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plasma PEth
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Alcohol consumption is associated with a wide variety of preventable health complications and is a
major risk factor for all-cause mortality in the age group 15-47 years. To reduce dangerous drinking
behavior, eHealth applications have shown promise. A particularly interesting potential lies in the
combination of eHealth apps with mathematical models. However, existing mathematical models do
not consider real-life situations, such as combined intake ofmeals and beverages, and do not connect
drinking to clinical markers, such as phosphatidylethanol (PEth). Herein, we present such a model
which can simulate real-life situations and connect drinking to long-termmarkers. The newmodel can
accurately describe both estimation data according to a χ2 -test (187.0 < Tχ2 = 226.4) and independent
validationdata (70.8 < Tχ2 = 93.5). Themodel can alsobepersonalizedusing anthropometric data from
a specific individual and can thus be used as a physiologically-based digital twin. This twin is also able
to connect short-term consumption of alcohol to the long-term dynamics of PEth levels in the blood, a
clinical biomarker of alcohol consumption. Herewe illustrate howconnecting short-termconsumption
to long-term markers allows for a new way to determine patient alcohol consumption from measured
PEth levels. An additional use case of the twin could include the combined evaluation of patient-
reported AUDIT forms andmeasured PEth levels. Finally, we integrated the newmodel into an eHealth
application, which could help guide individual users or clinicians to help reduce dangerous drinking.

Alcohol consumption causes around five percent of all deaths worldwide, in
addition to contributing to numerous societal health issues1. Long-term
alcohol consumption is associated with an increased risk of chronic liver
disease, hepatocellular carcinoma (HCC), and other malignancies2,3. Addi-
tionally, how one consumes alcohol, i.e., one’s personal drinking habits4,
might contribute to both short-term and long-term effects on personal
health. One common type of drinking habit is ‘binge drinking’ (heavy
episodic drinking), which is more prevalent in adolescents and young
adults5,6. Binge drinking can cause major health problems, contributing to

both acute injuries (e.g., accidents) and long-term negative effects7. Fur-
thermore, during ‘heavydrinking’, the ability to judgeyour own intoxication
level is decreased8. For these and other reasons, it is important to determine
and control the amount of alcohol consumed and highlight the long-term
effects.When it comes to reducing harmful alcohol use, aswell as improving
care, eHealth applications can be useful.

Various types of eHealth applications and digital tools have shown
promise in affecting alcohol consumption patterns in individuals with
unhealthy alcohol use or alcohol use disorder (AUD)9–16. For example, in a
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behavioral intervention study by Bendtsen et al.17 a digital intervention
produced self-reported changes in alcohol consumption among online
help-seekers in the general population. Additionally, some eHealth appli-
cations and interventions include estimated blood alcohol concentration
(eBAC) calculations18–21. For example, the eBAC-based application “Pro-
millekollen”was used in a study by Berman et al.18. In this study, a group of
university students, with hazardous alcohol use, was shown to reduce their
number of ‘binge drinking’ sessions by using the application. Apart from
these examples, eHealth applications could potentially be developed for a
variety of other use cases: e.g. clinical diagnosis, prognosis, and patient
education. Many of those use cases would require a long-term predictive
ability, which takes into account real-life drinking patterns, and predicts
long-term alcohol markers, such as phosphatidylethanol (PEth) (Fig. 1a)22.

Measuring PEth has been shown to be useful for characterizing actual
alcohol consumption23,24. Currently, alcohol consumption is measured
using self-report forms, e.g., alcohol use disorders identification test
(AUDIT)25. However, there are serious indications of inconsistencies
between self-reported alcohol consumption, and long-term biomarkers in a
significant portion of AUD patients26. A step towards increasing the accu-
racy of self-reporting forms and developing future screeningmethods could
be to link every instance of alcohol consumption to, e.g., a long-term PEth
trajectory.Thus, an eHealth solution, connecting long-termalcoholmarkers
to short-term drinking behavior, would present an option for estimating
previous drinking behavior from measured PEth levels. However, for
accurate estimates of previous drinking behavior based on PEth levels, one
needs a model that connects blood alcohol concentration (BAC) and PEth.

There are models that combine BAC and PEth, but their usefulness is
limited, since they do not describe real-life drinking scenarios. A simple and
widely used model for BAC estimations is the Widmark equation27. The
simplicity of the Widmark equation implies that it cannot describe many
real-life drinking scenarios. Such scenarios include e.g. different types of
drinks, as well as drinks in combination with food. Because the Widmark
equation does not describe gastric emptying, it can neither describe the
slowing effect of beverage caloric content on gastric emptying28–32, nor the
ingestion ofmealswhich greatly reduces the BAC following consumption of
alcohol33–37. There are other more advanced models that describe either (i)
the gastric emptying38–40, (ii) detailed BAC profiles of varying detail41–45, or
(iii) the PEth dynamics46. However, to our knowledge, there does not exist a
mathematical model that can describe all these aspects in a single model.
Therefore, currentmodels are insufficient for connecting BAC profiles with
PEth for real-life drinking patterns.

Herein, we present a physiologically-based model that incorporates
several aspects of BAC after alcohol consumption not presented in other
models: (1) factors impacting gastric emptying, (2) alcohol interaction with
meals, and 3) ethanol break-down intoPEth (Fig. 1c). Thismodel establishes
the basis for a physiologically-based digital twin of alcohol consumption47–49.

Results
The mechanistic model, i.e., the physiologically-based digital twin was
trained and validated on various published experimental data24,28,29,33,37,50–54.
An overview of the framework of this study is given in Fig. 1b and an
overviewof the estimation andvalidationdata is given in the Supplementary
Information “4 Usage of experimental data”. The model could simulta-
neouslyfindagreementwith all data included in the estimationdataset using
one set of parameters (Figs. 2, 4, 5). Additionally, the model can predict
independent validation data using the same parameter values (Fig. 6). The
model agreement to data was evaluated using a χ2-test on the residuals (see
methods section). The χ2-test cutoff value was chosen using a confidence
level α = 0.05, with degrees of freedom being the number of data-points
included in the estimation dataset (193). For the best model agreement, the
χ2 test statistic was 187.0 which was lower than the cutoff (Tχ2 = 226.4). The
model prediction of the validation data (using the parameter values that
gave the best agreement to estimation data) also passes a χ2-test with a
confidence level of α = 0.05. The χ2 test statistic was 70.8 which was lower
than the cutoff (Tχ2 = 93.5, for 73degrees of freedom).Furthermore,weused

the modeling framework to test different hypotheses for the effect of meals
on the plasma ethanol dynamics (Fig. 3). Lastly, we used the model to
predict long-term PEth levels as a response to daily drinking for 90 days
(Fig. 7).

The model can find agreement with gastric emptying data
describing different types of interventions
In this section, we will show the model agreement for the gastric emptying
module of our model to experimental data from three studies published by
Okabe et al.28,29,50. In one of the studies by Okabe et al.28, the study partici-
pants drank beverages with the same volume but different caloric content.
The data from the study indicates that there is no significant effect of the
calorie type on the rate of gastric emptying. This behavior is captured by the
model, where the different caloric content shows the same gastric emptying
rate (compare Fig. 2b with Fig. 2d, and Fig. 2c with Fig. 2e). Rather, the total
caloric content seems to be the driving factor in slowing down the rate of
gastric emptying (compare Fig. 2a (0 kcal) with Fig. 2b and d (220 kcal), and
Fig. 2c, e (339 kcal)). In the second study by Okabe et al.50, participants
ingestedanalcoholicwhiskeybaseddrink (8.0 v/v%), and thegastric volume
was measured, which the model describes (Fig. 2f). In the third study by
Okabe et al.29, experimental data indicates that caloric density is not of
importance for the gastric emptying, rather the total caloric content is the
most significant factor29. The model can describe this behavior as both
volumes are emptied at a similar rate, given the same total caloric content
and different caloric densities (Fig. 2g, h). In summary, our gastric emptying
module can find agreement with a range of experimental data and captures
fundamental mechanisms shown in the data28,29,50.

Investigation of the meal effect on plasma ethanol dynamics
The process of the model formulation (Fig. 1b) of the meal effect on
plasma ethanol is showcased here (Fig. 3). Four different hypotheses (H1-
H4) of the interaction between ethanol and the food were formulated
based on known interactions33–36,55. The hypotheses are illustrated in Fig.
3a, as the following: H1) alcohol is encapsulated by food and released
when the food is degraded, H2) the food slows down the passing of liquid
to the intestines, H3) in addition to slower passing of liquid to the intes-
tines, gastric alcohol dehydrogenase is present and the activity is upre-
gulated by the food, and H4) processing of the food increases blood flow,
and by extension the enzyme effect in the liver. All these hypotheses
describe the rate of gastric emptying of foodstuff as reported by Tougas
et al.56. These hypotheses were all evaluated against the estimation data
(Tχ2 = 226.4) and only H1 could sufficiently describe data with a χ2 test of
187.0 (the χ2 test statistic for the other hypothesis was: H2 = 816.41,
H3 = 844.49, and H4 = 280.05). Additionally, hypotheses H2-H4 had
issues in explaining qualitative behaviors. Here, the model behaviors of
H1-H4 are shown with a subset of the estimation data (Fig. 3b), more
specifically data presented by Jones et al. on alcoholic drinks in combi-
nation with food33. The model behavior of H2 fails to slow down the
release of ethanol from the stomach sufficiently as the simulated BAC
overshoots the data. H3 slows down the initial appearance of BAC too
much resulting in a peak that is delayed in relation to the peak shown in
thedata.H4 speeds up the eliminationof ethanol in the blood toomuch, as
the clearance of BAC is too fast in the second half of the time series. Only
H1 can sufficiently slow down the release of ethanol from the stomach to
match the behavior described by the estimationdata. Thus, thefinalmodel
formulation includes the meal effect on plasma ethanol, as
described by H1.

The model can describe plasma ethanol data from a wide range
of real-life drinking scenarios
In addition to describing the gastric emptying data, the model can
simultaneously describe plasma ethanol from a wide variety of experi-
mental studies33,37,51,52,57. The studies included in the model estimation
dataset introduced different types of perturbations. Firstly, the study by
Mitchell et al.51 presents the plasma ethanol dynamics after consumption
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of three different beverages with the same total alcoholic content (Beer:
1 L, 5.1 v/v%; Wine: 0.42 L, 12 v/v%; Spirit: 0.26 L, 20 v/v%). Here, one
can observe that increasing alcohol concentration results in a greater
BAC amplitude. The model can describe the Mitchell et al. data (Fig.
4a–c). Secondly, the model can fit both BAC data with and without food
(Fig. g, h, and Fig. a–f, respectively). Themeal effect results in a decreased

amplitude of the BAC profile. This is observed in the data presented by
Jones et al. and Kechagias et al.33,37, in fasting subjects (Fig. 4d, e) and a
fed state (Fig. 4g, h). Lastly, Fig. 4f shows the model agreement to breath
alcohol concentration (BrAC) data from a study by Javors et al.12. In
summary, the model describes several different types of real-life
drinking scenarios.
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Fig. 1 | Overview of the physiological processes and use cases, modeling frame-
work and mathematical model representation. a Short overview of the physiolo-
gical process that the model describes. Ethanol enters the body via the stomach,
where already a small amount can enter plasma. Via the stomach emptying the
ethanol enters the intestine. Here, most of the ethanol is taken up via absorption.
Most of the ethanol is metabolized in the liver, and a small amount is excreted via
renal pathways. In the liver, ethanol is converted into acetaldehyde via three oxi-
dative pathways governed by the enzymes:Alcohol dehydrogenases (ADH), catalase,
and cytochrome P450 2E1 (CYP2E1). Acetaldehyde is further converted into acetate

and then acetyl-COA. There also exist non-oxidative pathways, responsible for a
miniscule amount of ethanol breakdown, e.g., into phosphatidylethanol (PEth).
Following, the blood alcohol concentration (BAC), or the breath alcohol concentra-
tion (BrAC) is measured. These physiological processes can be described using a
mathematical model, a physiologically-based digital twin. The digital twin can be
used for several use cases such as: for education and awareness, in self-reporting and
monitoring of alcohol consumption, and as a tool to support the combination of
AUDIT and PEth reports. b Schematic over the modeling approach. c Schematic
showing the model structure, for a detailed description see material and methods.
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Themodel can describe products of hepatic ethanolmetabolism
Included in the estimation dataset was experimental data describing the
plasma concentrations of derivatives of oxidative andnon-oxidative ethanol
breakdown pathways (Fig. 5a). The data used to represent the oxidative
pathways was plasma acetate levels after beverage consumption presented
by Sarkola et al. Themodel agreement to the acetate data is shown (Fig. 5b).
To represent the non-oxidative breakdown, data describing plasma PEth
from a study by Javors et al.52 was included in the estimation dataset. The
PEth data included both short-term and long-term data of PEth con-
centration changes.

Firstly, for the short-term, the model agrees with data of PEth
levels, presented as the change from the baseline value, directly after
beverage consumption (Fig. 5c). Secondly, for the long-term, the model
describes both the fast PEth plasma dynamics directly after beverage
consumption (Fig. 5d, left), and subsequent slower long-term break-
down over several days (Fig. 5d, right). For the long-term dataset, Javors
et al. presented the absolute PEth plasma concentration (ng/mL) for a
group consisting of participants with different drinking schemes, low
and high consumption, (Fig. 5d). As the low consumption group has
more subjects (n = 16), the combined group (n = 27) is mostly

Fig. 2 | Model agreement to gastric emptying data. The solid line is the best model
fit, the shaded area is the model uncertainty, the blue boxes are the mean experi-
mental data value with the error bars indicating the standard error of the mean
(SEM). The model (solid lines) describes the clearance of different beverages from
the stomach (blue markers with error bars). In all experiments, the beverage was
consumed over 3 min and was constituted of the following: (a) 500 mL containing

0 kcal, (b) 500 mL containing 220 kcal, (c) 500 mL containing 329 kcal, (d) 500 mL
containing 220 kcal, (e) 500 mL containing 329 kcal, (f) 150 mL containing 0 non-
ethanol kcal, (g) 200 mL containing 200 kcal, and (h) 600 mL containing 200 kcal.
The important factors in controlling gastric emptying are (1) the caloric content of
the beverage does not show a significant difference (b vs. d and c vs. e), and 2) the
total caloric content is important rather than the density of calories (g, h).
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influenced by the behavior of this group. The combined data are thereof
a weighted mean behavior.

In summary, the model was capable of simultaneously describing data
from different ethanol derivatives, in addition to the already shown agree-
ment to gastric-emptying and plasma ethanol dynamics. In the following,
the model is utilized to make predictions of scenarios not present in the
estimation dataset.

The model can predict independent validation data
The model was used to make predictions of the behavior of different
attributes, and these predictions were validated against experimental data
that was not used during model training (Fig. 6). The model predicts the
gastric emptying rate following consumption of; 150mL water (Fig. 6a),
150mL glucose liquid containing 67 kcal (Fig. 6b), and 400mL glucose
liquid containing 200 kcal (Fig. 6c). These data were presented by Okabe
et al.29,50.As seen in the estimationdata (Fig. 2), the total caloric content is the
driving factor in decreasing the rate of gastric emptying. Predictions of
plasma ethanol following consumption of an alcoholic beverage are com-
pared with experimental data from Sarkola et al.53 (Fig. 6d).

Themodel could alsopredict data froma studyby Javors et al.52, of both
BrAC (Fig. 6e) and the behavior of PEth levels as an increase from the
baseline value (Fig. 6f), following consumption of an alcoholic beverage.
Furthermore, the model could also predict sex-specific experimental data
from Frezza et al.54, of drinks consumed in combination with food for
women (Fig. 6g) andmen (Fig. 6h).One can observe that themodel predicts

a greater peak BAC amplitude for women. The participants in the Frezza
et al. studywere given the samedose of alcohol and the same size of themeal.
Since the details of the drink composition were unreported, we show the
model predictions using both a fixed drink concentration of 12.5 v/v% (Fig.
6g, h, gray area) and with different drink concentrations ranging from 5 to
20 v/v% (Fig. 6g, h, pink area).

Themodel can be used to predict the effect of long-term alcohol
use on PEth and differences in alcohol patterns
To highlight model usability, we used the validated model to highlight two
different areas of use. The first example was to show how short-term
drinking habits affect the long-term values of the alcohol consumption
marker PEth (Fig. 7b, d). The second example highlights model persona-
lization and how sex-specific anthropometric differences affect plasma
ethanol dynamics in different drinking scenarios (Fig. 7a, c).

To investigate howwell themodel could assess the effect of long-term
drinking on PEth levels, the model was used to simulate the PEth study
presented by Kechagias et al.24. In the study, 44 participants drank wine
(13.5–14 v/v%) every evening (16.0–16.5 g ethanol, 1.3 standard drinks
for women, and 32–33 g ethanol, 2.7 standard drinks for men) for
3 months and their PEth levels were measured after 3 months. We
simulated the study for both females and males with different anthro-
pometric data (body mass index (BMI) 18, 22.5, 25, 28.5, and 32 kg/m2).
This was done by varying the participant’s weight. For females, we
simulated the consumption of one glass of wine per day together with a

Fig. 3 | Investigation of the meal effect on plasma ethanol dynamics. a Four
different hypotheses were designed that could be explained to describe the meal
effect on plasma ethanol dynamics. H1: food can encapsulate ethanol while present
in the stomach. While the food is processed, ethanol is released back into the sto-
mach. H2: the contents of the stomach (including the liquid) are held longer due to
the food needing to be processed. H3: gastric alcohol dehydrogenase is introduced
and is upregulated by food in addition to the contents of the stomach being held
longer. H4: the processing of the food recruits more blood to the gastric area and

therefore the alcohol transport to the liver is upregulated – increasing the activity of
liver alcohol dehydrogenase. b The different model hypothesis was implemented
and fitted to the estimation data. Here, model simulation of each respective model
(H1-H4) are compared with the experimental data from Jones et al.33, which is one of
the included datasets in the estimation data. When evaluating the hypothesis
behavior to all the estimation data using a χ2 test statistic—only H1 describes the
experimental data sufficiently well.
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dinner containing 920 kcal (40% of recommended daily intake for a
medium-active young adult female, in Sweden). This simulation was used
to predict the daily plasma ethanol levels (Fig. 7a) as well as the long-term
PEth levels after three months of daily drinking (Fig. 7b). For males, we
simulated the consumption of two glasses of wine together with a dinner

containing 1120 kcal (40% of recommended daily intake for a medium
active young adult male, in Sweden). This simulation was used to predict
the daily plasma ethanol levels (Fig. 7c) aswell as the long-termPEth levels
after three months of daily drinking (Fig. 7d). We compared the model-
predicted long-term PEth values with the PEth range presented by

Fig. 4 |Model agreement to ethanol data for various interventions.The solid line is
the best model fit, the shaded area is the model uncertainty, the blue boxes are the
mean experimental data value with the error bars indicating the standard error of the
mean (SEM), and individual data points are marked with a “x”. The alcohol was
consumed orally throughdifferent beverages in various alterations (a) 1 L of 5.1 v/v%
beer (133 kcal) was consumed over 20 min, (b) 0.42 L of 12.5 v/v%wine (56 kcal) was
consumed over 20min, (c) 0.26 L of 20 v/v % spirit blend (43 kcal) was consumed
over 20min, (d) 0.14 L of 20.0 v/v % spirit blend (51 kcal) over 15min, (e) 0.15 L of

20 v/v % spirit blend (53 kcal) was consumed over 5 min, (f) 0.71 L of 6.5 v/v % spirit
blend (247 kcal) was consumed over 15min, (g) 0.14 L of 20.0 v/v % spirit blend
(51 kcal) over 15 min after a meal constituted of 700 kcal, (h) 0.15 L of 20 v/v % spirit
blend (53 kcal) was consumed over 5 min after eating a meal constituted of 760 kcal.
In (a–f) the beverage was consumed in a fasting state, and in (g, h) in combination
with food. In (a–e) and (g, h) absolute change of BAC was measured and in (f)
absolute change in breath alcohol concentration (BrAC) was measured.
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Kechagias et al. (Fig. 7b, d). The model predicted PEth values for all
subjects, with different anthropometrics, to be within the reported range
of the Kechagias et al. measured values (0.007–0.17 μmol=L).

To illustrate thepersonalization capabilities of themodelwehavemade
simulations of eithermale (Fig. 7a) or female (Fig. 7c) anthropometrics,with
varying BMI between 18 and 32 kg/m2. The consumption of one glass of
wine, by females, yields a plasma ethanol level (11mg/dL, BMI 18), which is
less than half of that of males consuming 2 glasses of wine (27mg/dL, BMI
18 kg/m2). This is explained by the relative higher ability of the meal
(920 kcal for females and 1120 kcal for males) to lower the plasma ethanol
for females. Asmales consumedouble the volumeofwine the slightly bigger
meal cannot slowdown the appearance of ethanol in plasma as effectively as
in the case of the females, resulting in a higher response. For both females
and males, we observe a lower peak value with increasing body size (higher
BMI value).

As proof of concept, we also showcase the model’s capability of pre-
dicting different weekly alcohol-consumption and the corresponding PEth
levels (Fig. 7e, f). For a specific individual, defined via sex and BMI, the
model can predict the long-term PEth levels for continuous drinking of
various drinking schedules, corresponding to different amounts of weekly
intake (g/week) (Fig. 7e). Using this approach, the model can predict a
trajectory (gradient area) of what range of PEth levels correspond to which
weekly consumption. Clinically, such a trajectory could be compared to a
reported value (Fig. 7f, yellow dot), giving an indication if patients fail to
accurately self-report consumption (Fig. 7f). In Fig. 7gwe showas a concept,
the further integration into an easy-to-use eHealth application, which we
will create in the future.

In summary, our validated model can simulate long-term alcohol
consumption and predict clinically relevant levels of PEth. Using the model,
highly personalized predictions based on anthropometric data could also be
predicted, showing the effect on different types of drinking habits. Themodel
could thus be used in a wide variety of applications to assess the level of
alcohol consumption e.g., to validate reported consumption via an AUDIT.

Discussion
Amathematicalmodel that can be personalized into a physiologically-based
digital twin for alcohol consumption capable of simulating real-life drinking
scenarios was developed. The model could simultaneously find agreement
to (i) gastric emptying data for beverages with different volumes and caloric
content (Fig. 2), (ii) plasma ethanol in response to various drinking chal-
lenges (with andwithout food consumed) fromdifferent individuals (Fig. 4),
and (iii) data for markers of metabolized ethanol (Fig. 5).

Furthermore, we validated the model by making predictions of inde-
pendent data consisting of gastric emptying, BAC, BrAC, and PEth (Fig. 6).
Four different hypotheses ofmeal effects on plasma ethanol were also tested
(Fig. 3), where only one hypothesis agreed with the experimental data (H1).
The validated model was then used to investigate the effect of anthropo-
metric differences on the short-term plasma ethanol dynamics (Fig. 7). The
model predicts the long-term dynamics of PEth in response to daily con-
sumption of alcohol (Fig. 7). These long-term predictions accurately
describe the 90-day end of trail PEth range reported by Kechagias et al.24.
(Fig. 7). Finally, we investigate model sensitivity subjected to the model
parameters (Supplementary Information “1 Parameter identifiability“) and
the model inputs (Supplementary Information “2 Analysis of the impact of
the model inputs on ethanol dynamics”).

The model was trained and validated to a total of 10 different study
datasets, which include different conditions, such as; different beverage
volumes, ethanol content, food consumption or fasting, and sex-specific
parameters (Figs. 2, 4–6)24,28,29,33,37,50–54. Anoverviewof thedata is given in the
Supplementary Information, “4 Usage of experimental data”. The model
could explain all estimation andvalidationdata for both ethanol andPEth to
a satisfactory level (Figs. 4, 6). Furthermore, the model also describes the
plasma acetate level following an alcoholic drink (Fig. 5b), with data from
Sarkola et al.53. Altogether, the model sufficiently describes the ethanol
dynamics following consumption of beverages of different volumes, con-
centrations, time of consumption, in combination with food, and for indi-
viduals with different anthropometric data. With this model, we can make

Fig. 5 | Model agreement to derivatives of
oxidative and non-oxidative ethanol breakdown
data for various interventions. The solid line is the
bestmodelfit, the shaded area is themodel uncertainty,
the blue boxes are the mean experimental data values
with the error bars indicating the standard error of the
mean (SEM). The alcohol was consumed orally
through different beverages. a Schematic of the oxida-
tive and non-oxidative breakdown pathways.
b Estimated acetate from consumption of 0.28 L of
12.4 v/v % spirit blend (85 kcal) was consumed over
15min. c Estimated change of phosphatidylethanol
(PEth), from the baseline value, from consumption of
0.71 L of 6.5 v/v % spirit blend (247 kcal) over 15min.
dWeighted mean behavior PEth from two groups
consuming different beverages. Group 1 (n = 16) con-
sumed 0.72 L of 3.25 v/v % spirit blend (251 kcal) over
15min. Group 2 (n = 11) consumed 0.71 L of 6.5 v/v%
spirit blend (247 kcal) over 15min.ThecombinedPEth
is the weighted mean behavior for both groups.
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Fig. 6 | Model predictions compared to data for various interventions. The solid
line is the bestmodel fit, the shaded area is themodel uncertainty, thewhite boxes are
the mean experimental data values with the error bars indicating the standard error
of the mean (SEM)—the white box indicates that the data was used for model
validation. a gastric emptying of 150 mL water, (b) gastric emptying of 150 mL
glucose liquid containing 67 kcal, (c) gastric emptying of 400 mL glucose liquid
containing 200 kcal, (d) plasma ethanol levels from consumption of 0.48 L of 10.0
v/v % spirit blend (149 kcal) over 15 min, (e) breath ethanol levels from consump-
tion of 0.72 L of 3.25 v/v % spirit blend (251 kcal) over 15 min, (f) change of PEth

levels, from the baseline value, from consumption of 0.72 L of 3.25 v/v % spirit blend
(251 kcal) over 15 min, (g) plasma ethanol levels in women after consumption of
0.20 L of 12 v/v% spirit blend (36 kcal) over 10 min after eating ameal constituted of
555 kcal, (h) plasma ethanol levels in men after consumption of 0.24 L of 12 v/v %
spirit blend (43 kcal) over 10 min after eating a meal constituted of 555 kcal. The
pink uncertainty area in (g, h) was obtained by varying the drink concentration
between 5 and 20 v/v%, as the details of the drink composition were not reported by
Frezza et al.54.
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further simulation-based investigations of the impact of non-measured
drinking series (see e.g. Supplementary Fig. 22), to unravel the influence of
non-alcoholic drinks on the BAC profile.

While the model passed a χ2-test for all estimation data, it is worth
pointing out some aspects of the data that the model did not fully capture.
Most notably, the model did not describe the observed amplitude in BAC

data for some datasets. For instance, from the studies byKechagias et al. and
Jones et al., different BAC dynamics (Figs. 4d, e, g, h) were reported for the
same consumption of 0.3 g ethanol/kg bodyweight for subjects with similar
anthropometrics33,37. As all the drinking challenges presented to the model
are fitted with the same set of parameter values, the model is not able to
account for differences in BAC behavior for similar drinking challenges
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(Fig. 4d, e). It was also observed that the model does not quite capture the
dynamics of the peak in the data for beer and spirit consumption (Fig. 4a, c)
fromMitchell et al.51. This could be due to us estimating the caloric content
incorrectly (see Supplementary Information “3 Input estimations”), which
in turn could make the gastric emptying rate of beer too fast and spirit too
slow. Also, in the case of the beer data (Fig. 4a), the potential effect of
carbonation on the rate of gastric emptying58–60 could potentially influence
gastric emptying to allow better plasma ethanol dynamics for the beer data.

In the validation data, “food-spirit woman” Fig. 6g, the model predicts
that the BACprofile is too low comparedwith the experimental data. This is
likely a result of the assumption of the drink ethanol concentration and the
anthropometric data (see Supplementary Information “3 Input estima-
tions”). Anthropometric data such as BMI, and subsequent blood volume,
impacts the ethanol dynamics61 (Supplementary Fig. 21). As a number of
anthropometric data were not reported by Frezza et al.54, we chose to use the
anthropometrics of an average woman in Italy for the year 1990. Further-
more, nodrink ethanol concentrationwas given, andwe, therefore, assumed
a drink concentration of 12.5 v/v% (Fig. 6g, gray area). These anthropo-
metric values could be too large, resulting in a larger total blood volume, or
the drink concentration could be different, which would then explain the
low BAC profile. As these values could not be validated, we chose to stay
consistent with the approach of estimating missing anthropometrics, even
though these values might have been slightly incorrect. Instead, we varied
the drink concentration between reasonable concentrations for alcoholic
drinks (5-20 v/v%) since the concentration was not given (Fig. 6g, pink
area). Given these alternative assumptions of the drink concentration, the
model simulation can describe the experimental data.

Furthermore, individual, and sex-specific differences in the expression
andphenotypes of ethanolmetabolizing enzymes exist and could contribute
to differences in ethanol plasma dynamics. The breakdown of ethanol is
primarily enabled by enzymes such as Alcohol dehydrogenases (ADH),
catalase, and cytochrome P450 2E1 (CYP2E1). There are some sex-specific
differences in the expression of hepatic ADH62, also there are differences in
ADH expression in individuals fromdifferent genetic backgrounds63. These
aspects were not included in the presented model but could be included in
the future. By including this type of genetic and sex-specific differences, and
other covariates, we could further improve the model adaptability when
describing new cohorts.

Unlike previous models, our model has integrated gastric emptying
dynamics to account for the influence of the caloric content, drink volume,
and meal effect on gastric emptying42,64–66. While newer models have been
developed to include dynamics of the stomach, they are limited to only
considering alcoholic drinks43,45 and not the consumption of drinks paired
with food. This makes them less usable when describing a real-life setting,
where alcoholic drinks are oftenmixed with food and non-alcoholic drinks.

Several different hypotheses regarding the meal effect on gastric emp-
tying were tested. The effect of meals on plasma ethanol dynamics has been

discussed in various studies33–36,55 and the literature is not unanimous on the
underlyingmechanism. Therefore, four different hypotheses (H1-H4) of the
meal effect were introduced (Fig. 3a). In the first hypothesis (H1) food can
encapsulate ethanol while present in the stomach33. As the food is processed
ethanol can be released back into the stomach and thus again become
available for future absorption in the intestines. In the second hypothesis
(H2) the contents of the stomach (including the liquid) are held longer in the
stomach, due to the need for the food to be processed. In the thirdhypothesis
(H3), H2 is extended to also include gastric ADH33. In the final hypothesis
(H4) the processing of the food recruitsmore blood to the gastric areawhich
leads toboth a faster uptake of alcohol and clearancedue to increased activity
of liver ADH35,36,55. These hypotheses were tested by evaluating their agree-
ment with the experimental data. It was found that only H1 had an accep-
table agreement with data, and H2-H4 had to be rejected (Fig. 3b).

While the rejected hypotheses show that the corresponding mechan-
isms were not sufficient to explain the available experimental data, the
mechanisms might still exist. For example, studies have shown that a meal
reduces the amplitude and increases the clearance of plasma ethanol at least
when ethanol is administrated intravenously36,55. In this situation, additional
mechanisms like the ones in H4 might be required. The reason is that
consumed food will have limited physical interaction with alcohol in the
stomach, likelymeaning that the processing of the food recruitsmore blood
to the liver. However, intravenous infusion of alcohol is not normal
drinking, which the model is aimed at describing. Since these mechanisms
were not needed for describing the estimation data, the mechanisms from
H4were not included in the finalmodel. Another hypothesis we tested (H3)
was the presence of gastricADH, as there is a consensus thatADH is present
in the stomach35,67–69. In summary, these mechanisms were not able to
describe the experimental data and they were therefore not included in the
final model. The final model corresponds to H1 and can describe all the
available experimental data sufficiently well.

In agreementwith theworkofOkabe et al.28,29, the total beverage caloric
amountwas used as the driving factor for gastric emptying. This concept has
been applied also in previous studies32,70,71. This has beendebated sinceother
parameters are thought to be important such as; viscosity, osmolality, and
nutrient composition31,71,72.However, the effect of these factors appears to be
outweighed by the total amount of non-ethanol calories, whichwas the only
effect included in the model driving the liquid gastric emptying. Moreover,
gastroparesis and the glucose control systemhave previously been identified
as important factors for gastric emptying in diabetic patients73,74.

Some simplifications of the gastric emptying rate of foodstuff were
required. Firstly, the caloric density for the different macronutrients (car-
bohydrates, protein, and fat) was not differentiated. There are reported cases
ofmacronutrients affecting theplasmaethanol level differently33,34.Due to the
small difference and macronutrient information not being consistently
reported in studies, it was not included in the framework. Secondly, there are
additional variables describing themeal that were not included in themodel.

Fig. 7 | Model simulations of long-term plasma ethanol and PEth dynamics.
Model simulations of the short-term ethanol dynamics with the corresponding long-
termprogression of PEth levels for two different drinking patterns, one formales and
one for females, in the three-month long drinking intervention presented in
Kechagias et al.24. A simulation approach for determining alcohol consumption is
also shown. a Model simulated ethanol dynamics during consumption of one
standard glass of wine (15 cl, 13.5 v/v %) together with a meal consisting of 920 kcal
by the female participants. The simulations were done for participants with different
bodymass indexes (BMIs) (18–32, light-to-dark purple lines). bModel simulation of
phosphatidylethanol (PEth) for females consuming one standard glass of wine every
day for 90 days and for the five different body sizes, BMIs 18–28. The error bar
represents the PEth range reported in Kechagias et al.24. cModel simulated ethanol
dynamics during consumption of two standard glasses of wine (30 cl, 13.5 v/v %), in
one sitting, together with a meal consisting of 1120 kcal, by the male participants.
d The corresponding model simulation of PEth progression for males consuming
two standard glasses of wine every day for 90 days and for the five different body
sizes, BMIs 18–32. The error bar represents the reported PEth range by Kechagias

et al.24. e The simulation approach for determining alcohol consumption based on a
given PEth level is shown. For a specific individual, defined via sex and BMI, the
model also allows for simulations of different drinking patterns which can corre-
spond to different amounts of alcohol consumed per week (1 to 1000 g/week). The
weekly consumption could then be simulated for a longer time such that the steady-
state PEth levels for the specific drinking schedule could be acquired. f Using this
approach for different amounts of consumption, themodel could predict a trajectory
for what weekly consumption corresponds to which PEth level range. The simulated
trajectory is shown as the gradient area. The yellow line is an example of a predicted
miss-match in self-reporting and model simulated alcohol consumption for a spe-
cific PEth level. The yellow dot indicates the corresponding PEth levels
(1000 ng/mL) of a self-reported consumption of 200 g/week ethanol. By comparing
with the area, we can infer that the self-reporting was faulty, as such PEth levels
require at least a consumption of ~400 grams/week. g Here the future aim to inte-
grate the physiologically-based digital twin into an eHealth application is shown,
with possible use in clinics tomotivate treatment compliance for patients with heavy
drinking problems.
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One such variable is the viscosity of food products, although the caloric
content has been shown to have a larger impact than the viscosity on gastric
emptying75. The caloric contentwas therefore chosen to be the driving factor.

Thirdly, another simplification is the potential ability of different food
items to physically hinder ethanol absorption after consumption. The exact
timingof the largest effect of foodon the absorption isnot known,whichwas
reported by Franke et al.76. Although the effect is reported, there is not
enoughdataon themechanisms to quantify the effect on the plasma ethanol
rate of appearance. Lastly, an additionalmeasure that could be considered is
the fiber content of a meal. Including the fiber content in the model would
allow for distinguishing between “liquid” and “solid”meals, and by exten-
sion the rate of gastric emptying of solids77,78. However, it has been reported
that the emptying rate of liquids remains mostly unaffected in the presence
of foodstuff30,79. The fibrous contents has previously not been reported to
influence the ethanol rate of appearance in plasma, and it was not included
here. In summary, there are a lot of reported mechanisms in literature, but
they were not needed for the model to be able to explain data sufficiently
well. Additional datawould be needed to include these othermechanisms in
our digital twin.

Simulation-based models, such as physiologically-based digital twins
have not yet been explored in the context of eHealth applications aimed at
reducing dangerous drinking habits. A variety of eHealth and smartphone
applications have shown tentative promise as tools for reducing alcohol
consumption11,80–82. These applications mainly focus on either supporting,
altering, or educating individuals about their drinking habits.More similar to
the presented simulation-basedmodel there are studies investigating eHealth
applications and interventions integrating the use of eBAC calculators18–21,83.
In a study by Gajecki et al.83, they did not observe an impact on drinking
behavior using a smartphone application showing real-time assessment of
eBAC, and simulations of predicted eBACduring a future drinking eventwas
tested in a cohort of non-treatment-seeking university students. However, a
later study by the same group Berman et al.18, showed a positive effect using
the same application in a group of hazardous drinkers from a similar type of
cohort of university students. Furthermore, some studies have shown that the
BAC calculator ‘apps’ commercially available, are unreliable, and there is a
need for more evidence-based applications20,21. One critical element we
believe is required for BAC-based applications to have an impact, is to con-
nect short-term drinking to long-term consequences, something the
physiologically-based digital twin is able to provide.

The validated model could predict PEth levels based on short-term
consumption habits (Fig. 7b, d). The use of plasma PEth as a biomarker for
alcohol consumption is widely used in clinical practice, sometimes as a
validation to self-reporting systems (such as AUDIT)84,85. As a proof-of-
concept, simulations of long-term PEth levels in response to different
drinking patterns and anthropometrics were preformed (Fig. 7 b, d), as well
as a tool to evaluate self-reported weekly drinking in combination with
measured PEth levels (Fig. 7 e–g).

In the future, a personalizedmodel capable of predicting the long-term
PEth trajectories given short-term drinking habits might prove useful for
physicians working with patients, where distinguishing between moderate,
and heavy drinking is important, e.g., liver-transplant patients. In the future,
we would like to further validate the long-term PEth model, as well as
expanding the ethanol degradation pathways in the model by adding
alcohol consumption driven changes of CYP2E1 expression. With the
intention to show how long-term exposure might lead to dysregulated
metabolism and alcohol related liver disease (ALD).

There aremathematicalmodels that describe different processes related
to alcohol consumption, each with their strengths and limitations. The first
kind is the gastric emptying models, which currently do not detail any
interactions with the BAC profile following consumption of alcohol38–40. On
the other hand, the existing BAC models41–45 fail to account for real-life
drinking situations, (i) timing differences of gastric emptying, (ii) the
influence of beverage caloric content, and (iii)meal effect on theBACprofile.

A second kind of already existing model type, are the minimal plasma
ethanolmodels for determining kinetic parameters of ethanol dynamics41,42.

While these minimal plasma ethanol models can be used to estimate BAC,
theyarenot usefulwhenhandling varying and combined ingestionof drinks
and food. In contrast, there exist models of ethanol dynamics that include
more detailed descriptions of the physiology43,44. While these models
describe the whole-body context of ethanol, they do not include a
mechanistic description of gastric emptying and food consumption. A
model byMoore et al.45 includes the dynamics of ethanol absorption and the
effect of a meal in non-human primates but it lacks a mechanistic
description of gastric emptying, and can thus not explain the different
gastric emptying rates of drinkswith different caloric content. Furthermore,
the model by Moore et al. does not describe long-term markers like PEth.

Lastly, there are also models connecting short-term ethanol dynamics
to PEth. In a study by Simon46, theWidmarkmodelwas extended to include
a description of plasma PEth dynamics. While presenting a framework for
long-term PEth estimation, this work is unable to account for the real-life
drinking scenarios previously listed.

Future versions of our model could include disease progression or
long-term regulatory changes of hepatic enzymes. There already exist
mathematical models describing the expression of CYP2E186, but not in the
context of increased alcohol consumption. Moving beyond ODE models
there exist other approaches. Artificial intelligence (AI) and machine
learning (ML) solutions are powerful methodologies to extract useful
information from data, which could be applicable in the context of alcohol
consumption. There exist studies using AI approaches in the context of
detecting harmful alcohol use87.While powerful, these tools require a critical
amount of data. Furthermore, the ML/AI models are black-box models, in
contrast to the mechanistic ODE models which are based on mechanistic
hypotheses. To train theODEmodels, less data is necessarywhencompared
to when training ML/AI models. Furthermore, since the parameters in the
ODE models often have a direct biological interpretation, the models are
easier to personalize.

There are some model limitations and delimitations that should be
discussed. First, we consider limitations in the data, and then limitations in
the model. All data used in this project was acquired via digitization
(extracted from figures in peer-reviewedpublications), and thus a negligible
difference from the actual data might exist. However, the qualitative
information in thedataset is the same. In addition to this, someof the studies
did not report anthropometrical data of the subjects or details regarding
several aspects of the experimental setup e.g., reported drinking time. Also,
for some datasets mean values were calculated in a mixed cohort including
both female and male participants52,53. To take this into consideration we
opted to estimate the mean blood volume based on the sex distribution.
Also, for some studies the caloric content was not reported, leading to some
assumptions regarding the consumed beverage. The caloric content is of
importance as the gastric emptying module is the major contributor to the
ethanol rate of appearance in plasma. For details regarding assumptions see
Supplementary Information “3 Input estimation”. A delimitation for the
model is the oxidative breakdown of ethanol, where we currently only
includedata for acetatedynamics. Future versionsof themodel could extend
this by e.g., also including acetaldehyde. Finally, the last limitation is that our
digital twin does not have real-time data integration via wearable sensors.
There are different types of digital twins, andonly someof themrequire real-
time data integration47–49. We have not implemented such real-time inte-
grations. Thus, the study presents an ‘offline’ digital-twin, or the offline
portion of the calibration of a digital twin.

We herein present a physiologically-based digital twin, including a
gastric emptying module, capable of describing plasma ethanol dynamics
for a wide variety of drinking scenarios. The twin also connects short-term
alcohol consumption to the long-term progression of the clinical marker
PEth. We believe that the digital twin, with further validation and integra-
tion of more personalization (such as genetic variations in enzyme
expression), could serve as a valuable clinical tool. For example, to test
reported alcohol consumption in an AUDIT questionnaire, by evaluating
PEth values in a personalized manner. Furthermore, this digital twin could
function as a first simulation-based eHealth application of real-life drinking
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scenarios, with the goal of educating people about their alcohol drinking
habits and their long-term effects.

Methods
Within this section, all the equations in the model are detailed. The final
model is shown in Fig. 1c, and the equations are given in Eqs. (2)–(8).

Before detailing the equations, an example of an ordinary differential
equation (ODE) is described. A typical ODE used in this work looks similar
to Eq. (1).

d
dt xð Þ ¼ �vaþ vb

va ¼ ka � x
vb ¼ kb � input

ð1Þ

Here, x is a state in themodel, va and vb are reaction rates,ka and kb are
rate-determining parameters, and input is some input to the state. In other
words, the amount of the state x is decreased by the reaction va with the
speed ka and increased by the reaction vb with the speed kb depending on
some input input.

Model description of the gastric emptying dynamics
The model describes the gastric emptying dynamics using the volume and
the caloric content (Eqs. 2,3).While drinking, the variable volDrinkPerTime
increases the volume (VolStomach) and the caloric content (KcalLiquid) in the
stomach. The liquid in the stomach is then emptied using the reaction r2.As
the gastric emptying is driven by the total amount of (liquid) kcal the
KcalLiquid state is emptied over time. As the volume of the stomach can’t be
equal to zero (zero division), Volchange is used to reach a zero value. Here,
SSvol is a variable that defines the minimal volume of the stomach, set to
0.001 dL. The kcal consumed via food is set via the initial condition to the
stateKcalSolid if a meal is consumed. Themeal is emptied from the stomach
using rKcalSolid. This reactionwas originally presented byTougas et al.

56, as a
time-dependent expression, see Eq. (4). To make it compatible with the
ODE format, we derived the derivative of the expression and scaledwith the
total consumed kcal to express the retention of kcal instead of%-retention,
see rKcalSolid in Eq. (3). As the emptying is dependent on the total amount of
solid kcal,maxKcalSolid keeps track of the initial (maximal) amount of meal
kcal. On consecutive meals, the consumed kcals are added tomaxKcalSolid,
andKcalSolid. Furthermore, timeElapsed keeps track of the time passed since
the last meal (in minutes). Finally, kcalSolidvol transforms the kcal into a
volume using the average caloric energy density of 4 kcal/g and assumes a
density of 1 g/ml (dividing with 100 to go to dL).

d
dt ðVolstomachÞ ¼ þ volDrinkPerTime � 10� r2
d
dt ðKcalLiquidÞ ¼ þ volDrinkPerTime � kcalLiquidPerVol

� rKcalclearance
d
dt ðKcalSolidÞ ¼ � rKcalSolid

ð2Þ

Volchange ¼ VolStomach � SSvol

r2 ¼ V max � Volchange
VolChange þ km

� �
� e�

max 0;Kcalliquidð Þ
kKcal

rKcalSolid ¼ maxKcalSolid � 1:88 � 0:010
0:010 �max 0; timeElapsed

� �� �0:86
e� 0:010�max 0;timeElapsedð Þð Þ1:86

rKcalclearance ¼ KcalLiquid � kKcalclerance
kcalSolidVol ¼ max 1;KcalSolidð Þ

4�100

ð3Þ

GastricRetention ¼ e� 0:010�timeElapsedð Þ1:86 ð4Þ

Model description of the ethanol dynamics
In the stomach, ethanol can interactwith consumedmeals.EtOHPool allows
for concentration-driven encapsulation of ethanol into the food (rPoolIn
binds and rPoolOut releases ethanol), effectively making it unavailable for
the stomach while encapsulated. As the KcalSolid is digested the volume of
the pool decreases and ethanol is released back into the stomach again.
When the kcals from food (KcalSolid) have been fully digested (i.e. reached
zero), maxKcalSolid and EtOHPool were also set to zero. With the con-
sumption of alcoholic beverages (EtOHConc > 0), the concentration of
ethanol in the stomachConcEtOHStomach is increased via rDrinkEtOH. Here,
concDrink converts EtOHConc (v/v%) to mg/dL, using the conversion
factor 789.1mg/dL. The ethanol can be encapsulated (rPoolIn) or released
from the encapsulation (rPoolOut). As the liquid is leaving the stomach (r2)
the ethanol mass is introduced to the intestines MassEtOHIntestines. From
the intestines, ethanol can be absorbed into the blood/plasma BloodConc
via r3 and be eliminated from the body (r4). In the blood/plasma com-
partment, the ethanol can be eliminated via enzymatic activity in the liver
r5. The model includes the ADH (vADH) and CYP2E1 (vCYP2E1) path-
ways. As ethanol is treated as a concentration, there is a volume scaling
between the blood volume (VBlood) and the liver volume (VLiver).

d
dt EtOHPool

� � ¼ þrPoolIn � VolStomach � rPoolout
d
dt ConcEtOHStomach

� � ¼ rDrinkEtOH � rPoolIn þ rPoolOut
VolStomach

d
dt MassEtOHIntestines

� � ¼ þr2 � ConcEtOHStomach � r3� r4
d
dt ðBloodConcÞ ¼ þ r3

VBlood
� r5 � VLiver

VBlood

ð5Þ

Here, rPoolIn and rPoolOut control the diffusion of ethanol into the food
pool. This diffusion can only occur if there is food in the stomach. Thus, if
there is no food (ifKcalSolid <= 1) or the total volume of the stomach is small
(VolStomach < 2·SSVol), rPoolIn and rPoolOut are set to zero. The equations for
rPoolIn and rPoolOut, if there is both food and sufficient total volume in the
stomach, are given in Eq. (6).

rPoolIn ¼ max 0; ConcEtOHStomach � EtOHPool
kcalSolidVol

� �� �
� kPoolIn

rPoolOut ¼ EtOHPool � kPoolOut
ð6Þ

The other reaction rates used in the ODEs in Eq. (5). are described in
Eq. (7).

rdrinkEtOH ¼ concDrink� ConcEtOHStomach

� � � volDrinkPerTimeVolStomach
� 10

concDrink ¼ EtOHConc � 789:1
r3 ¼ MassEtOHIntestines � k3
r4 ¼ MassEtOHIntestines � k4
r5 ¼ vADH þ vCYP2E1

vADH ¼ VmaxADH �BloodConc
kmADH þBloodConc

vCYP2E1 ¼ VmaxCYP2E1�BloodConc
kmCYP2E1 þBloodConc

VBlood ¼

0:3561 � height3 þ 0:03308 � weight þ 0:1833 � 10;
if sex ¼ 0

0:3669 � height3 þ 0:03219 � weight þ 0:6041 � 10;
if sex ¼ 1

8>>><
>>>:

VLiver ¼ 15

ð7Þ

Model description of the ethanol metabolites
As ethanol is metabolized by ADH and CYP2E1 it is creating acetate
PlasmaAcetate via r5. Acetate is in turn cleared with r6. While present in
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plasma, ethanol canalsobe converted toPEthvia rPEth. PEth is cleared from
the plasmausing rPEthclearance. Additionally, the PEth canbe bound to lipids
in the body and be temporarily stored. PEth is bound via rPEthbound and
released via a concentration gradient rPEthrelease.

d
dt PlasmaAcetate
� � ¼ r5� r6

d
dt PEthð Þ ¼ rPEth� rPEthbound þ rPEthrelease � rPEthclearance

d
dt PEthBound
� � ¼ rPEthbound � rPEthrelease

r5 ¼ vADH þ vCYP2E1

r6 ¼ PlasmaAcetate � k6
rPEth ¼ kPEth � BloodConc

rPEthclearance ¼ kPEthOut � PEth
rPEthbound ¼ kPEthBind � PEth
rPEthrelease ¼ max 0; kPEthrelease � PEthBound � PEth

� �� �
ð8Þ

Initial values of the model
It was assumed, in the model, that the person has no residual alcohol in the
system. Furthermore, it was assumed that the model starts in a fasted state,
with no kcal in the system, and that the residual volume in the stomach was
0.001 dL. However, the basal levels of PEthwas allowed to be within a range
for the experiments containing PEth, because Javors et al. reported levels of
PEth beyond 052. In this case, the initial values for the states PEth and PEth
bound need to be calculated from the estimated basal PEth levels and the
parameter values, see equation Eq. (8). Otherwise, the initial values of PEth
and PEthBound were assumed to be 0. The initial values used are given in
Table 1.

Model parameter values
This section gives the optimal parameter values for the connected model
when estimated to the estimation dataset (columns θest

∗). Furthermore, the
bounds used in the optimization for all parameters are also given (columns
lower bound and upper bound), see Table 2. kmADH and kmCYP2E1 were
given bounds reported in the literature88. Lastly, the minimum and max-
imum parameter values for the model uncertainty are given (columns CI
lower bound and CI upper bound).

Model inputs
This section lists the input values the model needs, see Table 3. A detailed
overview of all the inputs provided to themodel for each dataset is provided
in the Supplementary Information, see “3 Input estimations”.

Model outputs
This section lists the model outputs and the scaling performed. yAcetate is
divided with 10.2 convert the concentration unit mg/dL to mM. yBrAC
rescales the plasma concentration of ethanol BloodConc into breath con-
centration using a linear correlation observed between BrAC and BAC
measurements by Skaggs et al.89. The additional division by 1000 is to go
from g tomg.

yEtOH ¼ BloodConc
yAcetate ¼ PlasmaAcetate � 1

10:2

yBrAC ¼ 0:840 � BloodConc1000 þ 0:00367

yPEth ¼ PEth

yGastricVolume ¼ VolStomach

ð9Þ

Modeling process
This model is the result of the iterative modeling cycle depicted in Fig. 1b.
The model, the ODEs given above, aims to describe data and prior
knowledge available, to beused as a reliable analytical tool of the system.The

process of achieving such a model is tightly linked to the available experi-
mental data, where data is used to evaluate and validate the model’s beha-
vior. In this work, previously published data was used to describe gastric
emptying (liquid and food), the rate of appearance of ethanol in the blood
following consumption of beverages and food, and the rate of appearance of
PEth following different drinking schemes. These data were divided into an
estimation group, see Supplementary Table 26, whichwas used to train and
evaluate themodel, see Figs. 2–5, and a validation group, see Supplementary
Table 27, which was used to validate the model see Figs. 6, 7.

Using the evaluation data, themodel behaviorwas iteratively evaluated
and with each iteration, the model structure was adjusted against new data
and literature knowledge. An example of this is given in Fig. 3, where four
different hypotheses (H1–H4) of the food and ethanol’s rate of appearance
in the blood were tested. After some iterations and the inclusion of more
experimental data, H2–H4 could be rejected due to insufficiently describing
the estimation data. Eventually, the model can satisfyingly showcase the
tested properties, given the evaluation dataset. Thereafter, the model is
evaluated against the validation data, which does not influence the model
behavior during the evaluation phase. A reliable model should be able to
describe newdata of similar scenarios from new cohorts. A validatedmodel
can be used tomake predictions of untested, or unmeasurable, experimental
designs. Such a prediction is given in Fig. 7b and Fig. 7d, where themodel is
used to evaluate the PEth profile following daily consumption of wine, and
the intermediate PEth profile fromdays 1-89 is predicted. As this prediction
cannot be validated, unless a new experiment is carried out, the strength of
the prediction is dependent on the evaluation and validation phase of the
model design.

Parameter estimation
Allmodel analysis and simulationwere performed in bothMATLAB2022b
using the system biology toolbox90. For model parameter estimation the
extended scatter search (ESS) algorithm implemented in theMEtaheuristics
for systems biology and bIoinformatics Global Optimization (MEIGO)
toolbox was used91.

Parameter estimation was done by quantifying the model perfor-
mance, using the model output ŷ to calculate the traditional weighted least
squares cost function defined as

V θð Þ ¼
X
i

X
k

X
j

yi;k;j ti;k;j
� �

� ŷi;k;j ti;k;j;θ
� �

SEMi;k;j ti;k;j
� �

0
@

1
A

2

ð10Þ

SEMi;k;j ¼
σ i;k;jðti;k;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni;k;jðti;k;jÞ

q ð11Þ

where, θ is the model parameters; yi;k;jðti;k;jÞ is the measured data from a
study i, and from on type of measure k, at time point j; ŷi;k;jðti;k;j; θÞ is the
simulation value for a given experiment setup i, type ofmeasure k, and time
point j. SEM is the standard error of themean, which is the sample standard
deviation, σ i;k;j ti;k;j

� �
dividedwith the square root of the number of repeats,

ni;k;jðti;k;jÞ at each time point. The value of the cost function, V θð Þ, is then
minimized by tuning the values of the parameters, typically referred to as
parameter estimation.

To evaluate the new model, a χ2-test for the size of the residuals, with
the null hypothesis that the experimental data have been generated by the
model, and that the experimental noise is additive and normally distributed
wasperformed. In practice, the cost function valuewas compared to a χ2 test
statistic,To

χ2. The test statistic χ
2 cumulative density function,

To
χ2 ¼ F cdf�inv

χ2 1� α; vð Þ ð12Þ

whereF cdf�inv
χ2 is the inverse density function; and α is the significance level

(α = 0.05, was used) and v is the degrees of freedom, which was equal to the
number of data points in the estimation dataset (193 in total, all timepoints
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over all experiments). In practice, the model is rejected if the model cost is
larger than the χ2-threshold (To

χ2).

Uncertainty estimation
The model simulation uncertainty was gathered as proposed in92 and is
given in the Supplementary Information, see “1 Parameter identifiability”.
The model uncertainty is estimated by dividing the problem into multiple
optimization problems, with one problem per model property (p̂). In this
work, the property p̂ corresponds to either a simulation at a specific time

point j, ŷ tj;θ
� �

, or a parameter value θ̂m. Each problem is solved by max-

imizing and minimizing the property value, while satisfying that the cost
(V θð Þ) is below the χ2-threshold (To

χ2). By identifying the maximal and

minimal value of themodel property (p̂max and p̂min), theboundary values of
the property uncertainty area are found. Mathematically, this operation for
the parameter values is formulated as,

minimize θ̂m ð13aÞ

subject to V θð Þ <To
χ2 ð13bÞ

where θ̂m is minimized to find the lower value of the parameter, while also
satisfying that the cost (V θð Þ) is below the χ2-threshold (To

χ2). To find the
upper bound of the uncertainty area the problem is maximized instead. In
practice, the constraint (Eq. 13b) can be relaxed into the objective function
as a L1 penalty term with an offset if V θð Þ >To

χ2.

minimize θ̂m þ penalty ð14aÞ

where

penalty ¼ θ̂m

��� ���þ θ̂m;0

��� ��� � 1þ V θð Þ � To
χ2

� �� �
; if V θð Þ >To

χ2

0; otherwise

(

ð14bÞ

Here, the penalty is scaled with the initial value of the parameter, θ̂m;0
and the offset between the cost and the χ2-threshold (V θð Þ � To

χ2). To
maximize the parameter θ̂, and thus finding the upper bound of the
uncertainty area, the problem is solved as a minimization problem. This is
done by substituting θ̂m with �θ̂m in the objective function. To solve the
problem for the model simulation at a specific time point, ŷ tj; θ

� �
, the

problem is formulated as follows,

minimize ŷ tj; θ
� �

þ penalty ð15aÞ

Table 1 | Initial values

State Initial values

VolStomach 1.0000 · 10−3

KcalLiquid 0.0000

MaxKcalSolid 0.0000

KcalSolid 0.0000

timeElapsed 0.0000

EtOHPool 0.0000

ConcEtOHStomach 0.0000

MassEtOHIntestines 0.0000

BloodConc 0.0000

PlasmaAcetate 0.0000

PEth estimated

PEthBound estimated

Table 2 | Parameter values and parameter estimation bounds

Parameter θest∗ lower bound upper bound CI lower bound CI upper bound

kPEth 1.4599·104 1 × 10−5 1 × 105 6.3284 × 103 1.5557 × 104

kPEthout 1.5695·102 1 × 10−5 1 × 105 6.0869 × 101 2.5765 × 102

kPEthbind 1.7416·104 1 × 10−5 1 × 105 8.8872 × 103 2.3679 × 104

kPEthrelease 5.8081·10−3 1 × 10−5 1 × 105 9.7018 × 10−4 1.1545 × 10−2

kPoolIn 1.0155 · 101 1 × 10−5 1 × 105 4.8248 × 10−1 2.8715 × 103

kPoolOut 4.0227·10−1 1 × 10−5 1 × 105 2.0875 × 10−3 7.4358 × 10−1

Vmax 2.1545·103 1 × 10−5 1 × 105 1.2948 × 103 2.4439 × 103

km 1.7793·104 1 × 10−5 1 × 105 1.6709 × 104 2.1276 × 104

kKcal 1.5843·102 1 × 10−5 1 × 105 1.1600 × 102 2.4235 × 102

k3 8.4172·101 1 × 10−5 1 × 105 5.4902 × 101 8.4172 × 101

k4 8.3001·102 1 × 10−5 1 × 105 7.1554 × 102 9.5080 × 102

k6 1.3079·10−1 1 × 10−5 1 × 105 6.4762 × 10−2 1.0000 × 1020

VmaxADH 9.6381·10−1 1 × 10−5 1 × 105 7.4245 × 10−1 9.6381 × 10−1

VmaxCYP2E1 1.7148·10−1 1 × 10−5 1 × 05 2.4640 × 10−3 1.7366 × 10−1

kmADH 9.2200·100 9.22 × 10−1 9.22 × 100 6.7451 × 100 1.0220 × 101

kmCYP2E1 3.6880·101 3.688 × 101 4.61 × 101 1.2489 × 100 3.7118 × 101

kKcalclearance 6.1804·10−3 1 × 10−5 1 × 105 1.0000 × 10−20 1.4981 × 10−2

Table 3 | Input information to the model

Input variable Description

EtOHConc Ethanol concentration

volDrinkPerTime Consumed volume per minute

kcalLiquidPerVol Amount kcal per liter beverage

sex Male (1) or Female (0)

weight Weight in kg

height Height in meter
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where

penalty ¼ ŷ tj; θ
� ���� ���þ ŷ tj; θ

� �
0

��� ��� � 1þ V θð Þ � To
χ2

� �� �
; if V θð Þ >To

χ2

0; otherwise

(

ð15bÞ

Here, the penalty is scaled with the initial value of the parameter,

ŷ tj; θ
� �

0
, and the offset between the cost and the χ2-threshold

(V θð Þ � To
χ2). To maximize the model simulation at time point j, (ŷðtj; θÞ,

and thus finding the upper bound of the uncertainty area, the problem is
solved as aminimization problem. This is done by substituting ŷðtj; θÞ with
�ŷðtj; θÞ in the objective function.

The experimental data used for the modeling
In thiswork, experimental datawas collected fromawide variety of different
published studies and used for model estimation and validation. This sec-
tion will detail information about the studies included. Additionally, this
information is condensed into two tables, one for estimation data and one
for validation data, in the Supplementary Information “3 Usage of experi-
mental data”.

Three studieswere included concerning the gastric emptyingof liquids,
all being works of Okabe et al. The first study describes the emptying rate of
500ml liquids containing different amount of calories28. The second study
investigated how the total volume affects the emptying of isocaloric
beverages29. The third study investigates howcalories fromethanol compare
to non-alcoholic calories in isometric volume beverages.

A variety of studies observing the BAC levels were included, some
including the impact of a meal in combination with an alcoholic beverage.
Mitchell et al. investigated the effect of consuming different alcoholic bev-
erages with the same total alcoholic content51. Sarkola et al. investigated an
additional variant of alcoholic beverage53. Kechagias et al. and Jones et al.
both compared the BAC levels after consumption of an alcoholic beverage,
with andwithout having ameal33,37. Lastly, the work of Frezza et al. presents
sex-specific differences in the BAC levels after consumption of an alcoholic
beverage, where the ethanol contents were determined by the subjects’ body
weight, in combination with a meal54.

Several studies measuring either acetate or PEth after ingestion of
alcohol were included. Firstly, in a study by Sarkola et al. the appearance of
blood acetate after consumption of a single alcoholic drink53 was reported.
Secondly, the time series of BrAC and PEth were published by Javors et al.
for two drinks with different alcoholic content52. Javors et al. also presented
PEth measurements over a two-week period. Lastly, Kechagias et al. pre-
sented a studywhere the PEth levelweremeasuredbefore and after a 30-day
period of daily consumption of wine24.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data used for model estimation and validation can be accessed from the
original publications.We provide all model related data files and parameter
values in our public code repository, https://doi.org/10.5281/zenodo.
10104891.

Code availability
All related scripts and datafiles are provided in our GitHub repository
https://github.com/willov/ameta with a permanent copy available at
Zenodo (DOI: 10.5281/zenodo.10104890). Additionally, a user interface for
the model, through a Streamlit application, is provided. This application is
available from our GitHub repository https://github.com/willov/alcohol_
app with a permanent copy available at Zenodo (https://doi.org/10.5281/
zenodo.10054299).
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