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Groundwater vulnerability to pollution in 
Africa’s Sahel region
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Protection of groundwater resources is essential to ensure quality and 
sustainable use. However, predicting vulnerability to anthropogenic 
pollution can be difficult where data are limited. This is particularly true 
in the Sahel region of Africa, which has a rapidly growing population and 
increasing water demands. Here we use groundwater measurements of 
tritium (3H) with machine learning to create an aquifer vulnerability map 
(of the western Sahel), which forms an important basis for sustainable 
groundwater management. Modelling shows that arid areas with greater 
precipitation seasonality, higher permeability and deeper wells or water 
table generally have older groundwater and less vulnerability to pollution. 
About half of the modelled area was classified as vulnerable. Groundwater 
vulnerability is based on recent recharge, implying a sensitivity also 
to a changing climate, for example, through altered precipitation or 
evapotranspiration. This study showcases the efficacy of using tritium to 
assess aquifer vulnerability and the value of tritium analyses in groundwater, 
particularly towards improving the spatial and temporal resolution.

Groundwater resources remain an important but poorly under-
stood and managed resource for water security and sustainable  
development throughout much of Africa1–4. In the western Sahel and 
Sudanian savanna regions (roughly the area of west Africa between 
the humid coastal zone and the Sahara Desert), groundwater can be 
expected to take on ever-increasing importance due to stresses on water 
security brought about by climate change5 and some of the world’s 
highest population growth rates6. However, the supply of groundwa-
ter represents just one aspect, with water quality playing an equally 
important role in determining the sustainable use of groundwater.

To help protect groundwater resources now and in the future, 
aquifer vulnerability mapping7,8 is undertaken to better understand 
the aquifers and areas that are more susceptible to contamination from 
pollution at the surface9,10. Attention can then be focused on the human 
activities taking place in these areas11. However, recent recharge also 
indicates the possibility of the aquifer regularly being recharged, with 
implications for the sustainable use of the aquifer12–14.

One common way of estimating aquifer vulnerability has been to 
evaluate and combine various parameters such as water-table depth, 
aquifer matrix grain size and climatic conditions at well locations to 
define a theoretical aquifer vulnerability index15,16, with the DRASTIC  
method16 being widely used, which incorporates seven different  
hydrogeological parameters. While this type of approach can be 
applied effectively where there is a high concentration of wells, it is 
less useful where there are large spatial gaps in the data7.

Another possibility is to consider the presence of elevated concen-
trations of nitrate as an indicator of surface pollution having reached 
the aquifer. Nitrate is a rather conservative compound that is abundant 
in fertilizer and animal manure, as well as untreated human waste, that 
infiltrates into the ground17 and is relatively easily measured. However, 
this assumption does not apply to non-agricultural areas or those  
currently less impacted by human activities.

An alternative that avoids the drawbacks of these methods 
is to assess groundwater vulnerability using measurements of the 
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relevant for the UN Sustainable Development Goals, in particular, 
indicator 6.3.2 on ambient water quality.

Results
After associating the localized amounts of tritium found in modern 
precipitation25 with each of the 1,234 groundwater measurements in 
the available dataset42, 50 measurements containing at least 130% of 
the 3H concentration in modern precipitation were removed (Methods). 
As these removed data points were distributed throughout the entire 
study area and do not appear to be clustered, they are probably not 
due to unique local conditions. Thresholds of 1/2, 1/3 and 1/4 of the 
values of 3H in precipitation were then applied to the groundwater 
measurements and are plotted in Fig. 1. (This and subsequent maps 
were prepared using ArcGIS43 and/or QGIS44.) The threshold of one-half 
of modern precipitation was generally used for all subsequent analyses 
and modelling.

Kendall rank correlations between the proportion of high 3H con-
centrations that is greater than one-half of 3H in modern precipitation 
and binned averages of other in situ physicochemical parameters as 
well as spatially and numerically continuous environmental parameters 
are listed and plotted in Supplementary Table 1 and Supplementary 
Figs. 1 and 2.

Tritium prediction model
A random forest (RF) model of tritium in groundwater in the Sahel was 
created using spatially continuous predictor variables, achieving an 
average area under the curve (AUC) of 0.80 on the validation data (other 
performance statistics in Supplementary Table 2). Partial dependence 
plots (PDPs) of the final and thus most constraining variables are shown 
in Supplementary Fig. 3. The aquifer vulnerability map produced by 
applying the model to the predictor variables is displayed in Fig. 2. This 
vulnerability map shows a tendency for more northerly areas (towards 
the Sahara Desert) to be less vulnerable, whereas more southerly areas 
(towards the humid east–west coastal zone) are generally more vulner-
able. The importance of the 11 predictor variables used in the model 
is shown in Supplementary Fig. 4, with elevation coming out on top.

Modelling with depth and deuterium excess
Two additional RF models were created, each with an additional in situ 
parameter, depth and deuterium excess (D-excess), but keeping all 
spatially continuous model parameters the same as for the main model 
result in Fig. 2. The variable importance and PDPs of depth and D-excess 
are shown in Supplementary Fig. 5. Although the PDPs of both of these 
in situ parameters show a clear relationship with the presence of high 
tritium values in groundwater and depth having an importance about 
twice that of the next most important variable (Supplementary Fig. 5), 
overall neither of these models performed any better than the original 
model based on spatially continuous parameters alone. That is, the 
AUC, kappa and balanced accuracy of the model with depth were 0.80, 
0.44 and 0.72 and for the model with D-excess were 0.80, 0.44 and 0.73, 
whereas the geospatial model (Fig. 2) had, if anything, a slightly better 
performance of 0.80, 0.45 and 0.73.

To further explore the depth dependence of the model, two sepa-
rate models were also created using tritium concentrations from 0 to 
50 m depth (n = 361) and >50 m depth (n = 337) (Supplementary Fig. 6). 
These models likewise used the same predictor variables as in the main 
model (Fig. 2 and Supplementary Fig. 6a). Note that the total number 
of 3H concentration data points with depth information (n = 698; Sup-
plementary Fig. 6b) is considerably lower than that of the full dataset 
(n = 1,184; Fig. 1) used for the main model (Fig. 2).

Sensitivity of tritium threshold
While the main groundwater vulnerability (tritium) model in Fig. 2 is 
based on half of the concentration of 3H in local precipitation (Meth-
ods), further RF classification models were produced using tritium 

radionuclide tritium (T or 3H) in groundwater12. Tritium has a half-life 
of 4,500 days (12.3 years)18 and is produced naturally in trace amounts 
in the stratosphere through the interaction of high-energy cosmic rays 
and nitrogen as well as through human activities involving nuclear 
reactions. Essentially all tritium immediately gets oxidized into triti-
ated water (HTO) and incorporated into the water cycle19. As tritium 
generally does not get produced below the surface of Earth (except for 
negligible amounts in some granites20,21), its presence in groundwater 
generally derives from rainwater infiltration and represents an ideal 
tracer of infiltration and groundwater recharge as well as surface water 
and groundwater interactions22,23.

Due to cosmic charged particles being drawn towards Earth’s 
poles, tritium gets formed in the stratosphere at greater concentrations 
at higher latitudes. It can subsequently enter the troposphere and water 
cycle particularly via the springtime breakdown of the tropopause at 
30°–60° N, known as the ‘spring leak’, as well as through the formation 
of large cumulonimbus clouds that penetrate the stratosphere, also 
predominantly in the Northern Hemisphere24. Variations in the spatial 
distribution of naturally produced tritium in the troposphere also 
result from dilution by the oceans19 and the presence of continents25, 
over which tritium is recycled through evapotranspiration and precipi-
tation and not returned to the oceans. Due to the minute concentra-
tions in which it is found, tritium is reported in terms of tritium units 
(TU), defined as one tritium atom to 1018 hydrogen atoms.

In addition to the natural production of tritium through cosmic 
rays, human-created nuclear reactions contribute considerably to 
the amount of tritium present on Earth. In particular, above-ground 
thermonuclear tests have made the largest contribution of tritium to 
the troposphere and water cycle. From October 1952 through 1962, 
atmospheric tests by the United States, Union of Soviet Socialist 
Republics and United Kingdom injected about 600 kg into the atmos-
phere, and limited tests by China and France during 1967–1980 added 
about another 20 kg (ref. 26). However, due to tritium’s half-life of just  
12.3 years, most of this ‘bomb’ tritium has now decayed such that 
the tritium now found in global precipitation is dominated by that 
produced naturally22,27,28, although this amounts to roughly the total 
tritium from present-day localized anthropogenic sources25,29–32. 
Anthropogenic sources of tritium may also exist locally, for example, 
from nuclear facilities or landfills33.

Whether aquifer vulnerability is estimated on the basis of a derived 
index or a tracer already present in the environment, such as nitrate 
or tritium, these vulnerability ratings are typically available only at 
point locations. To assess groundwater vulnerability at other loca-
tions where no direct data exist, interpolation among the available 
point data can be conducted. For example, Kriging has been used to 
create a map of groundwater 3H concentrations in South Africa, also 
incorporating some additional environmental parameters34. However, 
such spatial extrapolation is not feasible where few to no data points 
exist. A recent approach to overcome this is the use of machine learn-
ing with spatially continuous predictor variables, as has been previ-
ously carried out for various geogenic groundwater contaminants35–37. 
Other studies have applied this technique to map the concentration of 
nitrate in Germany38, the United States39,40 and the African continent41 to  
represent exposure to anthropogenic influences. However, such spatial 
machine-learning modelling has never before been applied with the 
concentration of tritium as the target variable, which has the advan-
tage of being part of the water molecule itself and is thus distributed 
throughout the water cycle.

In this work, we use machine learning with groundwater 3H data 
and environmental predictor variables to develop an aquifer vulner-
ability map of the western Sahel. Further analysis is conducted with 
additional stable-isotope and other physicochemical data. The purpose 
of the prediction map is to help guide efforts to protect vulnerable 
groundwater resources as well as highlight areas with recent aqui-
fer recharge, which has implications for their sustainable use and is 
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thresholds that were set by dividing the modern local tritium concen-
tration in precipitation by either three or four (Supplementary Fig. 7).

Sub-regional models
In addition, smaller-scale vulnerability maps were created (Supple-
mentary Fig. 8), focusing on the areas in and around Senegal, Burkina 
Faso and Lake Chad, which lie at the intersection of Cameroon, Chad, 
Niger and Nigeria. The same modelling procedure as for the Sahel-wide 
model (also defining high 3H by dividing the local 3H concentration 
in precipitation by two) was undertaken, incorporating only the 3H 
data points from within these areas. Further details are provided in 
Supplementary Table 3.

Predictor variables
Figure 2 shows that aquifer vulnerability tends to be lower in more 
northerly areas and higher in more southerly areas. This may be due, 
for example, to higher aridity (Fig. 3a), which is greatest in the north 
of the study area (Supplementary Fig. 9e). Similarly, the sandy subsoil 
of northern areas (Supplementary Fig. 9i) is negatively associated with 
high tritium (Supplementary Fig. 3), and the fraction of absorbed pho-
tosynthetically active radiation (associated with wetter environments) 
is positively associated with high tritium (Supplementary Fig. 3).

Elevation
For elevation, the most important variable in the model (Supplemen-
tary Fig. 4), the PDP indicates higher tritium for elevations above about 
150 m (Fig. 3b). However, in this case, the relationship may be more 
coincidental than causal as the hydrogeologically relevant climatic 
and geological properties happen to coincide with sharp distinctions 
in elevation. The lithology classes most associated with the presence of 
high and low tritium concentrations are metamorphics and siliciclastic 
sedimentary rocks, respectively (Fig. 3c), which also correspond to 
the dominance of these rock types in Burkina Faso and Senegal (Sup-
plementary Fig. 9h). Considering the available data, the metamorphic 
rocks are associated with a higher permeability, whereas the siliciclastic 

sedimentary rocks have a lower permeability45. As such, higher perme-
ability offers a more intuitive explanation for the presence of younger 
groundwater than does elevation. Likewise, high tritium concentrations 
are associated with lower aquifer porosity (Fig. 3d), which is associated 
with the metamorphic rocks (Supplementary Fig. 9h).

Depth
It is reasonable to expect that deeper water should be older and that 
the spatially continuous variable of depth to water table46 would be an 
important predictor of tritium in groundwater. However, this parameter 
was not among the most important variables during the automated 
recursive feature elimination, and its correlation with high tritium 
proved to be weak and not statistically significant (Supplementary 
Fig. 2). This may be due to the global parameter of water-table depth46 
not being well determined in the Sahel region. Nevertheless, the actual 
reported depth42, which may represent the vertical mixing and sampling 
of more than one aquifer, does show a strong negative correlation 
with high tritium (Fig. 3e), and its inclusion as an in situ parameter in a 
separate model confirms this. (Note that this model could not be used 
to create a vulnerability map due to the depth information being point 
data and not spatially continuous.) Despite depth having the greatest 
model importance and a strong inverse relationship with high tritium 
concentrations (Supplementary Fig. 5a), the overall model perfor-
mance remained unchanged. This indicates that the variables used in 
the main model (Fig. 2) are able to constrain the distribution of tritium 
very well, despite all being surface parameters.

The 3H concentration data containing depth information (n = 698) 
were split into subsets of ≤50 m depth (n = 361) and >50 m depth 
(n = 337) and used to make two respective models (Supplementary 
Fig. 6c,d). Although the performance of these models (AUC = 0.72 for 
≤50 m depth and AUC = 0.83 for >50 m depth) differs from that of the 
main model result (AUC = 0.80), the patterns of high and low vulner-
ability are very similar, with more-vulnerable areas in the south, includ-
ing Burkina Faso and surrounding areas, and less-vulnerable areas in 
the north, including most of Senegal (Supplementary Fig. 6a,c,d). 
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Fig. 1 | Ranges of relative concentration of tritium in groundwater in the 
Sahel region of Africa (n = 1,184). These concentrations were measured 
between 2010 and 2016 as part of the completed International Atomic Energy 
Agency RAF7011 project42, which was independent of this study (frequency of 
measurements by year in the upper right). Tritium is classified here in relation 

to the estimated modern background (bg) concentration in precipitation from 
the most recent global model25. The area in grey indicates the extent of the 
area modelled. The countries containing data are labelled with the following 
abbreviations: BF, Burkina Faso; BN, Benin; SN, Senegal; TG, Togo.
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This indicates that despite the main model incorporating data from 
all depths, it is generally valid for shallower depths (<50 m) as well as 
greater depths (>50 m). Incidentally, the available data are representa-
tive of the depths typically used in each respective area42. Furthermore, 
the more extensive area of applicability (AOA) of the main model (Sup-
plementary Fig. 6a versus Supplementary Fig. 6c,d) is probably a con-
sequence of it using more data (n = 1,184).

D-excess
Another analysis was carried out with the parameter D-excess (Meth-
ods), which is known to be strongly correlated with precipitation 
recycling in the tropics47. In this analysis, D-excess had relatively low 
importance, although its PDP shows a clear inverse relationship with 
high tritium (Supplementary Fig. 5b). These results suggest that more 
cycles of precipitation and re-evaporation before infiltration lead to 
greater groundwater residence times in the region. This is consist-
ent with the lower modelled vulnerability in the drier, northern areas 
of the study region, which are also further from West Africa’s humid 
east–west-trending coastal zone. Furthermore, the two water isotope 
components of the D-excess calculation, δD and δ18O, are also corre-
lated strongly (τ ≈ 0.8) with the exceedance of the locally determined 
threshold of high tritium (Supplementary Fig. 1). Aside from being 
expected from a hydrological perspective, this confirms that the 
method of determining the binary (high and low) values of tritium 
is effective.

Despite being point data, the strong dependence of tritium on 
depth as well as the association with D-excess may still be captured 
by some combination of the other spatially continuous predictor 
variables, which can act as proxies for these parameters. For example, 
greater aridity will generally lead to a lower water table, and higher 
elevations in West Africa are found further from the coast (Supplemen-
tary Fig. 9f), allowing for the possibility of more cycles of precipitation 
and evaporation before groundwater infiltration.

Choice of tritium threshold
To test the sensitivity of the modelled aquifer vulnerability to how the 
tritium threshold is set, the main model (Fig. 2) was compared with the 
similarly created model variants that use tritium cut-offs determined 
by dividing the local tritium concentration in precipitation by 3 or 
4 (Supplementary Fig. 7). Although the model performance stayed 
approximately constant with each incremental increase in the divi-
sor from 2 to 3 to 4 (increasing the prevalence of high-tritium cases; 
Supplementary Table 2) and the three models appear quite similar, it 
must be taken into account that they were created using differently 
balanced binary datasets. That is, by setting the threshold for high 
tritium to successively lower levels, the proportion of high 3H cases 
increased from 0.40 for dividing by two (main model result in Fig. 2) 
to 0.50 for dividing by three and to 0.57 for dividing by four. To evenly 
compare these three models with each other, their binary results are 
plotted in Supplementary Fig. 10 using a cut-off corresponding to the 
model probability at which sensitivity equals specificity, where the 
model is equally effective at predicting low and high values. Viewed 
another way, the high predictions represent younger, more-vulnerable 
groundwater, and low predictions represent older, less-vulnerable 
groundwater. Even after standardizing the models in this manner, the 
choice of threshold within the considered range ultimately appears to 
have little bearing on the resulting aquifer vulnerability maps. Hence, 
there is only a slight increase in high-vulnerability areas as smaller 
tritium concentrations are considered.

Sub-regional aquifer vulnerability maps
Unsurprisingly, the areas of higher confidence or AOA in the model are 
found where more groundwater tritium data exist, particularly in and 
around Senegal, Burkina Faso and Lake Chad. The sub-regional models 
created with only the data from each of these areas (Supplementary 
Fig. 8) were tuned specifically to the conditions present in each area. 
In general, this should lead to an improved result for each sub-region 

Senegal

Guinea
GB

SL

LB

GA

Côte d’lvoire Ghana

Burkina Faso

TG
BN

Cameroon
Central African Rep.

Nigeria

MaliMauretania20° N

10° N

0° N

10° W

N

10° E 20° E

Chad

Sudan

Outside AOA

Most
vulnerable

Least
vulnerable

Aquifer vulnerability

Probability of high 3H
0 0.2 0.4 0.6 >0.8

Niger

SS

500 km2500

Fig. 2 | Aquifer vulnerability map of the Sahel region of Africa based on 
using a tritium threshold in groundwater of one-half of that in local 
precipitation. The corresponding performance statistics are listed in 
Supplementary Table 2. The faded, striped areas are outside of the model’s AOA 

(Methods) and considered less reliable. Stars indicate the national capitals. BN, 
Benin; GA, The Gambia; GB, Guinea–Bissau; LB, Liberia; SL, Sierra Leone; SS, 
South Sudan; TG, Togo.

http://www.nature.com/natsustain


Nature Sustainability

Article https://doi.org/10.1038/s41893-024-01319-5

as the model need not account for potentially differing relationships 
between the predictor and target variables that may exist in other areas. 
However, if there are insufficient data to properly characterize the 
different environments within a given region, data from other areas 
may be able to help fill these gaps if the conditions elsewhere happen 
to be similar.

In the case of the three sub-regions modelled separately here, 
there is no clear change in the extent of the AOA of each sub-region 
between the main model result (Fig. 2) and the independent mod-
els (Supplementary Fig. 8). Nevertheless, each of the sub-regional  
models appears to be more detailed and exhibit greater variability in 
the modelled probabilities and their distribution.

Comparison with nitrate
Nitrate is often used as an indicator of aquifer vulnerability as it is 
abundant in fertilizer and animal manure and gives a strong indica-
tion of anthropogenic influence. In addition to higher concentrations 
of nitrate being associated with some health issues, it may also sug-
gest the presence of hazardous organic compounds found in pesti-
cides and herbicides applied in conjunction with fertilizer. As such, 
the very strong Kendall rank correlation of 0.90 between nitrate and 
high tritium concentrations (Fig. 3f) confirms the efficacy of using 
tritium as an indicator of aquifer vulnerability. However, tritium offers 
the added advantages of being an integral part of the water molecule 
(and therefore the water cycle) and decaying at a rate that is compat-
ible with the timescales of concern for aquifer vulnerability. It can 
therefore indicate the vulnerability of areas that have not yet been 
exploited or contaminated. Furthermore, nitrate has geogenic as well 
as anthropogenic sources, which can complicate an assessment of 
anthropogenic influence and aquifer vulnerability. Conversely, the 
background concentrations of tritium in the atmosphere are now close 
to natural levels (following the atmospheric thermonuclear weapons 
tests from mainly the 1950s and 1960s), which makes it an unambiguous 

indicator of recent groundwater recharge and therefore a useful means 
for assessing vulnerability.

Implications of aquifer vulnerability
To better understand the implications of the main aquifer vulnerability 
map (Fig. 2), its binary version (Supplementary Fig. 10a) was combined 
with population density and cropland (Fig. 4). Specifically, the areas 
of high aquifer vulnerability (high tritium) in Supplementary Fig. 10a 
were selected with the estimated population density in 2020 based 
on a ‘middle-of-the-road’ shared socioeconomic pathway48 as well as 
croplands as indicated by a global land-use model49.

This analysis shows that the activities associated with high-density 
populations in, for example, southern Mali, Burkina Faso and northwest 
Nigeria pose a threat to underlying unconfined aquifers (Fig. 4). Like-
wise, extensive agricultural areas above vulnerable aquifers are found 
in northeast Ghana, northern Benin, Nigeria and northern Cameroon 
and the area immediately surrounding Lake Chad (Fig. 4b). Included 
in both maps, but obscured somewhat from view, are the areas of 
modelled high aquifer vulnerability that are considered less reliable 
(outside the AOA). However, should the model prove to be accurate in 
these areas, the aquifers of many more areas in the region could also 
be vulnerable to pollution, particularly in Nigeria. To better character-
ize this risk, further groundwater assessments in these areas (ideally 
including tritium) would be necessary.

Discussion
The tritium prediction map (Fig. 2) may be used to estimate the vul-
nerability of aquifers to surface pollution. That is, the presence of a 
higher tritium concentration indicates recent aquifer recharge and 
thus surface water that infiltrates more rapidly into the subsurface. 
Hence, contaminants such as organic or other chemicals used in indus-
trial applications, untreated sewage or fertilizers (nutrients) along 
with pesticides and herbicides applied in agricultural activities can 
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The full set of correlation plots is shown in Supplementary Figs. 1 and 2.
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seep more easily from the surface to the aquifers (understanding that  
different liquids with different physical properties may travel at dif-
ferent rates in the subsurface). Furthermore, the presence of recent 
recharge means that changes to the rate or timing of recharge could 
occur in the face of climate change, which may alter evapotranspiration 
patterns and bring more or less precipitation at different intensities and 
at different times of the year, all of which may affect aquifer recharge. 
Aside from highlighting where aquifers can be easily contaminated 
by human activities, the aquifer vulnerability map shows locations 
of relatively recent recharge, although not the rate of recharge50,51. As 
such, the sustainability of groundwater resources, the balance between 
extraction and recharge, must also be considered in deciding to what 
degree a groundwater resource should be exploited.

Limitations and assumptions
As with any modelling, there are various sources of uncertainty, such 
as the accuracy of the predictor and target variables. In this case, a 
loss of fidelity in the spatially continuous predictors may also have 
ensued as a consequence of approximations and estimations in fit-
ting data to a given spatial resolution. This may result in inaccuracies 
of the values of the predictor variables at given geographical coordi-
nates. Likewise, a lower density of points of measured groundwater 
tritium generally leads to a less constrained, more uncertain model 
in those areas. Although the AOA calculation helps delineate where a 
given model can be reasonably applied, a lack of sampling points may 

nevertheless result in considerable target variance (tritium) in the study 
area not being captured by the model. The modelling of groundwater 
tritium across the Sahel has also involved certain assumptions and 
simplifications due to the lack of reliable depth information across 
the study area. This has necessitated the use of surface parameters, 
which nevertheless have proved to be effective proxies in constraining 
the distribution of tritium.

The groundwater samples may represent a mixture of groundwa-
ter from aquifers at different depths and/or a combination of different 
ages. One aspect of the latter is that some nuclear bomb-era tritium may 
be incorporated in a given sample and obscure the relationship with 
respect to modern background tritium concentrations. For this reason, 
groundwater samples with tritium concentrations clearly exceed-
ing that in present-day precipitation, that is, by 30%, were not used 
(Methods). Nevertheless, due to measurement errors or the timing 
and magnitude of infiltration events, it cannot be ruled out that some 
samples may contain a component of bomb-era water (from the 1950s 
and 1960s). However, the presence of a considerable component of 
~60-year-old groundwater (as opposed to much younger groundwater) 
may be relevant for water management that aims to sustainably protect 
aquifers and avoid overexploitation. Indeed, due to the relatively short 
half-life of tritium, there may soon be no more discernible signal of 
bomb-era tritium, which would increase the possible temporal resolu-
tion of similar tritium-based studies27. In any case, the presence of any 
tritium signifies recent as opposed to fossil groundwater.
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Supplementary Fig. 10a, which corresponds to the main model result (Fig. 2), was 
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Outlook
The modelling presented here showcases a practical application of 
utilizing groundwater tritium measurements with machine learning 
to create aquifer vulnerability maps with a high spatial resolution 
(between 250 m and 1,000 m), which can be used in conjunction with 
other information, such as aquifer storage and groundwater recharge 
rates, in safeguarding groundwater resources. The study also highlights 
the utility and need for more widespread sampling and analyses of 
tritium in precipitation and groundwater to help better characterize 
the water cycle at this interface. For example, the area of applicability 
of the models indicates where model confidence is higher but also 
highlights where additional tritium groundwater measurements are 
needed to more accurately characterize the aquifer vulnerability of the 
entire region. Furthermore, as more time passes and the anthropogenic 
signal vanishes towards natural background levels, tritium analyses will 
make it increasingly feasible to determine more-precise groundwater 
ages, which could then possibly be used to infer recharge rates, given 
an appropriate groundwater flow model.

Although the RF algorithm was used here, future studies could also 
consider other machine-learning methods for possible improvements 
in implementation or performance. Model performance could also 
be improved through more-detailed sample-depth information or if 
other predictor variables, such as three-dimensional hydrogeological 
properties, would become available.

This study of aquifer vulnerability of the western Sahel of Africa 
identifies areas of relatively recent groundwater recharge and areas 
with much older groundwater, in particular for Senegal, Burkina Faso, 
Lake Chad and their immediately surrounding areas. While this indicates 
the locations of groundwater bodies that are more vulnerable to surface 
contamination, the map presented also identifies areas that may receive 
regular recharge, with associated implications for sustainable extrac-
tion. Such information is important for local water resource managers 
as well as international development agencies in planning for the wise 
use and long-term protection of groundwater resources, particularly in 
light of rapid population growth and an increasingly variable climate.

Methods
Groundwater samples
The tritium data used in this study come from a dataset of groundwater 
samples taken between 2010 and 2016 throughout the western Sahel, 
ranging in latitude from approximately 6° N to 21° N (Fig. 1). These 
tritium samples were taken mainly in rural areas (avoiding anthro-
pogenic influences) and stem from an International Atomic Energy 
Agency (IAEA) technical cooperation project designated by the code 
RAF701142, whereby the data were validated by the authors of each of the 
project’s five sub-regional reports and have a mean 3H concentration 
of 1.7 ± 1.4 TU (Supplementary Table 4). Most of the analyses used elec-
trolytic enrichment and liquid scintillation counting and were carried 
out in laboratories in Morocco and Tunisia that have successfully par-
ticipated in various IAEA 3H proficiency tests. The detection limit was 
generally 0.5 TU, and the mean reported analytical error was 0.25 TU.

In addition to tritium, 12 other physicochemical parameters were 
measured in the respective groundwater samples (descriptive statistics 
in Supplementary Table 4). Derived from the ratios of the stable water 
isotopes, deuterium excess, or D-excess, is indicative of the source 
regions of water vapour and is calculated from the relative surpluses 
of the heavier deuterium (2H or D) and 18O isotopes present in water:

D − excess(‰) = δD − 8 × δ18O (1)

D-excess is sensitive to evaporation from the ocean as well as sub-
sequent cycles of precipitation and re-evaporation on land and in the 
atmosphere. Although neither D-excess nor any of the other physico-
chemical parameters could ultimately be used to create a vulnerability 
map due to being point data and not spatially continuous, they are still 

useful in constraining the hydrological interpretations of the tritium 
values and the modelling results.

Preparation of data for modelling
Before being able to utilize the groundwater tritium measurements, it 
was necessary to determine the background concentration of tritium 
in precipitation, which varies by location, in particular by latitude but 
also by continentality and other factors25. For this purpose, the recent 
global isoscape model of Terzer-Wassmuth et al.25 was used. This model 
provides the distribution of tritium in precipitation in the modern, 
post-bomb era and, as such, represents the natural background of  
tritium. It utilizes the most recent precipitation tritium data available 
and accounts for many factors, including latitude, longitude, elevation, 
land-mass fraction, distance to coast and precipitation amounts. Its root 
mean square error in the Sahel region is 0.24 TU, which is nearly identical 
to the average reported analytical groundwater 3H error (0.25 TU). The 
values of tritium in precipitation were abstracted from the global model 
on the basis of the geographical coordinates of the groundwater samples.

As the concentration of tritium in some of the groundwater  
samples considerably exceeds that of tritium in modern precipita-
tion, these measurements could obscure the interpretation of the 
modelling results. That is, for 3H concentrations in groundwater to 
greatly exceed that in modern precipitation, a considerable amount 
of the groundwater must have infiltrated in the 1950s and 1960s, when 
atmospheric concentrations of tritium were exceedingly high, or there 
may be a local source of tritium, such as from a nuclear facility or landfill 
site33. To correct for this while also allowing for measurement errors, 
groundwater samples with 3H concentrations 130% or greater than that 
in precipitation were removed from the dataset before modelling. This 
affected 50 (4%) of the 1,234 samples of the dataset and reduced the 
number of data points available for modelling to 1,184.

The local value of 3H in modern precipitation was divided by two 
to determine the cut-off between younger (more vulnerable) and older 
(less vulnerable) groundwater. That is, if the groundwater tritium 
exceeds the threshold, the sample is classified as high/younger and 
more vulnerable. Although where to place this cut-off is essentially 
arbitrary, one-half of the concentration of local precipitation implies 
a groundwater age that would be of interest from a groundwater man-
agement perspective, that is, at least the half-life of 3H or 12.3 years but 
potentially considerably older depending on the exact recharge history 
and mixing at a given site. Furthermore, this threshold was practical 
from a modelling perspective in that 40% of the groundwater tritium 
measurements were classified as high. For comparison, the effect of 
modelling with different tritium thresholds was tested by dividing the 
modern local concentrations of 3H in precipitation by 3 or 4 instead 
of 2 (Discussion). Note that to test for the depth dependence of 3H  
concentration in groundwater, depth was included in a separate model 
as an in situ predictor variable (point data).

Predictors of aquifer vulnerability
Thirty-four potentially relevant spatially continuous environmental 
parameters were assembled that may relate to the presence of high 
tritium concentrations in groundwater and therefore the occurrence 
of relatively recent recharge (Supplementary Table 5). These param-
eters stem for the most part from the categories of climate, geology/
soil, hydrology or topography and have a spatial resolution between 
7.5’ and 30.0’, which corresponds to approximately 250 m–1,000 m at 
the Equator. It was necessary that each predictor variable be spatially 
continuous over the model domain to later enable the creation of 
aquifer vulnerability maps.

Comparison of tritium with other parameters
To obtain a first-order estimate of the factors relating to the pres-
ence of tritium in groundwater, Kendall rank correlations were calcu-
lated between the proportion of high tritium measurements and the 
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spatially continuous parameters as well as the other physicochemical  
parameters measured in situ. This was accomplished by first binning 
each independent parameter using the Rice rule to set the number of 
bins, each of which contains the same number of data points:

nbins = 2 × 3√n (2)

The proportion of high tritium measurements was then deter-
mined for each bin and the Kendall rank correlation calculated (Sup-
plementary Figs. 1 and 2 and Supplementary Table 1).

Aquifer vulnerability modelling
The RF machine-learning algorithm52 was used for classification to gen-
erate a predictive model of the presence of high tritium in groundwater. 
Random forest was chosen because of its efficient and effective use in 
other groundwater quality studies35,37,53,54 and was implemented in the 
R programming language55 using the ranger package56.

The RF algorithm creates an ensemble (or forest) of decision trees 
grown under varying conditions to avoid overfitting and create a more 
robust and effective model. Each tree in the forest is grown with a 
different random subset of the input dataset, which is produced by 
sampling with replacement. In addition, a randomly selected subset of 
the predictors is made available at each node of a tree. The final result is 
produced by averaging the results of all the generated trees. A separate 
dataset to be used only for testing was not created due to the already 
limited size of the full dataset (n = 1,184), which is distributed across 
the vast Sahel region. However, in principle, a dataset to be used only 
for testing is advantageous if a large number of data are available57.

To identify the most relevant and effective predictors of tritium 
content in groundwater, recursive feature elimination was employed58, 
whereby the 20% least important variables were removed in successive 
RF iterations, and the final selection of variables corresponds to the  
forest with the least number of variables and an error rate within 
one standard deviation of the minimum error rate found among all  
RF iterations.

Following the selection of the predictor variables, two further 
modelling parameters were tuned with cross validation using the caret 
package59. These were the number of randomly selected predictor vari-
ables made available at each node (‘mtry’) and the minimum number 
of data points required in a node (minimum node size), both of which 
have implications for potential overfitting. The range of possible values 
tested for mtry was 1 to the total number of predictors and 1 to 5 for 
the minimum node size (typical default value 1 for RF classification).

Before creating a final RF model, data were duplicated in the train-
ing dataset if the classification (high or low tritium) would remain 
the same when either adding or subtracting the measurement error 
reported with the 3H concentration. This was done to weight those 
measurements with greater confidence of being correctly classified. If 
no error was reported in the dataset, which was the case for 26% of the 
measurements, a realistic error was estimated by multiplying the meas-
urement by the median reported error-to-measurement ratio, which 
was 0.15. Taking this correction into account, 90% of the measurements 
could be duplicated when used for training, that is, they were deemed 
reliably classified. No rows were duplicated in the validation dataset. 
Following this, each RF was then grown with 1,000 trees.

To test the sensitivity of the threshold for high tritium on the model 
results, separate RF models were created using the thresholds of the 
estimated tritium in local precipitation divided by three as well as by 
four. As such, the range of thresholds investigated spans from one to 
two tritium half-lives, that is, the original threshold of the 3H in local pre-
cipitation divided by either two (one half-life) or four (two half-lives).

Model evaluation
The performance of the model was assessed through the cross  
validation of 100 RF iterations, whereby the model in each iteration 

was trained using a randomly selected 80% of the data (training  
dataset) and evaluated on the remaining 20% (validation dataset). 
The statistics calculated and collected for each iteration were sensi-
tivity, specificity, balanced accuracy, kappa and the area under the 
receiver operator characteristic curve (AUC). The statistics from each 
RF iteration were then averaged to estimate the predictive capability  
of the model.

The influence of each predictor variable on the model was assessed 
by considering the importance of each variable to the model as well 
as creating a PDP. Importance was quantified in terms of the mean 
decrease in the unbiased Gini impurity60, or Gini index, which indi-
cates how effectively a variable performs classification and divides 
the dataset into the two tritium classes (high and low). A variable is 
considered more important (better performing) if the decrease in Gini 
index is greater. To better understand the influence of each variable, 
PDPs were created that show the model’s response to different values 
of a variable when all of the other variables are held constant at their 
average values. Both the importance and PDPs were calculated once 
using the final model, which was created utilizing the complete dataset.

Aquifer vulnerability map
The final RF model was applied to the corresponding predictor vari-
ables to create a prediction map of the occurrence of high tritium 
concentrations in groundwater. The differing spatial resolution of the 
predictor datasets was rectified by resampling the lower-resolution 
rasters (10’ and 30’) to match that of the higher-resolution rasters 
(7.5’). That is, all information from the predictors was maintained. As 
such, the aquifer vulnerability maps represent this mix of resolutions 
although these have a nominal resolution of 7.5’.

The reliability of the prediction map was estimated by evaluating 
the similarity of the values of the variables in the predicted areas to 
those associated with the groundwater tritium concentrations used to 
create the model. This was carried out with the CAST package61, which 
calculates a dissimilarity index (DI) for each pixel in the prediction 
area, which is then used to define an AOA for the model. The DI uses 
the distance in predictor space between two points (dissimilarity) and 
is weighted by the variable importance. It takes the dissimilarity of the 
closest training data point, standardized by the average dissimilarity 
of all training points, and can range in value from 0 to infinity. The 
AOA was defined using the 95% quantile of the DI in the training data.

Focused sub-regional models
Three separate additional models were created of the sub-regions sur-
rounding Senegal, Burkina Faso and Lake Chad, all of which contain a 
high concentration of data points due to targeted activity within these 
areas in the RAF7011 IAEA project42. Setting a smaller geographical 
domain offers the possibility of producing a more accurate model that 
focuses only on the relationships between the predictor and target 
variables (and processes) in the area. The geographical boundaries 
used for these sub-regions and a summary of the tritium data contained 
within are provided in Supplementary Table 3. The same procedure 
of variable selection by means of recursive feature elimination start-
ing with 34 potential predictor variables was conducted as for the 
Sahel-wide model.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The groundwater tritium data used in this study were taken from the 
publicly available source cited in the manuscript. GeoTIFF rasters of 
the Sahel aquifer vulnerability maps are available at the ERIC/open 
database62 (https://doi.org/10.25678/000CGY) and can be viewed on 
the Groundwater Assessment Platform (www.gapmaps.org).
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Code availability
The code used in analysis and modelling in this study was developed 
with the R programming language and is available at ERIC/open  
database62 (https://doi.org/10.25678/000CGY).
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