0) 1 (0.7) 0 (0) 10 (0.8)

Sarcoma (%) 0 (0) 3 (<0.1) – 0 (0) 3 (<0.1) – – – –

Small cell carcinoma (%) 0 (0) 14 (0.3) – 0 (0) 10 (0.3) 0 (0) 2 (1.4) 0 (0) 2 (0.2)

Total gleason <0.001

7 (%) 5 (4.3) 878 (21) – 3 (4.8) 692 (22) 0 (0) 9 (8.1) 2 (8.7) 177 (20)

8 (%) 18 (15) 832 (20) – 9 (15) 617 (20) 3 (9.4) 11 (9.9) 6 (26) 204 (22)

9 (%) 61 (52) 2097 (50) – 33 (53) 1605 (51) 17 (53) 51 (46) 11 (48) 441 (49)

10 (%) 33 (28) 370 (8.9) – 17 (27) 245 (7.8) 12 (38) 40 (36) 4 (17) 85 (9.4)

Unknown 21 1223 – 11 783 2 28 8 412

Procedure type 0.5

Ambiguous biopsy (%) 18 (13) 578 (11) – 11 (15) 431 (12) 3 (9.1) 12 (8.9) 4 (13) 135 (10)

Core needle biopsy (%) 80 (59) 2910 (56) – 42 (58) 2009 (54) 18 (55) 77 (57) 20 (65) 824 (63)

Resection+ excisional (%) 38 (28) 1691 (33) – 19 (26) 1293 (35) 12 (36) 46 (34) 7 (23) 352 (27)

Unknown 2 221 – 1 209 1 4 0 8
aMedian (IQR); n (%).
bWilcoxon rank-sum test; Fisher’s exact test; Pearson’s χ2 test.
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to a temporally independent internal validation cohort. We conducted
several subgroup analyses, including procedure types and Gleason
score subgroups. The predictor demonstrated high effectiveness in
identifyingMSI-H fromWSIs and has the potential to identify prostate
cancer patients most likely to benefit from confirmatory testing for
their MSI status.

Results
Cohort characteristics
Table 1 and Supplementary Table 1 present the patient characteristics of the
cohorts. A multivariate logistic regression model that predicts MSI status
based on the clinical and demographic variables of the cohort shows that
Gleason score, sample collectiondate, and tumormutational burden (TMB)
have statistically significant coefficients (Supplementary Table 2). Other
variables that showed significant univariate correlation with MSI status in
the cohort tables did not remain significant in multivariate analysis. Higher
Gleason scores are associated with greaterMSI-H prevalence, ranging from
0.6% amongst Gleason 7 cases to 8.5% amongst Gleason 10 cases. No other
significant correlations were found between MSI status and clinical or
demographic variables.

Table 2 characterizes the MMR results where IHC stains were also
available. For MSI-H cases, MSH2/MSH6 absence was the most common
abnormal MMR staining pattern, occurring in 32/38 (84.2%) of cases, fol-
lowed by four cases of MLH1/PMS2 absence (10.5%), and one case of
PMS2-only absence (2.6%). One case had no MMR protein loss detected
(2.6%), but NGS detected anMSH6missensemutation, E1193K, which has
previously been determined to impair heterodimerization with MSH2 and
resultingMMRcapability18. This distribution is consistentwithother studies
on dMMR in prostate cancer and different from other cancer types such as
colorectal and endometrial cancers 7,19–23.

Model performance
An attention-based multiple instance learning network was trained on
tiles randomly sampled from H&E WSI tissue regions to predict MSI-
H. The MSI-H predictor achieved area under receiver operating
characteristic curve (AUC) values with confidence intervals (CIs) of
0.78 (95%CI [0.69–0.86]), 0.72 (95%CI [0.63–0.81]), and 0.72 (95%CI
[0.62–0.82]) on internally stained and scanned, externally stained and
scanned, and temporal validation sets, respectively (Fig. 3). The dif-
ference in AUC between each pair of validation sets did not show
statistical significance: ΔAUC = 0.06 (95% CI [−0.05, 0.17]) between
the paired validation sets and ΔAUC = 0.06 (95% CI [−0.08, 0.20])
between the internal paired validation set and the internal temporal
validation set. A significant correlation between prediction scores on
the paired internally and externally stained and scanned serial sections
was observed (R = 0.85, 95% CI [0.77, 0.91], Supplementary Fig. 1). At
an example operating point of 50% sensitivity, the MSI-H predictor
had a specificity of 86.8% (95%CI [59.9%, 95.7%]), a positive predictive
value (PPV) of 7.9% (95% CI [2.7%, 23.2%]), and a negative predictive

value (NPV) of 98.6% (95% CI [97.9%, 99.1%]) on the temporal vali-
dation set. The PPV is notably higher than the underlying MSI-H
prevalence of 2.3% in our cohort and the reported 2–3% in the litera-
ture. A review of the high-attention tiles suggests the predictor focuses
on dense tumor regions in making its determination, while its low-
attention tiles largely comprise tiles with stroma and whitespace
(Supplementary Fig. 2).

We assessed performance within subgroups on a pooled valida-
tion set combining the internally stained and scanned images in the
paired validation and the temporal validation sets (Fig. 4). The ROC
curves and the violin plots of prediction scores show that the model
remained predictive of MSI-H status within each Gleason score and
procedure type subgroup. AUC trended higher in the Gleason scores
7–8 subgroup (AUC = 0.80, 95%CI [0.66, 0.94]). In the Gleason scores
9–10 subgroup, where MSI-H prevalence is the highest, patients are
classified as high-risk, and the need for therapy is often significant, the
AUC was also encouraging (AUC = 0.72, 95% CI [0.64, 0.81]), and the
distributions of prediction scores for MSI-H and microsatellite-stable
(MSS) patients were significantly different. Performance within sur-
gical resections trended higher than within biopsies (AUC = 0.86, 95%
CI [0.77, 0.95] vs. AUC = 0.73, 95% CI [0.65, 0.80]), and the dis-
tributions of prediction scores for MSI-H and MSS patients were
significantly different in both subgroups, potentially owing to larger
tissue context and reduced frequency of biopsy-related artifacts.
Subgroup analysis within each validation set shows qualitatively
similar trends but did not have adequate statistical power to assess
significance in several subgroups owing to smaller sample sizes
(Supplementary Fig. 3).

Additional subgroup analyses showed that the algorithm perfor-
mance remained robust on small specimens with tissue area in the
lowest quartile (AUC = 0.76, 95% CI [0.61, 0.92]) and trended slightly
lower on samples with tumor purity in the lowest quartile (AUC = 0.71,
95% CI [0.61, 0.83]) (Supplementary Fig. 4a). The tissue area simula-
tion experiment showed that the model performance remained robust
down to bag sizes of 50–100 tiles, corresponding to 0.6–1.3 mm2 of
sampled tissue area, which is the 0.01 percentile in our dataset and is
much smaller than a core needle biopsy. The tumor purity simulation
experiment showed that model performance remained unchanged at
high tumor percentages (70% tumor tiles and above) and decreased
somewhat at low tumor percentages, but remained significantly pre-
dictive (Supplementary Fig. 4b). Note that a bag consisting of 70%
tumor tiles and 30% stroma tiles is equivalent to a tissue area of less
than 70% tumor purity, since we used tumor region annotation, rather
than cell-level annotation.

Finally, the data titration experiment showed that model performance
on the validation sets increased as a larger fraction of training data was used,
and the model performance may yet improve with additional training data
(Supplementary Fig. 5).

Discussion
In this study, we developed a deep learning predictor of MSI status using a
large, real-world cohort of H&E whole slide images and corresponding
molecular testing results and evaluated its generalizability to externally
stained and scanned slides and to a temporally independent validation
cohort. The predictor achieved high performance for a screening algorithm
and demonstrated significant discriminative ability on both the externally
stained and scanned images and the temporal validation set. Given the
predictor’s effectiveness and generalizability, the ubiquity and increasing
digitization of H&E slides in prostate cancer diagnoses, and the lack of
routine testing for MSI in prostate cancer, we anticipate that our algorithm
couldbeused todirect testing andfindpatients eligible for targeted therapies
who otherwise may have been missed.

For patients determined to be MSI-H via confirmatory testing, the
clinical implications are significant, including potential eligibility to receive
pembrolizumab, which has a tumor-agnostic indication in MSI-H/dMMR

Table 2 | Distribution of mismatch repair (MMR) immunohis-
tochemical (IHC) stain findings for prostate cancer cases

IHC staining pattern Number of MSI-H
samples

Number of MSS
samples

MSH2/MSH6 Loss 32 6

MLH1/PMS2 Loss 4 0

MSH6 loss only 0 3

PMS2 loss only 1 2

All present 1a 1345

MMR IHCs not available 100 4044
aFor the one MSI-H case where all MMR staining patterns were present, NGS detected an MSH6
missense mutation (E1193K).
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tumors and reported response rates of 25–60%7,9–11. Other immu-
notherapies may also be effective, with evidence of encouraging response
rates to nivolumab, a PD-1 inhibitor in a Phase II clinical trial24. These
findings show that our MSI predictor is potentially impactful on patient
outcomes.

Furthermore, our analysis revealed a notable pattern of con-
current loss of MSH2 and MSH6 expression in cases of MMR defi-
ciency, which may indicate an increased likelihood of Lynch
syndrome25. Lynch syndrome results from defective mismatch repair
mechanisms caused by germline mutations in MMR, which sig-
nificantly raises the lifetime cancer risk25. Consequently, the detection
and monitoring of MSI-H are crucial, not only for patient treatment
but also for potential enhanced surveillance protocols for their families,
considering heritable cancer risks26. Other studies have reported Lynch
syndrome prevalence in prostate cancer at 0.6–0.8%, which would be a
notable fraction of all MSI-H prostate cancers7,27. Given that the
Tempus xT assay is primarily used for assessing somatic mutations,
with detection of potential germline genes associated with Lynch
syndrome possible via sequencing of matched normal controls28, pre-
cise quantitation of Lynch syndrome in the study cohort is not feasible.
However, potential germline findings were present in a substantial
fraction of the cohort (see Supplementary Information)29, consistent
with the above suggestion that Lynch syndrome is present in a
meaningful subset of MSI-H prostate cancers and furthering the
importance of MSI-H detection.

Gleason score is an important prognostic measure in prostate
cancer that is often used in patient risk stratification30. Subgroup
analyses showed that the model remained predictive within Gleason
score subgroups, including scores of 9–10, where the impact of this
algorithm may be the greatest. Patients exhibiting Gleason scores of
9–10 (Grade Group 5) have significantly worse prognosis than other
prostate cancer patients31, are minimally considered stage IIIC inde-
pendent of metastatic status32, and correspondingly tend to receive
aggressive treatment including hormonal and radiation therapy. The
MSI-H prevalence is also greatest amongst these patients in our study,
and similar associations have been noted in other studies33.WhileMSI-
H has been associated with favorable prognosis in other cancer types,
the prognostic significance of MSI in high Gleason score prostate
cancer is not yet fully understood, and treatment selection for these
patients remains a significant need. Given the greater prevalence and
significant clinical need for treatment in high-grade prostate cancers,
we anticipate the predictor’s utility and urgency of MSI-H con-
firmatory testing may be the greatest in this subgroup.

Compared with the model performance on the internally stained
and scanned slides, the performance dropped slightly on the externally
stained and scanned slides in the paired validation set. While not
statistically significant, the performance difference could be attributed
to differences in staining and scanning protocols, a well-known chal-
lenge for the generalizability of deep learning algorithms in digital
pathology. Subgroup analyses showed, as expected, that Philips UFS
scans contributed more to the difference between internal and external
scans than the Leica GT450 scans, given that the externally prepared
slides were scanned on a Leica AT2 scanner. We employed robustness
measures, such as the International Color Consortium (ICC) profile
transformation and color augmentation during model training, to
reduce domain shift and increase model generalizability. Additionally,
although all patients were sequenced at Tempus, 37% of H&E slides in
our cohort were prepared externally at other laboratories using dif-
ferent staining protocols and scanners, mimicking diverse data in a
multi-institutional study and adding confidence to the generalizability
of our model.

While not statistically significant, the model performance is also
slightly lower on the temporally independent validation set than the internal
slides in the paired validation set. The two validation sets have some dif-
ferent characteristics that may contribute to some differences in

performance. For example, samples submitted for sequencing at Tempus
can either be submitted as a block, for which Tempus cuts and stains an
H&E slide, or a set of pre-cut slides, where one of the slides is already stained
externally withH&E. The paired internal set contains only Tempus-stained
H&Es, while the temporal validation set contains both Tempus-stained
H&Es and externally stained H&Es. Additional difference could include
temporal drifts in data distribution, such as shifts in patient population or
staining techniques.

There are several limitations to our work. First, the performance
and generalizability that our model achieved were constrained by the
limited number of MSI-H cases in our cohort and may benefit from
additional data. Also, the application of this algorithm is currently
restricted to primary tumor specimens, and the extension to metastatic
site specimens can be studied in future work. Moreover, performance
was evaluated on one slide per case, while several slides are typically
produced for each case during typical pathology workflows. Future
work is needed to study the selection of optimal slides for the predictor
to analyze for a given case. While the model demonstrated potential
utility on small biopsy specimens, the subgroup analysis and simula-
tion experiments showed trends toward algorithm performance
degradation at low tumor purities. If this algorithm were to be
deployed, one workflow might include having a pathologist roughly
outline a high tumor purity region or identify the highest tumor purity
slide available from case-upon-case digitization. Future work could
simplify the workflow via the utilization of an automatic tumor
detector.

Furthermore, as a screening test to encourage or triage for con-
firmatory testing, the clinical operating point would depend on the
clinician’s judgment for the trade-off between the costs and benefits of
confirmatory testing. While we cannot recommend an operating point
or acceptance criteria for all patients’ situations, we believe colorectal
cancer that has a universal MMR/MSI testing recommendation could
serve as a useful comparison. The underlying prevalence is ~13% for
colorectal cancer and can serve as a target PPV for operating point
determination34. Assuming a real-world prevalence of 3.1% in prostate
cancer, a post-test probability of ≥13% would require a specificity
of ≥ 93% at 30% sensitivity, which is achievable using our model as
shown in Fig. 3c.

Finally, although we constructed a paired validation set to evaluate
model generalizability to externally stained and scanned slides, our real-
world dataset has inherent biases stemming from the retrospective inclusion
of only patients who underwent sequencing and the utilization of single-
institution sequencing results. As such, a prospective, multi-institution
evaluation of the MSI-H predictor is warranted prior to the algorithm’s use
in clinical practice.

Methods
Study design and participants
In this retrospective, diagnostic study, we sampled consecutive pros-
tate cancer patients who were sequenced at Tempus Labs (Chicago, IL,
USA) fromOctober 2017 to February 2023 and whoseWSIs of prostate
biopsies or surgical resections were available. Each case included
clinical characteristics, molecular profiles, and digitized WSIs. This
study was conducted on de-identified health information subject to an
IRB exempt determination (Advarra Pro00072742) and did not involve
human subjects research.

About 25%of cases haveMMRprotein IHC.All samplesweredigitized
with either a Philips UFS scanner or anAperio GT 450 scanner, and 37% of
samples were stained at external laboratories. MSI-H/MSS status was
determinedusingDNANGS.TheNGSassayused in this study,TempusxT,
is a laboratory-developed test used for tumor profiling of solid malignant
neoplasms. The test for MSI status in the xT panel, when compared with
results of IHC staining, has 90.5% PPA, and 98.2% NPA for non-colorectal
and non-endometrial cancers35,36. Samples with equivocal or undetermined
MSI status (n = 97), samples that failed quality control by pathologists
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(n = 88), and samples with Gleason scores of less than 7 (n = 48) were
excluded (Fig. 1). Reasons for equivocal or undetermined MSI status pre-
dominantly result from insufficient tumor purity for the MSI call in NGS,
but may also include sequencing of insufficient depth over enough of the
assayedmicrosatellite loci to prevent the prediction from reaching statistical
significance, or in rare cases (n = 2) multiple tests for the same patient
returning conflicting results.

A cutoff sequencing date in July 2022 was selected to split the
cohort into two temporally independent subsets. Patients sequenced
before a cutoff date (n = 4188, MSI-H 2.6%), formed the training set
and a paired validation set. The training set (n = 4015, MSI-H 1.8%)
was used for model development and the paired set (n = 173, MSI-H
19.7%) to directly evaluate stain and scanner generalizability. The
paired validation set was composed of two serial sections from each
sample, one of which was stained and scanned internally and another
stained and scanned at an external site, TruCore Pathology (Little
Rock, AR), using an Aperio AT2 scanner. This set was constructed by
randomly sampling 36 MSI-H cases where an unstained serial section
was available for study use, and correspondingly sampling 144 MSS
cases with matched Gleason score and procedure type distribution as
the selected MSI-H samples prior to quality control exclusions.
Patients sequenced after the cutoff date formed the temporal validation
set (n = 1350, MSI-H 2.3%), which was used to evaluate model gen-
eralizability on temporally independent data. The design of the data
cohorts is illustrated in Fig. 2a, b. Validation sets were held out from
model development and were only used for evaluation and reporting of
metrics.

Model development
Tissue and marker regions were first identified onWSIs using a previously
developed U-Net model37. Subsequently, tiles of size 256 × 256 pixels at 20x
magnifications were generated from WSIs. Tiles predicted to not contain
tissue or to contain markers were excluded. ICC profile transformations38

were applied to correct the color discrepancies between Leica GT450, Leica
AT2, and Philips UFS scanners.

An attention-based multiple instance learning model similar to
Ilse et al. was trained using these images39, as illustrated in Fig. 2c. This
model architecture is suitable for the task because it allows for in-depth
tile-level feature analysis while using slide-level labels ofMSI status in a
weakly supervised training scheme. The model accepts a “bag of tiles”
as input. An ImageNet pre-trained ResNet18 model was used as a
feature extraction module for each tile40, while the attention module

was used to identify tiles with high diagnostic relevance and aggregate
information from all tiles in the bag to make a slide-level prediction.
The entire model was trained end-to-end using Adam optimizer and
weighted cross-entropy loss where weights were assigned according to
the class prevalence41. In each epoch during training, 200 tiles were
randomly sampled to form a bag. The effective batch size was 32 during
training, split across four NVIDIA A100 GPUs. At inference time, the
bag size was increased to 1600 with a batch size of 1 on one NVIDIA
A100 GPU. Tile sampling was performed without replacement, and if a
slide had fewer tiles than the bag size, all tiles in the slide were used.
Tiles were normalized with the mean and standard deviation of a
reference set of H&E images. For data augmentation during training,
tiles were randomly cropped to 224 × 224, randomly rotated by mul-
tiples of 90 degrees, randomly flipped, and randomly applied with color
jittering.

5-fold cross-validation within the training set was used to perform
hyperparameter tuning to select the learning rate, weight decay,
dropout rate, patience and minimum delta for early stopping, input
image magnification, and color augmentation parameters (see Sup-
plementary Information for detailed information). Data splitting for
creating cross-validation folds was done such that MSI status and
potential confounding variables, such as scanner type, procedure type,
and Gleason score were represented equally in each fold. Once the final
hyperparameters were selected, the MSI-H predictor was composed by
averaging the predictions across the five models trained via cross-
validation using the selected hyperparameters. This predictor was
finally evaluated on three validation sets: the paired validation set with
enriched MSI-H prevalence composed of internally and externally
stained and scanned serial sections for each sample, as well as the
temporal validation set to evaluate temporal generalizability.

Evaluation
AUC was used as the main metric to evaluate classification performance.
Sensitivity, specificity, PPV, and NPV were also reported to assess model
performance at various target sensitivity levels. The Pearson correlation
coefficient, R, was used to evaluate the correlation between predictions on
internally and externally stained and scanned images in the paired valida-
tion set. The 95% CIs of all metrics were calculated by bootstrapping the
prediction scores with 1000 bootstrap samples.

To assess the robustness of model performance across Gleason
score and procedure type, subgroup analyses were performed on the
pooled internal validation set, which combined the temporal validation

Fig. 1 | STARD diagram of the study.
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set and the internally stained and scanned slides from the paired
validation set.

Additional analyses were performed on the pooled internal vali-
dation set to assess the robustness of model performance in two
challenging subgroups: specimens with small tissue area or low tumor
purity. Samples with tissue area or tumor purity in the lowest quartile
in the validation set formed these subgroups, corresponding
to ≤9.35 mm2 tissue area and ≤50% tumor purity. A simulation
experiment was also performed to establish the model’s limit of

detection on tissue area. Model inference was run with different bag
sizes, randomly sampling 3, 6, 12, 25, 50, 100, 200, 400, and 800 tiles
from each slide in the validation set. Another simulation experiment
was run to study the influence of tumor purity on model performance.
We collected manual annotations of tumor areas for 35 MSI-H and 35
MSS slides from pathologists and simulated tumor percentages ran-
ging from 30% to 100% by sampling different proportions of tumor
tiles and stroma tiles when composing bags of tiles. The 5-fold cross-
validation ensemble AUC was calculated and compared in these

Fig. 2 | Overview of study design. Schematic representation of a data cohorts, b paired validation set, and c model pipeline.
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experiments, which were repeated 10 times with different
random seeds.

We evaluated how the amount of training data would affect the algo-
rithm performance in a data titration experiment. The training set was
consecutively sub-sampled without replacement to 80%, 60%, 40%, and
20% of the original size, stratified by MSI status. A model was trained on
each of these subsets using the same hyperparameters and configurations as
the original model developed on the full training set, and model perfor-
mance was analyzed to investigate the impact of sample size available for
model development (Figs. 3 and 4).

Finally, attention heatmaps as well as high- and low-attention
tiles from samples in the validation sets were visualized to inspect
regions that the model deemed important in making slide-level pre-
dictions. Pathologists reviewed randomly sampled high- and low-
attention tiles from MSI-H and MSS slides as a sanity check for the
model behavior and to identify prominent features. A U.S. board-

certified pathologist provided their blinded assessments of 60 slides
(15 in each of the true positive, true negative, false positive, false
negative categories) on lymphocytes within and around the tumor,
predominant growth pattern, and histology of the highest Gleason
pattern on each slide.

Statistical analysis
For analyzing variable correlations with MSI status in the cohort
characteristics tables, the Wilcoxon rank-sum test was used for con-
tinuous variables, the Pearson’s Chi-square test was used for categorical
variables when no expected cell count was less than five, and the Fisher
test was used for categorical variables when any expected cell count was
less than five. The two-sided Mann–Whitney U test was used to com-
pare the prediction score distributions between MSI-H and MSS sam-
ples in the subgroup analysis. A p < 0.05 was considered to indicate a
statistically significant difference. All statistical analyses were done

a b

c

Sensitivity TP FP FN TN Specificity PPV NPV

30% 9 61 22 1258

95.4%

[93.0%, 97.9%]

12.9%

[7.1%, 28%]

98.3%

[97.7%, 98.8%]

50% 15 174 16 1145

86.8%

[59.9%, 95.7%]

7.9%

[2.7%, 23.2%]

98.6%

[97.9%, 99.1%]

70% 22 561 9 758

57.5%

[39.0%, 85.3%]

3.8%

[2.3%, 10.2%]

98.8%

[97.9%, 99.4%]

90% 28 961 3 358

26.9%

[22.0%, 53.1%]

2.8%

[2.0%, 4.5%]

99.2%

[98.6%, 99.7%]

Fig. 3 | Performance of the MSI-H predictor. Receiver operating characteristic (ROC) curve for the MSI-H predictor on a the paired validation set and b the temporal
validation set, and c a table of performance metrics and their 95% confidence intervals at various target sensitivities on the temporal validation set.
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using R 4.2.3 (package: gtsummary 1.7.1) and Python version 3.7.12
(package: statannotations version 0.5.0) 42,43.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Data used in the research were collected in a real-world healthcare setting
and are subject to controlled access for privacy and proprietary reasons.
When possible, derived data supporting the findings of this study have been
made available within the paper and its supplementary materials.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers upon reasonable request from the corre-
sponding author.
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