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Carbon mineralization pathways for
carbon capture, storage and
utilization
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Carbon mineralization is a versatile and thermodynamically downhill process
that can be harnessed for capturing, storing, and utilizing CO2 to synthesize
products with enhanced properties. Here the author discusses the advances in
and challenges of carbon mineralization, and concludes that tuning the chemical
interactions involved will allow us to unlock its potential for advancing low
carbon energy and resource conversion pathways.

Advancing novel chemical processes to reduce the carbon intensity of our energy and resource
conversion processes is one of our major scientific challenges. Diverse interventionist technol-
ogies to capture current CO2 emissions, reuse and store CO2 continue to be developed. One of
the common themes across these different technologies is the role of inorganic solid carbonate
transformations using anthropogenic CO2 and the development of predictive controls over these
pathways. CO2 conversion to solid inorganic carbonates, also known as carbon mineralization, is
a thermodynamically downhill route that can be adapted for integration with CO2-emitting
energy and resource generating processes1. Despite the simplicity of the stoichiometric reactions
describing the formation of Ca- or Mg-carbonates, complex chemo-morphological interactions
result in non-monotonic kinetics of carbonate nucleation and growth.

In situ and ex situ carbon mineralization
The availability of Ca- and Mg-bearing resources is crucial for implementing carbon mineralization
pathways. About 10,000–1000,000 Gt of total carbon can be stored in naturally occurring mineral
deposits2. Mine tailings resulting from nickel extraction3 and diamond production4 and chrysotiles
(fibrous hydrated magnesium silicates) in asbestos5 are additional sources of alkalinity for carbon
mineralization. Alkaline industrial residues such as fly ash (e.g., Class C fly ash produced by burning
lignite or coal has a higher lime content compared to anthracite and bituminous coals that result in
Class F fly ash with lower lime content6), cement kiln dust, steel slag, and red mud can store about
200–300 Mt of CO2 annually2. Co-generated CO2 and alkaline industrial residues can be reacted to
produce Ca- or Mg-carbonates at the location of interest. Prior to mastering these transformations,
it is important to consider how these pathways can be integrated into energy and resource con-
version processes. CO2 generated from power plants or industrial sources can be captured, com-
pressed, and stored in reactive geologic formations where CO2 in the fluid form mineralizes to
produce water-insoluble calcium or magnesium carbonates, in a process known as in situ carbon
mineralization. Alternatively, ex situ carbon mineralization pathways can be developed where the
captured CO2 is mineralized into carbonates in engineered processes. Ex situ carbon mineralization
can serve as a thermodynamically downhill strategy to capture and remove CO2 from energy and
resource conversion processes7,8 that utilize fossil fuels and contribute to more than 70% of
anthropogenic greenhouse gas emissions in the United States9. One of the advantages of ex situ
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processes is that products that can be employed for various appli-
cations such as inorganic carbonate can be produced, and therefore
can be harnessed as CO2 utilization pathways.

Integration of carbon mineralization with energy and
resource conversion pathways
Various energy conversion pathways involving carbon-based
resources (e.g., coal, natural gas, biomass, waste plastics) such as
combustion, gasification, and anaerobic digestion are accom-
panied by the evolution of CO2. The emitted CO2 can be directly
removed using Ca- and Mg-bearing precursors to produce Ca-
and Mg-bearing carbonates. In the context of CO2 capture alone,
calcium looping has been proposed in which calcium oxide is
used to capture CO2 from flue gas streams to produce calcium
carbonate. Calcium carbonate is heated at 900–950 °C to produce
pure CO2 and regenerate calcium oxide10. The pure CO2 gener-
ated is then utilized and stored. The cycling efficiency of these
approaches is dependent on the chemical and mechanical integ-
rity of the oxide materials through multiple operating cycles.

As an alternative to calcium looping as a capture approach
alone, capture and removal strategies via ex situ carbon miner-
alization can be implemented by using calcium and magnesium
silicate or alumino-silicate rich minerals and industrial residues.
The use of acids to dissolve the alkaline minerals and residues was
proposed, followed by the sequential use of bases and then CO2 to
produce calcium or magnesium carbonates. As an alternative to
concentrated inorganic acids such as nitric or hydrochloric acid,
mineral acids such as acetic acid or citric acid produced via
microbial pathways have been proposed11. In addition to gen-
erating protons needed for dissolution, acetate or citrate ions
serve as magnesium or calcium chelating agents, thus enhancing
the availability of these cations for carbonate formation. Silica
chelating agents such as metal organic frameworks12 and catechol
have also been proposed to enhance dissolution of silicate
minerals. Advancements in regenerable additives to enhance
silicate dissolution at ambient temperature are needed.

Another challenge associated with carbon mineralization lies in
enhancing the concentration of carbonate and bicarbonate ions
needed for producing solid carbonates. Biological enzymes such as
carbonic anhydrase were used to enhance CO2 hydration beha-
vior13,14. As an alternative economical option to carbonic anhy-
drase, the use of recyclable aqueous CO2 capture solvents such as
sodium glycinate15, monoethanolamine (MEA)16,17, and 2-amino-
2-methyl-1-propanol18 are used to capture CO2. These CO2-loaded
solvents enhance the supply of bicarbonate and carbonate ions,
which are essential for precipitating Ca- and Mg-carbonates. The
aqueous solvents are regenerated as the solid carbonates are pre-
cipitated. Near complete conversion of CaO to CaCO3 is achieved at
50 °C in 3 h using 30 wt% MEA or 1-M sodium glycinate with solid
compositions of 15 wt% in well-mixed environments15,17. The
inherent chemical regeneration of the solvents with carbonate for-
mation occurs at 50–75 °C, which is significantly below the thermal
regeneration of solvents at 100–120 °C.

Alternatively, Ca- and Mg-bearing sorbents can be directly
utilized during the energy conversion process. One example is the
enhanced conversion of H2 using alkaline sorbents such as Ca
(OH)2 and Mg(OH)2 integrated with the water–gas shift reaction
(WGSR) as represented by this overall reaction: CaO+ CO+
H2O= CaCO3+H2. The WGSR is a versatile pathway to pro-
duce H2 and CO2 from CO and water, the products of gasification
or reforming of carbon-based resources including biomass19 as
represented by this reaction: CO+H2O=CO2+H2. Given this
challenge, conventional modes of operation involve two catalytic
systems, one operating between 310 and 450 °C and another
between 200 and 250 °C to achieve high conversion20. The

pressure is in the range of 20–30 bar. Integrating alkaline sorbents
with the WGSR for concurrent CO2 capture shifts the thermo-
dynamic equilibrium toward enhanced H2 production. Proposed
advances include the direct use of calcium or magnesium silicates
to produce H2 and calcium or magnesium carbonates. This
approach eliminates the intermediate step to produce Ca- and
Mg-hydroxides or oxides. The hypothesis that the two-step cat-
alytic WGSR can be replaced by a single-step approach by inte-
grating with carbon mineralization is being probed21. The
promise in the direct utilization of Ca- and Mg-bearing silicates
emerges from evidence showing complete conversions of calcium
silicate (CaSiO3) and higher than 80% conversion of magnesium
silicate (Mg2SiO4) to their respective carbonates at temperatures
in the range of 150–200 °C17,22–24, which align with the WGSR
conditions. The thermodynamic feasibility of this pathway is
represented by the following reactions. Equation (1) below
represents syn gas generation. Equations (2)–(4) represent the
carbon mineralization of magnesium silicate. The overall com-
bination reaction in Eq. (5) shows that coupling carbon miner-
alization with the WGSR is overall thermodynamically favorable.

2COþ 2H2O ¼ 2CO2 þ 2H2 ðΔH ¼ �82:4 kJ=molÞ ð1Þ

Mg2SiO4 þ 2H2O ¼ 2Mg OHð Þ2þSiO2 ðΔH ¼ �99:7 kJ=molÞ
ð2Þ

2Mg OHð Þ2¼ 2MgOþ 2H2O ðΔH ¼ 162:4 kJ=molÞ ð3Þ

2MgOþ 2CO2 ¼ 2MgCO3 ðΔH ¼ �235:6 kJ=molÞ ð4Þ

Mg2SiO4 þ 2COþ 2H2O ¼ 2MgCO3 þ SiO2

þ2H2 ðΔH ¼ �255:3 kJ=molÞ ð5Þ

Another complimentary strategy is to produce bio-hydrogen
with carbon removal via mineralization. Renewability, the
potential for distributed energy generation, and the opportunity
to convert heterogeneous residues such as food waste to useful
fuels and products are unique to biomass as an energy resource25.
The integration of carbon mineralization with renewable biomass
resources has been proposed to accelerate H2 production with the
inherent conversion of organic carbon present to inorganic car-
bonates, as represented by the following reaction19:

CxHyOz þ xCaOþ 2x � zð ÞH2O ! xCaCO3 þ ð2x � z þ 0:5yÞH2

ð6Þ
The standard heats of reaction for various biomass oxygenates

for Eq. (6) are shown in Table 1. This approach has the potential to
meet distributed energy needs using a clean energy carrier with
inherent carbon removal. Alkaline sorbents such as CaO or Ca
(OH)2 enhance the cleavage of C–C bonds and capture the gen-
erated CO2 concurrently as the reaction progresses. For example,
more than 90% conversion of cellulose to H2 occurred above 500 °C
when mixed with stoichiometric proportions of solid Ca(OH)2 and

Table 1 Standard heats of reaction (kJ/mol) for the
conversion of biomass oxygenates to hydrogen with carbon
removal through the following reaction: CxHyOz+ xCaO+
(2x− z)H2O→ xCaCO3+ (2x− z+ 0.5y)H2

19.

Biomass oxygenate Standard heat of reaction (kJ/mol)

Methanol −92
Ethanol −186
Glycerol −411
Butanol −325
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in the presence of Ni/ZrO2 catalyst26. As opposed to generating
oxides and hydroxides of Ca and Mg from carbonates, alternative
routes of synthesizing these materials from silicate precursors need
to be investigated. Figure 1 is a schematic representation of the
integration of carbon mineralization pathways with flue gas
streams, biomass utilization, and syn gas generation.

In the context of resource utilization, determining the fate of
hazardous elements co-present with alkaline industrial residues is
an important consideration. Carbon mineralization can reduce
the mobility of elements of potential environmental concern, such
as Zn, Cu, and Pb as amphoteric constituents and facilitate the
partial immobilization of Cr for carbonated Ca-rich slag27. This
approach enables the reuse of alkaline materials and reduces the
cost of landfilling. Incorporating compositions as low as 10 wt%
of carbonate-bearing steel slag in construction materials has
shown to enhance the compressive strength from about
33–50MPa28. CO2 curing of synthetic calcium silicate to produce
high strength carbonate-bearing construction materials has now
been translated into practice29.

Advancing the science of carbon mineralization also has a
translational impact on informing the fate of CO2 injected into
subsurface formation bearing reactive calcium and magnesium
silicates, also known as in situ carbon mineralization. Field-scale
studies such as the injection of pressurized CO2 in reactive basalt
formations in Iceland30 and in Washington State31 demonstrated
that the Ca- and Mg-silicate constituents of basalt converted to
Ca- and Mg-carbonates over the course of a few years. These
geochemical conversions were mimicked at representative sub-
surface conditions of elevated temperature (e.g., 100–200 °C22–24)
and CO2 partial pressures (e.g., 50–200 atm22–24) with high
surface area particles and sizes in the range of 5–100 μm. Near
complete conversion of calcium silicate minerals such as wollas-
tonite (CaSiO3) and magnesium silicate minerals such as olivine
((Mg,Fe)2SiO4) were achieved on reacting for 3–6 h22–24. In
contrast, the reactivities of alumino-silicate bearing minerals and

rocks do not exceed 50% at comparable reaction conditions22.
Carbonates and silica are co-present in the materials obtained
after reacting with CO2 at conditions relevant to the subsurface
environments. Silicate weathering and carbonate formation
mechanisms in the subsurface environments are needed to pre-
dict the fate of CO2 injected into reactive subsurface environ-
ments. The silica content and its reactivity influence the
utilization potential of alkaline industrial residues and minerals.

Outlook
Despite the advancements made in producing Ca- and Mg-
bearing carbonates from anthropogenic CO2, several scientific
challenges remain. The chemical compositions and morphologies
of alkaline sources such as naturally occurring minerals or alka-
line industrial residues are heterogeneous. The influence of silica
and iron constituents on the mechanisms and rates of carbonate
formation in diverse fluidic environments need to be elucidated.
Often, the kinetics of carbonate formation starting from multi-
component precursors can be non-monotonic and developing
predicting controls remains a challenge.

As an alternative to existing acid and base consumptive
methods to produce Ca- and Mg-bearing carbonates, there is a
need for solvents or sorbents that can supply CO2 and can be
regenerated in situ as carbonates are formed. Novel chemical
pathways to synthesize high purity, nano-scale, and meso-scale
Ca- and Mg-carbonates from anthropogenic CO2

28,32 with few
additional unit operations and regenerable solvents are needed.
These materials have wide-ranging applications in the paper
industry and as filler materials.

Carbonates from anthropogenic CO2 are typically formed in
multiphase environments. Characterizing the evolution of the
fluid chemistry and the structure and morphologies of carbonates
and development of the underlying mechanisms requires the use
of novel in operando cross-scale and multimodal characterization
methods such as X-ray and neutron scattering, spectroscopy, and
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Fig. 1 Schematic representation of the integration of carbon mineralization pathways and energy conversion processes. The aqueous alkaline amine
looping reactor captures CO2 from flue gas using aqueous solvents such as amines and amino acid salts, and the high concentrations of carbonate and
bicarbonate ions react to produce calcium or magnesium carbonates, with the inherent regeneration of the solvent. This reactor is integrated with various
CO2 emitting energy conversion processes. Carbon mineralization can be integrated with the water–gas-shift reaction or biomass conversions to enhance
H2 formation and remove CO2 as calcium or magnesium carbonates.
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tomography at representative temperature and pressure condi-
tions. Advanced characterization of the carbonate products is
needed based on the end use of these materials. For example, the
use of metastable hydrated magnesium carbonate as algae feed
requires the quantification of these phases in the end product33.
When considering the use of carbonate-bearing construction
materials, linking the carbonate phases and content to the
mechanical strength of these materials is crucial.

A fundamental understanding of the dissolution and carbonate
formation mechanisms in silicate minerals has a translational
impact on our understanding of the storage of CO2 in subsurface
geologic formation. Rapid conversion of the injected CO2 into
water-insoluble carbonates reduces the mobile fraction of CO2

and the need to monitor the fate of mobile CO2. Dynamic
changes in the dissolution and carbonate formation behavior
along with the associated changes in the pore and fracture
morphology need to be accounted for when evaluating the fate of
CO2 in the subsurface environments. Thus, advancing the science
of carbon mineralization in subsurface and engineered systems is
integral to our carbon management efforts.

Received: 1 July 2020; Accepted: 29 January 2021;
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