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Low-cost and efficient prediction hardware 
for tabular data using tiny classifier circuits

Konstantinos Iordanou    1  , Timothy Atkinson1, Emre Ozer    2, Jedrzej Kufel2, 
Grace Aligada2, John Biggs    2, Gavin Brown    1 & Mikel Luján1

A typical machine learning development cycle maximizes performance 
during model training and then minimizes the memory and area footprint of 
the trained model for deployment on processing cores, graphics processing 
units, microcontrollers or custom hardware accelerators. However, this 
becomes increasingly difficult as machine learning models grow larger and 
more complex. Here we report a methodology for automatically generating 
predictor circuits for the classification of tabular data. The approach offers 
comparable prediction performance to conventional machine learning 
techniques as substantially fewer hardware resources and power are used. 
We use an evolutionary algorithm to search over the space of logic gates 
and automatically generate a classifier circuit with maximized training 
prediction accuracy, which consists of no more than 300 logic gates. When 
simulated as a silicon chip, our tiny classifiers use 8–18 times less area and 
4–8 times less power than the best-performing machine learning baseline. 
When implemented as a low-cost chip on a flexible substrate, they occupy 
10–75 times less area, consume 13–75 times less power and have 6 times 
better yield than the most hardware-efficient ML baseline.

Deep neural networks (DNNs) can now offer near-human—or better 
than human—accuracy in a range of applications. Originally based on 
convolutional neural networks and harnessing the availability of large, 
labelled datasets of images, their application has expanded to many 
other tasks and associated neural architectures, such as recurrent 
and transformers for natural language processing. The large datasets 
used now are mainly images, audio or text, which can be characterized 
as homogeneous data. This progress, and the existence of common 
computational kernels across different kinds of DNN, has led to the 
development of a range of hardware accelerators for inference as well 
as training of DNNs. In both scenarios, the most common approach for 
these accelerators is to be programmable hardware with specialized 
datatypes and computations, rather than a task-specific circuit. As 
DNNs have evolved, their computation has evolved from dense tensor 
operations towards increased sparsity.

Currently, the training and execution of a machine learning (ML) 
model is typically separated from the design and optimization of the 
hardware accelerator, or—at best—some co-design happens. However, 

both development activities involve optimization processes. Thus, a 
potential approach could be to develop a supervised learning tech-
nique that takes tabular data as the input and generates a circuit rep-
resentation for classification that behaves like an ML model.

In this Article, we report a methodology—termed auto tiny clas-
sifiers—to automatically generate classification circuits directly from 
tabular data. In contrast to homogeneous data (image and text), we 
focus on tabular data that can, for example, combine numerical and 
categorical data (heterogeneous). DNNs excel at capturing the spa-
tial or semantic relationship in images or speech data. However, for 
tabular data, the correlation among the features is weaker, and the 
features have no intrinsic positional information. Hence, tabular data 
are an active research area for DNNs1–4. Such heterogeneous data are 
ubiquitous2, and have a range of practical applications5–7. They also 
often exist in resource-limited scenarios suited to low-power ML, also 
known as tinyML8–11.

Our approach offers an alternative methodology to current ML 
and deep learning methods for making predictions from tabular data 
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NAIS (Fig. 2c) selects a specific neural network and a known neural net-
work accelerator to iterate over the space, identifying the best param-
eters from the hardware pool to maximize the prediction accuracy.

On the other hand, our proposed methodology automatically 
searches the classifier circuit space using an evolutionary algorithm 
(Fig. 2d). During circuit evolution, the generated circuit does not map to 
any predefined ML model or a known hardware circuit. At the end of the 
search-space cycle, the output is a sea of gates (a combinational circuit), 
which is autotranslated into RTL. These circuits are already verified 
during the fitness phase of the evolutionary algorithm. Our methodol-
ogy is not a co-design approach; therefore, there are no assumptions 
about any ML models or pre-determined hardware accelerator pools.

Several methods have been proposed for supervised classification 
on tabular data. Two popular modern approaches are gradient-boosted 
decision trees, such as XGBoost39 and CatBoost40, and deep learning 
architectures, such as TabNet by Google1. Recent work on DNNs4 dem-
onstrates that multilayer perceptrons (MLPs) can be made competitive 
with state-of-the-art gradient-boosted decision trees when the dimen-
sions of the MLP architecture are suitably optimized. In addition, these 
optimized MLPs can also provide better accuracy than TabNet1.

Automatically evolving classifier circuits
The fact that the features of tabular data are weakly correlated allows 
the conversion of the input-to-output prediction problem, into a sim-
ple representation of logic gates making predictions. We adapt the 
evolving graphs by graph programming (EGGP) algorithm24 as the 
evolutionary algorithm to generate the classification circuits. EGGP 
follows the consensus of using the simple 1 + λ evolutionary technique41, 
particularly for circuit synthesis32,33. The algorithm mimics the neutral 
drift of DNA42 and consists of the following steps:

	1.	 Generate a random initial parent solution S, and evaluate its fit-
ness fS.

	2.	 While not terminated do: 
	(a)	Generate λ children C1…Cλ by mutating S.
	(b)	Evaluate the children’s fitness values f1…fλ.
	(c)	If any child Ci has fi ≥ fS, then replace the parent S = Ci, fS = fi. 

The point at which multiple children satisfy this condition, 
the child with the highest fitness is chosen; tie-breaks are de-
termined at random.

In the algorithm, functional programs such as digital circuits are 
represented as graphs consisting of:

•	 A set of input nodes VI, each node of which uniquely represents a 
program input.

•	 A set of function nodes VF, each node of which represents a specific 
function applied to its inputs.

•	 A set of output nodes VO, each node of which uniquely represents 
a program output.

•	 A set of edges E connecting function and output nodes to their 
respective inputs.

with two key benefits. First, our Boolean function representation is oth-
erwise known in ML as a decision tree and thus inherits the favourable 
properties of this representation; recent studies have indicated that 
decision trees outperform deep learning on tabular data4,12. Second, 
our evolutionary scheme can bypass the local minima that may trap a 
traditional gradient-based tree boosting technique.

Our tiny classifier circuits are composed of only a few hundred 
logic gates and can match the prediction accuracy of the state-of-the-art 
ML classifiers. We describe a toolflow that generates tiny classifiers as 
application-specific integrated circuit (ASIC) blocks. We then provide 
synthesis results of the tiny classifiers and ML baseline designs target-
ing conventional silicon technology. We also implement the tiny clas-
sifiers and ML baselines as flexible integrated circuits (FlexICs) and 
fabricate them on flexible substrates (polyimide).

The tiny classifiers could be used in a variety of applications. They 
could, for example, be used as triggering circuits within system on 
chips13, where the low-power state of a system on chip is maintained 
whereas the tiny classifiers are the always-on circuits. Hardwired tiny 
classifiers could also be used in fast-moving consumer goods applica-
tions such as smart packaging, where ML models on FlexICs14–17 can 
make in situ classifications9,18–20. Smart packages can be equipped with 
integrated circuits (ICs) using low-cost flexible electronics technol-
ogy14–16. FlexICs are, in particular, less costly than silicon-based ICs, 
offering low-cost circuit customization17. Likewise, they are of potential 
value in low-cost near-sensor computing systems21,22 where a compute 
block is closely coupled with a sensor, and the sensor data are turned 
into knowledge using inference at the source. The programmability of 
classifier circuits is also not a requirement for smart packages due to 
short fast-moving consumer goods product lifetimes (days or weeks, 
for example), where the products, along with their packages, will be 
disposed/recycled after use.

Graph-based genetic programming
The general graph-based genetic programming approach23–26 follows 
a traditional evolutionary methodology (Fig. 1). A set of possible solu-
tions (the ‘population’) are recombined (‘crossover’) and/or perturbed 
(‘mutation’). The new, candidate solutions (the ‘children’) are then 
evaluated for their performance on the given task (giving a score, 
typically referred to as the ‘fitness’). The best-performing children 
form the new population in the next iteration. Under the assumption 
that the problem has some sort of local continuity, such that children 
generated by performing crossover or mutation on high-quality solu-
tions are more likely to be of a higher quality than randomly generated 
solutions, the algorithm tends towards higher-quality solutions over 
time. Consequently, it mimics natural Darwinian evolution, with the 
fitness acting as selection pressure on the population, and mutation 
and crossover operators introducing variation.

Graph-based genetic programming has been directly applied to 
both functional27,28 and stateful programs29. The use of graph-based 
genetic programming for circuit synthesis has been considered in the 
literature24,30–33, where the most prominent technique, namely, Carte-
sian genetic programming, rooted in circuit synthesis has remained a 
relevant benchmark task34–36. Such studies typically consider the task 
of synthesis against a completely known truth table, even when working 
with approximate circuit synthesis37,38. In contrast, only a fraction of the 
truth table is known in our ML setting, and the population consists of 
circuits represented as graphs.

Figure 2 highlights the differences between the current approaches 
of AutoML, neural architecture search (NAS), neural architecture and 
implementation search (NAIS) and our auto tiny classifier circuits 
methodology for generating ML hardware as accelerators.

AutoML (Fig. 2a) and NAS (Fig. 2b) generate an ML model and 
neural architecture model, respectively, with maximized predic-
tion performance. However, the ML model must be translated into 
register-transfer level (RTL), which, in turn, still needs to be verified. 

Population of
graphs

 
Child graphs

Initialization

Best-discovered
solution graph(s)

Fitness evaluation and
selection

Mutation and crossover

Termination

Fig. 1 | Overview of the graph-based genetic programming methodology. A set 
of possible solutions (population) are recombined (crossover) and/or perturbed 
(mutation). The new, candidate solutions (children) are then evaluated for their 
performance on the given task (fitness).
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Although, in general, the edges of each node are ordered so that 
they appropriately handle commutative functions24, in this case, all the 
considered functions are symmetric. A crucial property of the EGGP 
representation is that the function nodes need not be ‘active’. If there 
exists no path from a function node to an output node, then that node 
has no semantic meaning in the graph. This inactive material can be 
freely mutated to provide a direct mechanism for neutral drift.

When using the 1 + λ evolutionary algorithm, there are two main 
forms of genetic operator: initialization and mutation. The initializa-
tion is parameterized by the number of function nodes n and the set 
of possible functions F. First, the I input nodes i1…iI are created. Then, 
for each i ∈ 1…n, a function node vi is created and associated with a 
function uniformly chosen at random from F. Also, vi is then uniformly 
connected at random to the existing nodes i1…iI, v1…vi−1 until its degree 

matches the number of expected inputs to f. Finally, the O output nodes 
o1…oO are created, and each is uniformly connected at random to a sin-
gle node in i1…iI, v1…vn. The hyperparameter n determines the overall 
size of the graphs throughout the duration of the evolutionary run.

Mutation on solutions is performed via point mutations drawn 
from binomial distributions. The mutation rate p parameterizes the 
two binomial distributions B(n, p) and B(E, p) describing the muta-
tions of function nodes and edges, respectively. With mn ≈ B(n, p) and 
me ≈ B(E, p) as the number of node and edge mutations to apply to 
the graph, respectively, the total mn + me mutations are applied in a 
randomly shuffled order, where

•	 For node mutations, a random function node v ∈ VF is chosen, 
and its associated function f is replaced with f′ ∈ F, f′ ≠ f uniformly 
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Fig. 2 | Differences between current approaches of AutoML, NAS, NAIS and 
our auto tiny classifier circuits. a,b, AutoML (a) and NAS (b) generate an ML 
model and a neural architecture model, respectively, with maximized prediction 
performance. However, the ML model must be translated into RTL and verified. 
c, NAIS selects a specific neural network (NN) and a known neural network 

accelerator to iterate over the space, identifying the best parameters from the 
hardware (HW) pool to maximize the prediction accuracy. d, Our proposed 
methodology automatically searches the classifier circuit space using an 
evolutionary algorithm. During circuit evolution, the generated circuit does not 
map to any predefined ML model or known hardware circuit.
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chosen at random. As the functions used here are symmetric and 
of the same arity, there is no need for input shuffling or connection 
modification procedures43;

•	 For edge mutations, a random edge e ∈ E is chosen, where s is the 
source of e and t is the target of e. The edge is redirected such that 
its new target v ∈ VI ⋃ VF is uniformly chosen at random where the 
following conditions hold: 

•	 There is no path v → s to avoid cycles.
•	 v ≠ t as this would not introduce any perturbation of the solution. 

In the special (very rare) case that the number of inputs I = 1 and 
there is only a single node t = i1 satisfying the first condition, the 
mutation is abandoned.

For all the experiments performed here, the fitness of a circuit C 
is its balanced accuracy. In general, other fitness functions could be 
supported, including objectives such as the number of gates or power 
consumption, which could be handled through the use of multiobjec-
tive graph-based genetic programming to search for the Pareto-optimal 
front of solutions and characterize the trade-off between objectives. 
The evolutionary algorithm simply attempts to maximize the accuracy 
for a given dataset with no prior knowledge of the eventual prediction 
accuracy of the classifier circuit.

During evolution, the fitness of the circuits is separately evalu-
ated on both training and validation set. The fitness of the training set 
determines the selection of children to replace the parent, whereas the 
fitness of the validation set ultimately determines the ‘best-discovered 
solution’. Effectively, we are maximizing the performance on the 
training set, and the validation set is used to attempt to identify the 
best-generalized solution. The performance reported later in this 
Article is the performance on the reserved (unseen) testing set.

In the termination setting, we use a simple model, whereby if 
the validation fitness (computed on the 50% validation set) has not 
improved by at least γ within κ generations, the algorithm terminates 
and returns the best-discovered solution with respect to the validation 
data. Additionally, the algorithm will automatically terminate if the 
number of generations exceeds the threshold G.

The hyperparameters of the algorithm are as follows:

•	 The number of children per generation λ
•	 The mutation rate p

•	 The function set from which solutions may be constructed F
•	 The termination threshold γ
•	 The corresponding window of generations to achieve that thresh-

old and terminate κ
•	 The maximum number of generations G

In this Article, we vary the function set F, number of function nodes 
n, termination generations κ and maximum number of generations G 
to choose the hyperparameters for evaluation. The other hyperparam-
eters use fixed values: λ = 4, p = 1

n
, γ = 0.01.

Auto tiny classifiers
Figure 3 shows the methodology of automatically generating tiny 
classifier circuits as hardware accelerators. Auto tiny classifiers 
directly generate a visual representation of the classifier circuit from 
the training data and user-defined input parameters. Input param-
eters can be a subset or full set of the following: the total gate count 
of the classifier circuits, the type of input encoding (binary, one-hot, 
gray), the number of required bits per input for the encoding and 
quantization strategy (quantization/quantiles). The EGGP-based 
evolutionary algorithm crawls on the design space using the train-
ing data and converges on a simple graph of a sea of logic gates as 
the output circuit representation, which is automatically translated 
into RTL.

The autogenerated Verilog representation of a tiny classi-
fier is read by the synthesis tool generating the netlist for a given 
technology-standard cell library and constraints, and then produces 
the synthesized area, power and timing reports. The full chip imple-
mentation requires additional steps such as floor planning, clock-tree 
insertion, place and route, and checking and generating the layout 
rules. The output of the flow is the generated chip layout in the GDS 
format to complete the tape-out as well as the area, power and timing 
reports of the full implementation.

The generated hardware can be thought of as a set of classifica-
tion circuit block(s) or a single classification circuit unit that leads to 
classification ‘guesses’. The prediction could be a single bit (binary 
classification) or a set of bits in the case of multiclass classification 
problems representing the target class. Except for the actual classifica-
tion circuit, the design uses buffers to hold the input and output data. 
Local buffers eliminate the data transfers within the system, keeping 
the required data close to the computation block(s).
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Fig. 3 | Methodology for generating tiny classifier circuits. Auto tiny classifiers 
directly generate a visual representation of the classifier circuit from the 
training data and user-defined input parameters. The EGGP-based evolutionary 
algorithm crawls on the design space using the training data and converges on a 

simple graph of a sea of logic gates as the output circuit representation, which is 
automatically translated into RTL. The output of the flow is the generated chip 
layouts in GDS format to complete the tape-out as well as the area, power and 
timing reports of synthesis and full implementation.
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Figure 4 presents the classifier circuit as an accelerator within a 
system. The inputs to the classifier circuit are single bits. The number 
of inputs for one classification circuit can be defined as the number_of_
features_in_one_inference × encoding_bits_per_input. The actual size 
of the local input buffer is determined after the classification circuit 
generation and it holds the input bits, which will be consumed by the 
classification circuit for the prediction.

In the case of binary classification where the prediction is ‘0’ or ‘1’ 
(‘yes’ or ‘no’), the classifier output is one bit. Basically, for each infer-
ence, we produce one classification and the result (single bit) is placed 
in the output buffer. However, for multiclass classification problems, 
the classification circuits have more than one output, indicating the 
encoded predicted class. As a result, we instantiate bits_per_output  
(a user-defined parameter) local output buffers, which hold the 
encoded prediction for every inference.

Evaluation
The experiments use a comprehensive collection of 33 tabular data-
sets, mainly from OpenML44, UCI45 and Kaggle46. Extended Data Table 1 
provides the full list of datasets and their main characteristics. Each 
dataset is split into 80% training and 20% testing sets.

We use Google’s TabNet architecture1 with the recommended 
hyperparameter configuration, and AutoGluon (an AutoML system 
developed by Amazon) with explicit support for tabular data (tabular 
predictor)47 as well as other baseline ML models.

Google’s TabNet is one of the first successful deep learning archi-
tectures addressing tabular data, using sequential attention to select 
features for decision-making layers. AutoGluon searches the design 
space over three state-of-the-art models (namely, XGBoost, TabNeu-
ralNet and NNFastAITab) for tabular data among others. AutoGluon 
XGBoost is based on gradient boosting, whereas the other two models 
are based on DNNs. In our experiments, AutoGluon tabular predictor 
is configured with the above three models. It has been observed4 that 
an NAS over MLPs delivers state-of-the-art NN models for tabular data. 
Hence, we also use this NAS-based protocol.

Numerical inputs are automatically handled by ‘auto tiny classi-
fiers’ to encode the dataset features based on user preferences. The 
encoding consists of the encoding strategy and the number of bits 
per input. The encoding strategy determines the way that numerical 
features get translated into binary. Currently, four main encoding strat-
egies are supported: (1) quantization, where each feature is divided into 
buckets of equal width; (2) quantiles, where each feature is divided into 
buckets of width roughly equal to the number of samples; (c) one-hot; 

and (d) gray. Additionally, the users can manually tune the number of 
bits per input to decide the granularity of the input encoding. From 
now onwards, experiments report only the best-achieved accuracy 
across the available encoding strategies with two and four bits per 
input. In the comparative analysis with tiny classifiers, MLP models 
are transformed into two-bit quantized versions. Since the hardware 
requirements of tiny classifiers are minimal, we use a two-bit quantized 
MLP as the resource-optimized high-performing baseline.

Our primary goal is to check whether we can generate accurate 
combinational logic for an ML classification problem. We explore dif-
ferent hyperparameter combinations. The heat map shown in Extended 
Data Fig. 1a presents the achieved accuracy of the generated tiny clas-
sifier circuits as we progressively decrease the target NAND gate count 
from 300 to 50. Simultaneously, we explore the accuracy of the circuits 
with two different function sets. The next step is to study how the 
number of generations for the termination criterion function impacts 
the accuracy of tiny classifiers when we limit the circuit size to a maxi-
mum of 300 gates. Extended Data Fig. 1b shows the achieved accuracy 
for various generation values of the termination criterion function. 
Extended Data Fig. 1c presents the number of termination iterations 
versus achieved accuracy. We progressively increase the number of 
termination iterations as we set the target gate count and the number 
of generations for the termination function to 300.

Figure 5a compares the prediction accuracy of Google TabNet, Auto-
Gluon and tiny classifiers. The hyperparameters of tiny classifiers are set 
to 300 for the number of gates as well as the termination function. In addi-
tion, the maximum number of iterations is set to 8,000 (Extended Data 
Fig. 1). Across all the datasets, the average prediction accuracy of Auto-
Gluon XGBoost is 81%, which is the highest overall. The mean accuracy of 
tiny classifiers across all the datasets is 78%, which is the second highest.

We compare the prediction accuracy distribution of tiny clas-
sifiers against AutoGluon XGBoost to understand how robust tiny 
classifiers are with respect to XGBoost. Thus, we perform a tenfold 
cross-validation study and show the accuracy distributions of tiny clas-
sifiers and XGBoost (Fig. 5b). The distribution shape in tiny classifiers 
indicates a low variance of the accuracy distribution and therefore 
makes tiny classifiers robust to variation.

The best-performing ML model, XGBoost and tiny classifiers 
(Fig. 5a) are also compared with the best and smallest MLP con-
figurations. We first explore the accuracy of a nine-layer MLP with  
512 neurons4. The NAS takes this MLP as a starter and reduces the  
number of layers and neurons until reaching the smallest possible 
neural network size with minimal accuracy loss, becoming a three-layer 
MLP with 64 neurons.

Figure 5c shows the prediction accuracy across the six described 
models. Across all the datasets, the non-quantized best MLP model tops 
the performance by 83% overall prediction accuracy, whereas its two-bit 
quantized version has the same performance as tiny classifiers. In con-
trast, the non-quantized smallest MLP has an overall prediction accuracy 
of 80%, whereas its two-bit version stays at 75%. In summary, the perfor-
mance of tiny classifiers is no worse than the two-bit quantized MLP.

We design tiny classifiers in hardware across all the datasets. For 
a comparison point, we also design the two ML baseline models in 
hardware. In addition to XGBoost (best-performing ML baseline), the 
two-bit quantized smallest MLP is also chosen as the second baseline 
because it is the smallest MLP baseline (3 layers/64 neurons). As we 
needed to manually design the baseline ML models in hardware, we 
designed them only for two datasets (namely, blood and led).

These two datasets are selected on the basis of the number of 
classes and the complexity of implementing XGBoost in hardware. 
Blood has one of the smallest numbers of classes (that is, two) with 
the smallest accuracy loss across all the two-class datasets and led 
has one of the largest numbers of classes (that is, ten). One estimator 
(binary classification) for blood and ten estimators (one estimator  
for each target class) for led are designed in hardware for XGBoost.  
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Fig. 4 | A classifier circuit as a hardware accelerator within a system. The 
system can be thought of as a single classification circuit unit, which leads to 
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the encoding of the target class. Except for the actual classification circuit, the 
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eliminates the data transfers within the system, keeping the required data close to 
the computation block.
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For the development and verification of the MLP and XGBoost designs, 
Bluespec System Verilog is used.

The Verilog representations of tiny classifiers and the two ML 
baselines are synthesized using Synopsis Design Compiler targeting the 
open 45 nm PDK48 silicon technology. We present the synthesis power 
and area results for each tiny classifier circuit and baseline ML model 
as standalone hardware blocks, that is, no interconnections to other 
components of an overall ASIC design. Both input and output buffers 
are included in the power and area calculations. The operational volt-
age and frequency are 1.1 V and 1 GHz, respectively.

Figure 6a,b shows the power consumption and area in NAND2- 
equivalent gate count. Tiny classifier circuits consume 0.04–0.97 mW, 
and the gate count ranges from 11 to 426 NAND2-equivalent gates. The 
power consumption of MLP is 34–38 mW (86–118 times greater than that 
of tiny classifiers), and the area is ~171 and ~278 times larger than tiny clas-
sifiers for blood and led. The power consumption of XGBoost is ~3.9 and 
~8.0 times higher than tiny classifiers for blood and led, whereas the area 
is 8.0 and 18.0 times larger than tiny classifiers, respectively.

Both tiny classifiers and XGBoost designs for blood and led are 
implemented with Pragmatic’s 0.8 μm FlexIC metal-oxide thin-film 
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transistor process in Pragmatic’s FlexLogIC line49. The designs are put 
through the Cadence implementation flow50 to generate chip layouts.

Extended Data Fig. 2 shows the flexible chip layouts of the four 
designs. Extended Data Table 2 summarizes the power, performance 
and area results. Tiny classifier for blood is 10 times smaller and con-
sumes about 13 times less power than XGBoost, whereas it can run twice 
as fast. On the other hand, the comparative results for led are more 
prominent as tiny classifier is about 75 times smaller and consumes 
lower power as well as three times faster than XGBoost. An impor-
tant observation is that the area variation of tiny classifiers between 
a binary and multiclass classification problem is negligible. Specifi-
cally, our methodology generates a smaller tiny classifier for led (105 
NAND2-equivalent gates) compared with blood (150 NAND2-equivalent 
gates). In contrast, XGBoost implementation for led occupies five times 
more area than blood.

Tiny classifier and XGBoost designs for blood are fabricated as 
a FlexIC each on a 30-μm-thick polyimide 200 mm wafer and tested. 
The tests of each FlexIC are undertaken in a wafer probe station. The 
input test vectors for the blood dataset are generated for each design 
through simulation, and the output signals from the simulation are 
used as the golden reference. Each input test vector is sent through 
the test probe card to the flexible chip under test, and the signals from 
the output pads are recorded and compared with the golden refer-
ence. Extended Data Fig. 3 shows the die photos of the tiny classifier 
FlexIC and the XGBoost FlexIC for the blood dataset. The waveforms 
(Extended Data Figs. 4 and 5) captured during the test show that the 

test outputs match the golden reference (shown in blue colour) for 
numerous test vectors.

Our test results also show that the tiny classifier FlexICs have six 
times higher yield (that is, the ratio of the number of fully functional 
chips to the total number of fabricated chips) than the XGBoost FlexICs, 
which implies that the unit cost of a tiny classifier chip will be six times 
cheaper than that of XGBoost.

Conclusions
We have reported a methodology—termed auto tiny classifiers—to 
automatically generate classification circuits from tabular data. We 
identified a connection between graph-based genetic programming 
and classification problems in ML and developed an evolutionary 
approach to generate tiny classifier circuits composed of a small num-
ber of logic gates (less than 300 gates), which are capable of matching 
the performance of the state-of-the-art ML techniques. We evaluated 
the autogenerated tiny classifiers across datasets and reported the 
synthesis results and ML baselines designed in an ASIC in 45 nm sili-
con technology, showing improvements in area and power. We have 
also implemented tiny classifiers and XGBoost (smallest ML baseline) 
as flexible chips using the 0.8 μm FlexIC thin-film transistor process 
technology. The full chip implementation results showed that the tiny 
classifiers could be clocked 2–3 times faster, were 10–75 times smaller 
and consumed lower power than XGBoost. The tiny classifiers are also 
six times cheaper to produce compared with XGBoost when fabricated 
as flexible chips.

Our methodology aims to generate classifier circuits for tabu-
lar data, but it is not—in principle—limited to tabular data. Work on 
recurrent-graph-based genetic programming51 indicates the general 
applicability of the evolutionary approach to other forms of data, 
such as time-series data. Our tiny classifiers could be integrated as 
tightly coupled functional units or co-processors, or become loosely 
coupled hardware accelerators. Their smaller footprint and low power 
consumption make them attractive for near-sensor computing and 
emerging smart package applications.

Data availability
The data that support the plots within this paper and other findings of 
this study are available from the corresponding author upon reason-
able request.

Code availability
The code used to generate the plots within this paper is available from 
the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Prediction Accuracy Analysis of Tiny Classifiers with 
hyper-parameter tuning. (a) Accuracy vs. number of gates. Generations for 
the termination function is 300 and termination iterations is 2000. Full FS 
indicates that the generated circuit will be constructed with logical gates within 
the function set F = {and, or, nand, nor}. For NAND function set the generated 

circuits constructed only with NAND gates. (b) Accuracy vs. generations for 
the termination function. The number of gates is 300 and the number of 
termination iterations is 2000. (c) Accuracy vs. the number of termination 
iterations. The number of gates and the generations for the termination 
function are both set to 300.
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Extended Data Fig. 2 | Flexible chip layouts of Tiny Classifiers and XGBoost. The flexible chips are implemented in Pragmatic’s 0.8μm FlexIC TFT process for blood 
and led datasets.
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Extended Data Fig. 3 | Die photos of Tiny Classifier (a) and XGBoost (b) FlexICs for blood dataset. Tiny Classifier and XGBoost designs for blood are fabricated as a 
FlexIC each on a 30μm thick polyimide 200mm wafer and tested. The tests of each FlexIC are undertaken in a wafer probe station.
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Extended Data Fig. 4 | Waveforms capture the test outputs on a specific number of input-test vectors for the Tiny Classifier FlexIC. a,b, The test outputs were 
compared to the expected output shown in blue.
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Extended Data Fig. 5 | Waveforms capture the test outputs on a specific number of input-test vectors for the XGBoost FlexIC. a,b, The test outputs were compared 
to the expected output shown in blue.
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Extended Data Table 1 | The dataset collection

The experiments use a comprehensive collection of 33 tabular datasets, mainly from OpenML, UCI and Kaggle. Note: † indicates that the dataset is part of the evaluation of AutoGluon47.
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Extended Data Table 2 | Tiny Classifiers and XGBoost implementation results

Tiny Classifiers and XGBoost designs for blood and led are implemented with Pragmatic’s 0.8μm FlexIC metal-oxide thin-film transistor (TFT) process in Pragmatic’s FlexLogIC line at  
3V supply voltage.
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