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Tutorial: a beginner’s guide to building a
representative model of dynamical
systems using the adjoint method

Check for updates

Leon Lettermann 1,2, Alejandro Jurado1, Timo Betz 1, Florentin Wörgötter1,3 & Sebastian Herzog 1

Building a representative model of a complex dynamical system from empirical evidence remains a
highly challenging problem. Classically, these models are described by systems of differential
equations that depend on parameters that need to be optimized by comparison with data. In this
tutorial, we introduce the most common multi-parameter estimation techniques, highlighting their
successes and limitations. We demonstrate how to use the adjoint method, which allows efficient
handling of large systemswithmany unknown parameters, and present prototypical examples across
several fields of physics. Our primary objective is to provide a practical introduction to adjoint
optimization, catering for a broad audience of scientists and engineers.

The interplay between theory and empirical is central to advancing our
understanding of complex systems and will probably become even more
important in the future1.The synergybetween theoretical constructs, suchas
model descriptions by systems of differential equations like ordinary dif-
ferential equations (ODEs) and partial differential equations (PDEs), and
empirical evidence obtained through experimentation forms the corner-
stone of scientific progress in many fields2–6. Theoretical models, firmly
grounded in the mathematical elegance of ODEs and PDEs, provide a
predictive framework that allows us to comprehend and interpret the
observed phenomena within intricate systems. They not only serve as
blueprints for ourunderstandingbut alsooffer the ability tohypothesize and
test various scenarios1,7.

However, the full potential of these mathematical models is only
unlockedwhen they are brought into harmonywith empirical data garnered
from real-world experiments. This endeavour entails the estimation of the
parameters within the mathematical model. Experimental data serve as the
empirical foundation upon which theoretical models are constructed,
refined, and validated. This dynamic relationship between theory and
experiment is an iterative, virtuous cycle. Theoretical constructs guide
experiments by suggesting testable hypotheses, while experimental results,
in turn, enrich and often challenge the theoretical models.

Sadly, accurate mathematical modelling, tailored to real-world
problems, is often hindered by a lack of empirical detail due to unob-
servable quantities, missing initial values, or other unknown parameters;
this often requires some best-practice process for the estimation of
multiple parameters that govern the behaviour of the model. As a result,

building a trustworthy mathematical representation of a complex system
from empirical evidence remains a challenging problem. The domain of
complex systems8 provides an in-depth review, illustrating possible
applications and problems in the field, which includes, for example,
modelling the signaling in heart muscle tissues, important for under-
standing arrhythmia or defibrillation9. To address these problems, one
needs methods for accurate and robust estimation of multiple model
parameters, which is pivotal for progress in both scientific and engi-
neering domains. Ideally, such a method should, in the first place, allow
us to directly assess the validity of underlying model assumptions by
verifying if parameters can be found, for which the model equations
reproduce the observed data. In addition, however, more sophisticated
applications are desired, such as to discern latent variables from empirical
data, augment extant models through the incorporation of novel vari-
ables to enhance their congruence with empirical evidence, and facilitate
the creation of parsimonious predictive models characterized by reduced
dimensionality. In many cases, these issues can be addressed using the so-
called adjoint method1,8,10–17, which is a powerful, reliable, and efficient
method for parameter estimation to hundreds of thousands of para-
meters, offering the multifaceted set of capabilities mentioned above.

The primary objective of this tutorial is to offer a comprehensive
introduction to the field of adjoint optimization pertaining to the optimi-
zation of multiple parameters within differential equations and to provide
an easily accessible framework—including computer code—to apply it to
users’ problems. To achieve this, we will elucidate the practical utility of the
adjoint method, specifically focusing on its basic capacity to critically
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evaluate the soundness of foundational model assumptions, but also the
more indirect use-cases outlined above.

In the following, we start by giving a general overview of the different
methods available for parameter estimation. Afterward, we focus on the
adjoint method, which is introduced in theoretical detail in the section “A
detailed look at the adjoint method”. In the subsequent section, “Practical
computations and challenges of applications”, we show how this mathe-
matically cumbersome framework can be applied easily to a number of
different physical systems and inference tasks while highlighting challenges
and providing code examples. To facilitate accessibility, we present a
straightforward implementation of the adjoint method, referred to as
adoptODE.

Overview of methods for parameter estimation
Parameter estimation and the concept of system identification have a long
tradition. It is important to note that both have invariably progressed in
tandem. Parameter estimation encompasses deducing the values of latent
variables within a mathematical model, contingent upon empirical obser-
vations, a classical challenge known frommathematical optimization,where
good parameters are usually defined by minimizing a meaningful distance
between the model and certain data. Parameter identification, on the other
hand, is an exalted quest for ascertaining the unique and unequivocal
determination of good model parameters predicated upon the corpus of
available empirical data. Koopmans and Reiersol18 first described the con-
cept of identification of structural characteristics in 1950, while in 1956,
Fisher19 introduced the idea of identifiability and Berman and Schoenfeld20

addressed the actual identifiability problem. From this point on, thefield has
developed rapidly21–29 and there have been many publications to date, a
detailed review of which can be found in ref. 30.

From a high-level perspective, parameter estimation is a search pro-
blem in which an arbitrary search space is searched for optimal solutions so
that the given model generates an answer that matches the user’s data. The
search process should be both effective, meaning it can find optimal solu-
tions, and efficient, meaning it can find them quickly and with minimal
resources. Based on these fundamentals and many other advances in the
field of optimisation, there are nowadays an immense number of optimi-
sation methods that can be used to fit parameters of differential equations.
The general structure, of which many variations exist, can be defined as

Definition 1. (Parameter estimation) Assume the configuration of the
system in question is defined by a state y that is evolving according to an
equation of motion (EOM) f. This EOM depends on additional parameters
p. Supplemented with possibly inaccurate initial conditions y0 the system is
given as a typical ODE problem

d
dt

yðtÞ ¼ f ðyðtÞ; t; pÞ; yðt¼0Þ ¼ y0: ð1Þ

The task is to find parameters pminimising a real-valued loss function

L yð̂t0Þ; . . . ; yð̂tN Þ
� �

; ð2Þ

which depends on the state y of the system at a finite number of ascending
evaluation time points t̂0; t̂1; . . . ; t̂N , i.e. the times at which an experimental
system was observed. To be found are the parameters p and possibly initial
conditions y0 such that the loss is minimal.

The different methods can be roughly divided into several groups, the
advantages and disadvantages of which are listed in Table 1 as follows:

Likelihood-based methods are a class of statistical techniques used to
estimate the parameters of a statistical model. The central idea is to max-
imize the likelihood function, which measures how well the model explains
the observed data. This allows utilizing known uncertainties in the data and
estimating the confidence of the resulting parameters.Within this category,
we have the classical Kalman Filter31 and ensembles of augmented Kalman

filters, where the estimated variables are described by multidimensional
normal distributions. These methods are particularly adept at estimating
unknown parameters entangled within the observation error covariance
matrix32. The expectation-maximization algorithm33 offers a method for
extracting maximum likelihood or maximum a posteriori parameter esti-
mateswithin statisticalmodelswhere latent variables play a crucial role.This
can also be applied to the estimation ofmodel parameters if one succeeds in
formulating the system as a statisticalmodel. Bayesian estimationmakes use
of Bayes’ theorem to continually update the probabilities of hypotheses as
more evidence or information becomes available. Likelihood-based
approaches are well-suited for parameter estimation in systems character-
ized by stochastic dynamics unfolding over significant time scales. In such
scenarios, the rapid, microscopic degrees of freedom can be effectively
characterized as stochastic noise. An illustrative instance arises in the realm
of (bio)chemistry, particularlywhen investigating the equilibriumof a series
of molecular reactions34. Nevertheless, when the system dynamics undergo
pronounced changes within short time intervals, as often observed in
chaotic systems, the applicability of likelihood-basedmethods diminishes35.
Additionally, the effectiveness of likelihood-based methods hinges on the
availability of a substantial dataset to ensure accurate estimation of expected
values without distortion from data noise. Consequently, in scenarios with
limited data, as exemplified by Jain andWang36, likelihood-based methods
maynot be themost suitable choice. The least-squares estimate is equivalent
to the maximum-likelihood estimate when the error terms in the model
follow a Gaussian distribution. This way, least-squares methods can be
viewed as a simplification of likelihood-based approaches. The benefit lies in
avoiding the necessity to transform the physical model into a static one.
However, this simplification comes at the cost of forfeiting the capability for
uncertainty quantification37.

Least-squaresmethods try tominimize the squared (euclidean)distance
between parameter-dependent model predictions and given observations,
in its earliest version, used by Gauss to predict the location of the asteroid
Ceres after not being observed for some time.Within this category, we find
theGauss–NewtonMethod, an optimization algorithmdesigned to address
non-linear least-squares problems efficiently. It is essentially a modification
of Newton’s method. However, for large problems with several tens of
thousands of parameters, the need to calculate a second derivative is often a
limiting factor38. Another notable technique is the Levenberg–Marquardt
algorithm, which serves as a numerical method for minimizing functions
with nonlinearity. Themethod combines theGauss–Newtonmethodwith a
regularisation technique that enforces descending function values,making it
more suitable for estimating parameters within higher-order nonlinear
differential equations39. Least-squares methods are easier to calculate than
likelihood-based methods and can be applied more generally. As shown in
ref. 40 several conditions, like the the normality of the errors, the linearity of
themodel, and the independence and homoscedasticity of the observations,
need to be fulfilled such that the validity and optimality for the estimated
parameters are given. If these conditions are notmet, least-squaresmethods
are more likely to lead to biased and inconsistent results41 and also can be
sensitive to noise and require a priori knowledge of the system structure42.
This prevents a direct application for more complex, non-linear or even
chaotic systems. However, least-square methods can be found in powerful
approaches, as shown in refs. 43,44, where a sparse regression is utilized for
system identification based on a user-defined set of nonlinear functions. As
Bock et al.45 demonstrate, nonlinear least-squares problems are often solved
by simply coupling an integratorwith an optimization procedure, leading to
shooting approaches.

Shooting approaches are numerical methods to solve boundary value
problems of ordinary differential equations. The basic idea of thesemethods
is to trace the problem back to the solution of an initial value problem. This
can also be applied to the estimation of model parameters. The approach is
similar to aiming and launching a projectile towards a distant target, from
where it borrows its name.The projectile is released at a specific initial angle,
and by adjusting the trajectory based on the observed misses, the target is
eventually hit. Shooting approaches are often used in the field of dynamical
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systems, like population dynamics and chemical reactions46. The efficacy of
shootingmethods is intricately tied to the selection of initial guesses and the
level of noise present. Simultaneously, their implementation is straightfor-
ward, demanding only the capacity to solve the system of equations. With
well-considered time intervals for parameter evaluation, these methods can
extend their applicability to estimating parameters in chaotic systems.
However, meeting this requirement is not always a straightforward task47.
The extension of (single) shootingmethods ismultiple shooting approaches
like48,49, which find application in the estimation of parameters within sys-
tems characterized by nonlinear differential equations50. Multiple shooting
methods are more robust and efficient but require more computational
resources and an even better partition of the time interval47.

Smoothing-based approach: The generalized smoothing approach51

represents a method for parameter estimation within models defined by
systems of nonlinear differential equations. This method relies on the uti-
lization of noisy measurements applied to a subset of variables to effectively
estimate the parameters of the system. By employing this approach, the
model adeptly manages the challenges posed by noisy measurements that

specifically impact a designated subset of variables. The application of
smoothing techniques is prevalent in diverse fields, such as computational
neuroscience, the modelling of flare dynamics, and various other domains
where encountering noisy data is commonplace. This is particularly valu-
able in scenarios where robustness in the face of model misspecification is
crucial, as highlighted in ref. 51. Moreover, the incorporation of quasili-
nearizationmethods introduces a strategic smoothing component, which is
governed by a penalty derived from a quasilinearized ODE basis52. Despite
the evident advantages, certain challenges are associated with smoothing-
based approaches. One notable issue is the selection of an appropriate
smoothing parameter or bandwidth, which plays a pivotal role in striking a
balance betweenbias andvariance.Opting for a smoothingparameter that is
too small may lead to overfitting and heightened variance, while choosing
one that is too largemay result in underfitting and elevated bias, as discussed
in ref. 53. In general, smoothing-based approaches necessitate a judicious
combination with other methodologies to yield optimal results for para-
meter estimation. However, the selection of complementary approaches is
not straightforward, making thesemethods less readily applicable out of the

Table 1 | Overview of advantages and disadvantages of the different classes of parameter estimation techniques discussed

Method Advantages Disadvantages

Likelihood-based methods • Probabilistic framework allows inference and uncer-
tainty quantification.

• Require the specification of a likelihood function

• Can handle nonlinear and non-Gaussian models. • Possibly identifiability issues or multiple local optima.

• Can be computationally intensive / require approximation techniques.

Least-squares methods • Simple and intuitive to implement and interpret. • Deterministic framework does not account for uncertainty or noise.

• Can handle linear and some nonlinear models
efficiently.

• Sensitive to outliers or heteroscedasticity.

•Widely used and well-studied in various fields. • Requires a loss function, which might not reflect the true model.

Shooting approaches • Can handle boundary value problems and differential-
algebraic equations.

• Require the solution of an initial value problem, hence sensitive to initial con-
ditions or numerical errors.

• Can exploit the structure (e.g. constraints) and proper-
ties of the problem.

• Possibly instability or convergence issues.

• Often easy to implement and parallelize.

Smoothing-based
approach

• Can handle noisy or incomplete data. • Require the specification of a smoothing parameter, which may not be easy to
choose or estimate.

• Can reduce the effects of outliers or measurement
errors.

•May introduce bias or overfitting in the model.

• Often improve fit and generalization of the model. •May not preserve some features or characteristics of the data.

Interior-point methods • Can handle nonlinear and constrained problems. •Require the solution of a sequence of subproblems, which may be costly or ill-
conditioned.

• Can exploit sparsity and structure in the problem. •May not scale well to large-scale or high-dimensional problems.

• Often converge faster and more reliably than other
methods.

•May require tuning of parameters or regularization techniques.

Simulation methods • Can handle stochastic and dynamic models. • Require the specification of a simulation model, which may not always be
realistic or accurate.

• Can generate synthetic data and scenarios. •May be affected by randomness or variability.

• Often useful for testing and validation purposes. •May not provide analytical or exact solutions.

• Possibly computationally demanding.

Artificial neural networks • Can approximate complex nonlinear functions. • Require a large amount of data and computational resources to train and
evaluate.

• Often achieve high performance and accuracy in var-
ious tasks.

•May suffer from overfitting or underfitting issues.

•May not be interpretable or explainable.

Adjoint methods •Cancompute gradients or sensitivities of anODEmodel
efficiently.

•Require the derivation and implementation of the adjoint equations, whichmay
be complicated or tedious.

• Scales well with large problems (High dimension, many
parameters).

•May be affected by numerical errors or instabilities.

•Can exploit the adjoint or dual structure of the problem. •May not be applicable to some types of problems or models.

• Often useful for optimization or inverse problems.
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box. The intricate task of determining how to effectively integrate themadds
a layer of complexity, emphasizing the need for careful consideration in
order to harness the full potential of these techniques.

Interior-point methods (or barrier methods) are algorithms for solving
linear and non-linear convex optimization problems. To transverse the
interior (rather than the boundary) of the feasible region in the search space
nonlinear programming and iterative methods are used. Interior-point
methods are related to smoothing-based approaches because they can be
used to smooth the objective function and the constraints, and also to l1-
regularized least-square problems54. Interior-point methods were used in
many domains, like control problems in computational fluid dynamics55.
The incorporation of interior-point methods and decomposition strategies
can lead tomethods that can be applied to large-scale problems, as shown in
ref. 56. One drawback, however, lies in the complexity of applying this
method out of the box. The interior-pointmethod, while a powerful tool for
solving nonlinear optimization problems, may encounter challenges in
converging to a local minimum, even when the problem adheres to the
Mangasarian–Fromovitz constraint qualification and satisfies second-order
sufficient optimality conditions57. Additionally, themethod faces difficulties
when dealing with ill-conditioned problems, large-scale problems, and
problems characterized by multiple local minima58. Navigating the intri-
cacies of the interior-point method in the realm of inverse modelling poses
an additional layer of difficulty. The selection of the barrier parameter,
regularizationparameter, and stopping criterion becomes a challenging task
in itself59. These choices significantly impact theperformanceof the interior-
point method, requiring careful consideration and tuning for effective
application in the domain of inverse modelling.

Simulation-based approaches (or metaheuristics): This diverse group
comprises techniques like particle swarm optimization, which iteratively
seeks to enhance candidate solutions by drawing inspiration from collective
behaviour seen in bird flocking and fish schooling. It is designed to find
global and optimal solutions within a given function60. The sequential
Monte Carlo method offers simulation techniques for computing the pos-
teriordistributionof a sequenceof relevantparameters, includingparameter
estimation within non-linear differential equations for complex systems61.
Differential evolution, on the other hand, is utilized for optimizing multi-
dimensional real-valued functions by iteratively improving candidate
solutions with respect to a predefined measure of quality. Finally, genetic
algorithms with α-selection are heuristic search algorithms well-suited for
adaptive systems, incorporating α-selection in the process of parameter
estimation for non-linear differential equations within complex systems62.
Theoretically, these methods are capable of solving the most complex
problems, but depending on the nature of the problem, the demand for
computer resources is veryhigh and, in theworst case, can reach the effort of
a brute force approach.

Artificial neural networks (ANNs) constitute a prominent subsetwithin
the domain ofmachine learning, drawing inspiration from the architectural
and functional attributes of biological neural networks. In essence, ANNs
are characterized by their inherent non-linearity and their capacity for data-
centric modelling. These networks can effectively address both regression
and classification tasks, thereby offering a unified approach to a spectrumof
predictive and discriminative challenges. Within the realm of parameter
estimation63, presents an application of a continuous Hopfield network for
the purpose of least squares minimization. This approach illustrates the
capacity of ANNs in enhancing parameter estimation processes.
Additionally64, introduces a novel decomposition approach, wherein an
ANN model is derived from the dataset and subsequently utilized for
parameter estimation. This strategy serves to streamline the parameter
estimation problem, offering a more accessible route to parameter
determination65. puts forth amodular neural network architecture designed
specifically for dynamic system parameter estimation. This approach excels
in terms of speed and noise immunity, showcasing the substantial advan-
tages of employing ANNs in this context. Furthermore66, introduces a
modifiedHopfield network to facilitate robust parameter estimation within
nonlinear models marked by unknown-but-bounded errors and

uncertainties67. shows the impact of different ANN architectures and loss
functions and applies domain adaptation techniques to improve the accu-
racy of the estimated parameters. These studies collectively underscore the
efficacy of ANNs in the realm of complex system parameter estimation.
Furthermore, numerous studies, including68–71, contribute to the burgeon-
ing field of ANNs in parameter estimation, further substantiating the value
of this methodology. However72,73, underscore the restrictions inherent to
ANNswith regard to the interpretation of their parameters in the context of
physical significance. Their analysis accentuates that, notwithstanding the
fact that ANNs do not necessitate a causal model, the parameters derived
from ANNs lack inherent physical interpretations, and, frequently, the
quantity of parameters to be ascertained within ANNs significantly sur-
passes the quantity of data instances available within the training dataset.
One of the challenges in applyingANNs to complex physical systems is that
the parameters of the ANNs are often difficult to interpret or relate to the
underlying physical phenomena. Therefore, the main goal of ANNs is to
achieve high predictive accuracy rather than to provide physical insights.
However, this may limit the generalizability and robustness of the ANNs,
especially when the data are scarce or noisy. To address this issue,
approaches called physics-informed neural networks (PINNs) have been
proposed. PINNs are ANNs that incorporate the physical laws that govern
the system into the training process, thus enabling the ANNs to learn from
both data and prior knowledge. The prior knowledge can, for example, be
expressedby differential equations74 or by stochastic differential equations75.

Adjointmethods: The adjointmethod15 is derived from the Lagrangian
dual problem76, with the main ideas going back to Pontryagin77 and his
associates in the formulation of Pontryagin’s maximum principle. The
adjoint method expresses the gradient of a function with respect to its
parameters in the context of constrained optimization and is constructed
around the adjoint state. This adjoint state is used to compute the gradients
by a backward pass, where the actual system and the adjoint state are solved
in a negative time direction, illustrated in Fig. 1. Leveraging the dual for-
mulation of this optimization problem enables efficient gradient compu-
tation, particularly for large numbers of parameters. In the domain of
parameter estimation within multidimensional media, Rodriguez-
Fernandez et al.24 present an algorithm grounded in the adjoint method,
demonstrating its prowess in determining parameters effectively. Likewise,
Bhat78 shifts the focus to system identification, applying the adjoint method
to nonlinear, non-autonomous systems. Their work showcases the adjoint
method’s capability to estimate parameters and states from noisy observa-
tions, revealing its utility in this field. Subsequently, Chen et al.79 showed
how to training infinitesimally layered neural networks by using the adjoint
method for finding gradients to optimize ANNs used as equation ofmotion
(EOM) of an ODE, resulting in neural ordinary differential equations. This
concept was further elaborated in ref. 80, where a class of models called
universal differential equations, which are differential equations that con-
tain an embedded universal approximator, such as a neural network, as part
of the equation,were introduced.Oneof themajor advantages of the adjoint
method is its linear scaling with the number of parameters to be estimated,
making it a favourable method, especially for optimization problems in
high-dimensionalparameter spaces81.Additionally, it can readily be adapted
to be used with PDEs and even stochastic differential equations. Note that
there are also many more cases with specific applications, including
refs. 82–84, but detailing this is beyond the scope of this paper.

A detailed look at the adjoint method
Arguably, the adjoint method is one of the most powerful tools for para-
meter estimation in large systems. However, its complexity arises from
intricate mathematical subtleties. Therefore, our initial focus will be on the
overarching aspects of the theory presented in abstract terms to preserve
generality. Despite the seemingly complicated nature of the general form-
alism, its practical application proves to be straightforward. In fact, we
devote the later practical computations section to showcase the concrete
parameters estimation in five very distinct physical systems. To this aim, we
rely on a specific implementation and a ready-to-use tool, with the aim of
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providing a hands-on guide to parameter extraction accessible to non-
specialists and provide a brief overview of the main ideas of the adjoint
method here as an alternative to the following more technical introduction.

To optimize a loss function L that depends on the solution of a dif-
ferential equation f evaluated at different times for parameters p of that
equation (cf.Def. 1) is tricky; theparametersmight influence the solutionof f
at different times in varying, non-obvious ways.

Starting with an initial guess of parameters, the differential equation f
can be solved, and the loss function L evaluated, yielding the current loss
value, which should now be minimised by adapting the parameters. First,
the reaction of the loss function to changes in the solution of the equations
needs tobeunderstood. For the latest (inobservation time) solution entering
the loss function, this is a simple derivative. But if we change the solution at
an earlier time, we have to account for subsequent changes at later times.
This complex sensitivity of the loss function to changes in the solution is
capturedby the adjoint state (Def. 2). Theobservation that it is simple for the
last observation time can be extended to a differential equation describing
the adjoint state, but being solved backward in time, starting with the last
observed time point.

Secondly, we need to describe how the solution of the differential
equation f changes if parameters p are changed. This is essentially described
by the Jacobians of equation fwith respect to the parameters p. Because the
adjoint state already includes how the change propagates to later times, we
only need to consider how changing the parameter for a short time changes
the solution at that time, which can be described by the jacobian.

The full response of the loss function to briefly changing parameters at
a time can now be described by the product of jacobian and adjoint state at
that time. Because we want to change the parameters at all times, we inte-
grate over the time at which the parameters are changed, and to con-
veniently solve the adjoint state simultaneously (to save the memory of
storing it), we do so backward in time as well, leading to the augmented
system (Def. 3). A schematic of this optimization procedure is shown
in Fig. 1.

Derivation of the adjoint method
Assume a problem set up as in Def. 1. Finding parameters to minimize the
loss is non-trivial, because the state y, which enters the loss function,
depends on parameters p implicitly by being a solution of Eq. (1). Fur-
thermore, solutions at different times are connected. Therefore the different
yð̂tiÞ cannot be optimised independently. This problem has been studied in
detail in ref. 77. To simplify notation, state y and parameters p are treated
here as scalars. The generalisation to more dimensions is straightforward.

Defining two derivatives
To understand the adjoint method, it is helpful to distinguish two different
ways of differentiating quantities depending on the solution of an ODE.
Taking, for example, the loss function Lðyð̂t0Þ; . . .Þ, its derivative by the state

of the system at time t can be understood in different ways:

Momentary:
∂L yð̂t0Þ; . . .

� �
∂yðtÞ ; ð3Þ

Lasting:
DL yð̂t0Þ; . . .

� �
DyðtÞ : ð4Þ

The momentary derivative at t is the change in loss if the system state is
varied, but only at time t, and for all future times reversed to its previous
value, analogous to the functional derivative from variational calculus
with the simplification of using a delta distribution in time as a test
function. For the example of the loss function, this means that the
momentary derivative by the state y(t) is vanishing, except t is one of the
observation times at which the loss function explicitly depends on the
state. The lasting derivative, on the other hand changes y(t) and keeps the
introduced change for all following times. For the derivative of the loss
function by the state y(t), the change of y at t is propagated by the time
evolution to all observation times t̂i > 0, thereby entering the loss. In the
case of deriving by the parameters p instead of the state, this means a
change in parameters is performed at t, which induces a slight deviation
in the state y, which for the momentary derivative is propagated with the
old parameter value, and for the lasting derivative with the changed value
of p. The lasting derivative with respect to the state y allows us to define
the central quantity of the adjoint method:

Definition 2. (Adjoint state) The adjoint state a(t) is defined as

aðtÞ ¼
DL yð̂t0Þ; . . . ; yð̂tN Þ

� �
DyðtÞ : ð5Þ

It describes the reaction in loss if, at time t, the system’s state is changed,
with the changed state afterward propagated to affect all later states
entering L. Intuitively, if an external influence would perturb the system
at time t, the subsequent time evolution would produce a different tra-
jectory, changing the later states yð̂tiÞ entering the loss function. The
adjoint state measures this change in loss as a function of the time t and
the perturbation direction.

Adjoint method
In this framework, the required gradients g to solve the optimisation pro-
blem can be understood as the lasting derivative of L with respect to the
parameters p at time t0. Using an integral, we can express these gradients in

Fig. 1 | Diagram of the optimization procedure using the adjoint method. A
prior-provided ordinary differential equation (ODE) model generates outputs
depending on its parameters and the input state. By comparing to data and possibly
additional constraints formulated in the loss function L, input states and parameters
can be optimized. The augmented system (Def. 3) required for the optimisation of

the parameters is complicated but can be set up and solved automatically by fra-
meworks such as adoptODE introduced below. The user input is coloured in orange,
and the data used to find the desired parameters is constraining the model outputs
coloured in blue.
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terms of the easier-to-handle momentary derivative,

g ¼
DL yð̂t0Þ; . . .

� �

Dpð̂t0Þ
¼

Z t̂0

t̂N

dt
∂L yð̂t0Þ; . . .

� �
∂pðtÞ : ð6Þ

This integral will later be evaluated backward in time. Conceptually, this is
because we know what happens if the parameters are changed at the end
point t ¼ t̂N , namely nothing, as the system has no time anymore to react
to a change. From this known start point, the gradients can be determined
by moving the time of parameter change towards the initial time t̂0. The
momentary derivative can be expressed by the chain rule as the product of
the adjoint state and a Jacobian. This reflects the fact that momentarily
changing the parameters introduces a change in the system’s state, which—
after the parameters are changed back—propagates as defined for the
lasting derivative. The Jacobian of the EOM f ; ∂f =∂p ¼ J f ;p, describes the
change in state caused by the parameter change.

∂L . . .ð Þ
∂pðtÞ ¼ DL . . .ð Þ

DyðtÞ � J f ;pðy; t; pÞ ¼ aðtÞ � J f ;pðy; t; pÞ ð7Þ

Combining Eq. (6) and Eq. (7), we obtain an expression for the time deri-
vative of the gradient g,

d
dt

gðtÞ ¼ �aðtÞ ∂f ðy; t; pÞ
∂p

: ð8Þ

The desired gradients are g = g(t0), and the initial condition for solving this
backwards is g(tN) = 0.

Themissing piece is now the adjoint state, or an equation allowing us
to derive it. For this, we first consider one step between t and t+ ϵ with ϵ
small, such that none of the evaluation times t̂i are passed within this step,
as their influence has to be considered separately. Then the following
holds:

DL . . .ð Þ
DyðtÞ ¼ DL . . .ð Þ

Dyðt þ ϵÞ
Dyðt þ ϵÞ
DyðtÞ

) aðtÞ ¼ aðt þ ϵÞDyðt þ ϵÞ
DyðtÞ :

ð9Þ

Elementary algebra on the differential quotient yields the desired evolution
of a(t):

d
dt

aðtÞ ¼ lim
ϵ!0

aðt þ ϵÞ � aðtÞ
ϵ

¼ lim
ϵ!0

aðt þ ϵÞ � aðt þ ϵÞ DyðtþϵÞ
DyðtÞ

ϵ

¼ lim
ϵ!0

aðt þ ϵÞ 1� 1þ J f ;yðy; t; pÞϵ
� �� �

ϵ
¼ �aðtÞ � J f ;yðy; t; pÞ:

ð10Þ

The significance of the condition of not passing the evaluation time lies with
the adjoint state a(t). Defined as the change of the loss function while
changing the solution at time t, it can be expanded as

aðtÞ ¼
DL yð̂t0Þ; . . . ; yð̂tN Þ

� �
DyðtÞ

¼
XN
i¼0

∂L yð̂t0Þ; . . . ; yð̂tN Þ
� �

∂yð̂tiÞ

Dyð̂tiÞ
DyðtÞ

¼
XN
i¼0

J L;yð̂ti Þ
ðy; t̂i; pÞ

Dyð̂tiÞ
DyðtÞ

:

ð11Þ

Because Dyð̂tiÞ=DyðtÞ is zero for t > t̂i and becomes unity at t ¼ t̂i, this
discontinuity has to be manually incorporated into the a(t) evolution,
meaning J L;yð̂ti Þ

ðy; t̂i; pÞ has to be added when t passes t̂i. Additionally, we
find J L;yð̂tN Þ

ðy; t̂N ; pÞ as initial value að̂tN Þ.

Augmented system
With the obtained results, we can now approach the gradients g. After
solving the equation for the state y(t) forward, the gradients can be com-
puted by solving first Eq. (10) for the adjoint state and then Eq. (8), both
backward. However, this requires storing the system state y and the adjoint
state a at a large number of intermediate times to have them available while
solving Eq. (8), which is impractical due to highmemory consumption. It is
much more efficient (in terms of memory) to compute all three quantities
simultaneously in a single backward pass of what is called the augmented
system:

Definition 3. (Augmented system) The adjoint sensitivity method con-
structs the gradients required for directed optimization, DL . . .ð Þ=DpðtÞ,
within a larger system, called the augmented systemwith state s(t), including
the adjoint state aðtÞ ¼ DL . . .ð Þ=DyðtÞ.

sðtÞ ¼
yðtÞ
aðtÞ
DL ...ð Þ
DpðtÞ

0
B@

1
CA; ð12Þ

d
dt

sðtÞ ¼
f ðy; t; pÞ

�aðtÞJ f ;yðy; t; pÞ
�aðtÞJ f ;pðy; t; pÞ

0
B@

1
CA; ð13Þ

where the initial condition follows from the aforementioned as

sð̂tN Þ ¼
yð̂tN Þ

að̂tN Þ ¼ J L;yð̂tN Þ
ðyð̂tN Þ; t̂N ; pÞ

J L;pðyð̂tN Þ; t̂N ; pÞ ¼ 0

0
BB@

1
CCA: ð14Þ

This system can be solved backward by solving the different co-
dependent quantities y, a and L simultaneously, which is possible as their
respective EOMs are only dependent on each other evaluated at the current
time t. An exception is the system states at observation times t̂i, which are
required to update the adjoint state at observation times. They can be saved
during the forward pass, which is required anyways to obtain yð̂tN Þ. As only
the system state and only at the observation times have to be saved, the
augmented system significantly reduces memory consumption in com-
parison to saving the state and the adjoint state at all the intervals requiredby
the ODE solver. Another advantage is that at the final value of the adjoint
state, að̂t0Þ, gradients are available to optimize the initial conditions.

Properties of the adjoint method
In the form of the augmented system the adjoint method provides a pow-
erful tool for solving the complex problem of obtaining the gradients g. The
memory cost is linear in the dimension of state y and parameters p. This is
crucial when dealing with complex systems because evaluating the sensi-
tivity of the cost function to each parameter individually can be computa-
tionally expensive. The adjoint method provides a way to compute these
sensitivities simultaneously, significantly reducing computational costs.

Themain computationnecessary is to solve theODEof the augmented
system (Eq. (12)), which—between the observation times—can be done by
calling any standard ODE solver. Besides utilising a large base of well-
developed ODE solvers in general, some allow tuning their accuracy,
offering major performance increases if mediocre accuracy is sufficient and
vice versa. Additionally, fitting solvers and their accuracy can be chosen for
challenging numerical integrations appearing in many complex systems.
Care has to be taken at each observation time t̂i, as the update of the adjoint
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state is a non-smooth operation, which has to be performed manually
outside of the ODE solver. Additionally, solving the system itself backward
can introduce numerical problems, such as instabilities, not present in the
forward pass, as is the case for diffusive systems. An easy workaround at the
cost of morememory is to save additional backup states during the forward
pass, as discussed in the Supplementary Methods.

Practical computations and challenges of applications
A neat theory often faces an uphill climb of practical inconveniences to be
useful in any real-world application. A straightforward, literal realization of
the theory developed above includes the following steps:
1. Implementing and solving theEOM f to solve the forwardproblemand

obtain the estimated solutions at the observation times, yð̂t0Þ; . . . ; yð̂tN Þ.
2. Implementing the loss function L, dependent on the observeddata and

its gradientsDL . . .ð Þ=Dyð̂tiÞ which can be evaluated at the previously
computed estimated solutions to generate the initial conditions and
updates for the adjoint state a.

3. Implementing the Jacobians J f ;yðy; t; pÞ;J f ;pðy; t; pÞ necessary for
the dynamic equation of the adjoint state.

4. Piecewise solving of the augmented system in the negative time
direction, updating at observation times, delivering at t ¼ t̂0 the gra-
dients for the parameters and as the adjoint state að̂t0Þ gradients to the
initial conditions.

5. Updating the estimate of parameters and initial conditions by a gra-
dient decent scheme of choice.

Once all the implementing is done, this provides a clear, iterative
scheme to minimize the loss by directed optimization. However, even for
simple systems, deriving and implementing the required gradient and
Jacobian functions is complicated and a source of error, whereas, for
larger systems, it becomes completely unpractical. Fortunately, the tools
of auto-differentiation, advanced by a large interest from the artificial
intelligence and machine learning community, can be utilized to
internally arrive at fast, efficient methods for computing the gradients
and Jacobians, requiring only the EOM and loss function as user input!
To facilitate accessibility, we present a straightforward implementation of
the adjoint method, referred to as adoptODE. AdoptODE uses the library
JAX85 and its auto-differentiation capability in that way and additionally
handles the error-prone details of the backward solution execution,
including updating the adjoint state and other subtleties. At its heart, as
default, it uses the JAX integrated odeint routine, which uses a mixed
4th/5th order Runge–Kutta scheme with Dormand–Prince adaptable
step sizing86, but other JAX compatible solvers (as, for example, provided
by diffrax87) can be passed as option. An additional capability of adop-
tODE concerning the uncertainty in estimated parameters is to easily
simulate data for a given system, which can be used to gauge the relia-
bility of the recovery.

For the example of adoptODE, we present capabilities, arising chal-
lenges and workarounds for increasingly complex physical systems. The
code of all these examples is provided, both as a starting point for adopting
the method to new problems and as a reference for details and parameter
choices wewill not extensively discuss.We emphasise that the code used for
this is rather simple and can easily be adapted to address other specific
problems too. (The complete frameworkadoptODEcanbe foundat: https://
gitlab.gwdg.de/sherzog3/adoptODE, also, a hands-on guide to parameter
estimation with adoptODE is provided in Box 1).

The examples considered here start with simple ODE problems,
where we first address interactive N-body systems (A) and, in a second
step, the Lotka Volterra model (B) as an example of a simple Kolmo-
gorov model, where the influence of wrong model assumptions and
noise are reviewed. Afterward, we move towards problems involving
partial differential equations, where the relevant fields have to be dis-
cretized to apply the adjoint method, leading to significantly larger state
spaces. Here, we first consider the Bueno–Orovio–Cherry–Fenton

(BOCF) model for parameter recovery (C), and afterward,
Rayleigh–Bénard Convection (D), where an unknown field, the tem-
perature, can be extracted from velocity data only. Lastly, wemove on to
new experimental data of Zebrafish embryogenesis (E): This is a case
where we extend existing models with a discretized continous field as
parameters to recover, by which novel unexpected biophysical results
could be obtained. We define for all scenarios the initial state, the
assumed EOM with its parameters, the input data, ask the system to
solve a specific task and outline the practical challenge this
problem poses.

Interactive N-body problem
TheN-body problem, as a first example, is a dynamical system consisting of
particles, which influence each other by physical forces. Here we consider
the case where N point masses interact via some pairwise force F.

State: Positions and velocities of all bodies.
EOM :

d2x
dt2

¼ 1
mi

X
j

Fðxi � xjÞ:

Challenge: The parameters can only be estimated by their action on the
system. In this example, we illustrate extreme cases: First, in gravitational
interactions, most masses only enter perturbatively over long times. In
contrast, for colliding spheres, the interaction is concentrated at the very
short collision events.

Sub-problem 1: Gravitational systems: The first problem is based on
Newton’s law of gravity, which is used to describe the orbits of the planets in
the solar system.

Parameters: Masses of the planets up to Saturn and of the sun.
Input data: From NASA’s Horizon Systems88, the trajectories of the

sun, the planets up to Saturn and as additional force probes, the asteroids
Apophis and Eros, sampled every 20 days throughout the 20th century.

Task: Infer model parameters, here mass, from trajectories.
Results: As the solar system is dominated by the sun’s mass, the pla-

netary masses can only be inferred from the perturbations they cause.
Recovery is still successful, as shown in Fig. 2a, with the largest deviation for
Mars at a relative error of 0.3 and <1% error for Saturn, Jupiter, and the sun.

Sub-problem 2: Repulsive systems: The second example demonstrates
repulsive interactions of spherical particles with different effective radii,
described by the Lennard–Jones potential89.

Parameters: Mass and radius of each particle.
Input data: For every number of bodies, random radii andmasseswere

drawn from the intervals [0.2,0.7] and [1,10], respectively. The spheres were
randomly assigned positions on a grid (to avoid initial overlaps in high-
density runs) with initial velocity drawn from a truncated normal dis-
tribution over [−2,2].

Task: As above, but also: infer non-observable variables from obser-
vable data. Here masses and radii are obtained from the trajectories, where
(different from the gravitational interaction above) this information is only
contained in the collision events.

Results: In Fig. 2b, it can be seen that for all but twomasses at the largest
system, the recovery ofmasses and radii was within 1% accuracy, taking the
smallest value for masses and radii as a reference.

Lotka–Volterra model
The Lotka–Volterra model90,91 represents a system of two first-order non-
linear, coupled differential equations. It describes the interaction of two
species, one prey and one predator, which influence the time evolution of
their respective populations by predator–prey interactions controlled by
four parameters, α, β, δ, γ. Additionally, wrong model terms that are not
necessary to explain the generated data are included to demonstrate that the
correct terms can be identified. The Lotka–Volterra model is an example of
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the Kolmogorov model class to characterise continuous-time Markov
processes.

State: Current population of prey (x) and predators (y).
EOM:

dx
dt

¼ αx � βxy þc1x
2

� �
;

dy
dt

¼ �γy þ δxy þc2y
2

� �
;

where the ci terms are additional terms added to the puremodel in recovery
to demonstrate that adoptODE can be used to identify correct terms in
model development.

Challenge: The true model is unknown in many real-world applica-
tions. Here, we include additional higher-order terms in the EOM, the
weights of which have tobe recovered to zero in order to recreate the correct
system.

Parameters: α; β; γ; δ 2 Rþ and c1; c2 2 R.
Input data: 500 trajectories with random parameter values and initial

populations drawn from [0.1, 1] were generated at each noise level with the
puremodel (c1 = c2 = 0). Eachobserved datapointwas perturbed by random
noise with amplitude proportional to its value and the given relative noise
amplitude.

Task: Infer model parameters, here α, β, γ, δ, and the initial conditions
for x, y from observed noisy trajectories. The added terms should be
quantified as insignificant for the system by finding close to zero values for
the parameters c1, c2

Results: The mean absolute errors of parameter recovery are, on
average, <0.1 for all noise amplitudes (Fig. 2c), indicating that parameter
recovery was successful. At large noise levels, the error sometimes exceeded
1, signifying parameters out of range. In practice, suchnoise levels will likely
not play any major role. The values for the added parameters c1, c2 are

Box 1 | The AdoptODECookbook

0. Install AdoptODE and JAX
AdoptODE and its dependencies are required to run the following note-
book, together with an updated version of the JAX library. The package
enablesGPUcalculations, provideda supportedCUDAdriver is required.
An installation guide is provided in the git-repository, https://gitlab.gwdg.
de/sherzog3/adoptODE.git. In the repository, the executable of this
cookbook and further resources are available.
1. Define your System
Our example system is d

dt pop ¼ a � popþ b, where pop is some scalar
population and a and b are the parameters we want to find. We assume
the initial population, a and b to be bounded below by zero and above by
some maximum specified in kwargs_sys.

The second and third dictionary of gen_params are iparams and
exparamswe do not have in this simple example. The first two functions

can be arbitrary, the eom and loss functions have to be implemented
using the JAX libraries.
2. Set up a simulation
To set up a simulation we define the dictionaries kwargs_sys and
kwargs_NODE as well as the times t_evals at which we assume to
observe our system. The keyword ‘N_sys’ gives the number of copies in
terms of multi-experiment fitting, here we consider only one system.

3. Train a simulation
The easy following command trains our simulation and prints the true
params in comparison to the found ones:

4. Including Data
To include data, we bring it in the same form as the shape of the state
given bygen_y0(), butwith twoadditional leading axes. The first counts
the different experiments, and has length one here, the second runs over
time points and has the same length as t_evals.

The new dataset2 generated by the dataset_adoptODEmethod can
be trained with analogous commands as in point 3 above. However, in
this case,wedon’t haveaccess to the trueparameters for comparison, as
in the usual application the true parameters are not know by different
approaches, and only accessible by parameter estimation techniques.
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similar to the errors of the pure parameters, meaning they are orders of
magnitude smaller than the pure parameters for lower noise ratios, allowing
to reject the respective terms as irrelevant for the model.

Bueno–Orovio–Cherry–Fenton model
The Bueno–Orovio–Cherry–Fenton (BOCF) model is a minimal ionic
model for human ventricular cells in the heart. It shall be considered as an
example of excitable media. In general, an excitable medium is a nonlinear
dynamical system to describe the propagation of some waves, which can
influence each other, but where one wave cannot propagate through the
other. Such systems are used for modelling of many bio-chemical domains.
In the context of theBOCFmodel, thefieldu serves to characterize the trans-
membrane potential, giving rise to propagating waves of action potentials.
The remaining three fields, termed gating fields, delineate the tissue’s con-
dition, e.g. the intracellular calcium level. The parameters of these gating
fields encode essential features, like the refractory period, during which a
specific location becomes inactive after the passage of an action potential.
This characteristic is pivotal for the formation of patterns like spiral waves.

State: Four fields (voltage and three gating variables), each sampled at a
512 × 512 square lattice, resulting in one million coupled ODEs.

EOM: The equations of the BOCF model92.

Challenge: Many systems containing, for example, diffusion become
heavily unstable if solved in a negative time direction, as necessary for the
backward pass of the adjoint method. This can be countered by additional
backup states generated during forward passes but must be carefully
managed for large systems to control memory usage81. Here, we use a
schemewhere somepoints are saved during the forwardpass, but additional
backup states can be generated during the backward pass by forward pro-
pagation from the closest stored point. Additionally, the parameters of the
BOCFmodel spanmany orders ofmagnitude, hence recovery benefits from
logarithmic rescaling.

Parameters: The parameters of the BOCF model control the interac-
tions between the membrane potential and the gating fields, allowing for
example, tomatch the shape of the propagating action potentials. However,
the parameters influence each other, so different sets of parameters can
cause the samedynamics of themodel. To ensure comparabilitybetween the
ground truth parameters used to generate our data, and the recovered
parameters, we first identified the 10 most influential parameters by sepa-
rately perturbing them by a factor of 1.5 and comparing the resulting mean
absolute errors. The 10 parameters out of the 28 parameterswith the highest
resultingmean absolute errorwere then selected for the recovery task. These
10 parameters were then perturbed by random factors between 1/2 and 3/2
and recovered by adoptODE.

Input data: A procedure of repeated excitation generates a random
initial state showing spiral-wave patterns. From this initial state, a trajectory
with 100 time points over 50ms is generated.

Task: (1) infer non-observable variables from observable data, (2)
validate model assumptions. Here: Find parameter values to best describe a
given trajectory.

Additionally, we show how to use adoptODE to reproduce the BOCF
model excitation field using the simpler Aliev–Panfilov (AP) model93, a
model with only six free parameters and two fields. Because the form of the
excitation front and the single gatingfield in theAPmodel are different from
the BOCF model and its three gating fields, both initial fields have to be
reconstructed simultaneouslywith the parameters, adding ≈ 5 × 105 degrees
of freedom to the optimization. Taking this into account, adoptODE finds
parameters for which AP reproduces the BOCF dynamics, even if the
prediction breaks down faster than the BOCF recovery.

Results: To demonstrate the versatility of the recovery for the BOCF
system, we analyse the growing discrepancy between the true and the
recovered system with time, where the recovery was once calculated
using the BOCF model, and again with the AP model where additionally
the initial fields had to be recovered. Note that for the investigated
parameters, the BOCF model exhibits chaotic behaviour (maximum
Lyapunov exponent λmax ≈ 0.00276), i.e. even small deviations lead to an
exponentially increasing error. For the BOCF model, only a very short
time (50ms) had to be observed for a meaningful recovery. Measured by
the mean absolute error (Fig. 3c) and the mean error of peak occurrence
averaged over all pixels (Fig. 3d), recovery was largely valid for up to 2 s.
The errors at 1.5 s were mostly small differences in the propagation of
individual excitation fronts and only in the upper right area already
larger deviations (Fig. 3a and b) were found. For the APmodel, 0.5 s were
used for training. Over this period the recovery is surprisingly good,
considering the AP model cannot truly capture the BOCF dynamic.
Here, the optimisation probably uses the fit of the initial conditions for
the gating field to compensate for the different models, leading to a quick
divergence after the observed time (cf. Supplementary Fig. 1 displaying
the resulting initial fields for the AP model). The recovered parameters
for the BOCF model had a mean absolute deviation of 0.76% and a
median absolute deviation of 0.4%, the recovered values are shown in
Supplementary Table 1.

Rayleigh–Bénard convection
Rayleigh–Bénard convection is an example of self-organising
nonlinear chaotic systems in the field of fluid thermodynamics. A fluid
enclosed in a volume, the bottom of which is heated, creates convective

Fig. 2 | Parameter recovery for simple ODE systems. a The solar system up to
Saturn is an example of attractive N-body interactions, planet masses unknown,
truth in blue and recovery in orange. bColliding spheres in a box, masses (blue) and
radii (orange) of the spheres unknown. c The Lotka–Volterra model, a simple
predator–prey system, showing statistics over 500 randomly generated systems for
different noise levels. The absolute errors were averaged over the four parameters of
the pure model (blue) and the two added parameters (orange). For the added
parameters, the MAE is the mean absolute value, as the ground truth is always zero.
The inset shows an example trajectorywith reset times, at which the system is reset to
new, simultaneously trained initial conditions.
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flow patterns conveying heat from the lower to the upper plate. Such
convection cells are an example for the formation of dissipative struc-
tures far from thermodynamic equilibrium. The structure of these con-
vection patterns is governed by the dimensionless Rayleigh and Prandtl
numbers.

State: Temperature perturbationT and 2Dvelocityfield u!, sampled at
a 100 × 100 square lattice with periodic boundary conditions from right
to left.

EOM: Equations for Rayleigh–Bénard Convection in the
Oberbeck–Boussinesq approximation94,95, including aprescription to obtain
the pressure field p necessary in every step to maintain an incompres-
sible flow96.

Challenge: In many real-world scenarios, part of the model relevant
quantities are not observed. Here we demonstrate that the adjoint method
can recover suchmissing information. In the concrete case, the temperature
field is recovered by reconstructing its initial condition only using

information on the velocity field. Due to incompressibility, the velocity
depends in a complicated, non-local manner on the temperature pertur-
bation, posing a challenging problem.

Parameters: Rayleigh and Prandtl numbers are assumed to be known,
initial temperature field is unknown.

Input data: Trajectories obtained from the simulation at Prandtl-
Number 7.0 andRayleigh-Number 107, but only the velocityfield is available
to the system for training, as would be the case in data from Particle Image
Velocimetry (PIV97) experiments.Measured in Lyapunov-times τ estimated
from the same data, 0.35τ was used for training.

Task: (1) infer non-observable variables from observable data, (2)
validate model assumptions. Here: Reconstruct the temperature field from
the velocity field.

Results: Similarly to the BOCFModel, we validate the practicality of the
recovered temperature field (Fig. 3e) by its power to predict the system
longer than observed for training. The difference between the ground truth
data and the recovered temperature field is shown in (Fig. 3g). We find the
recovery tobe accurate for around2τ (Fig. 3f) and still qualitatively correct at
3τ (Fig. 3f and h) before it begins tomore strongly deviate from the truth at
7τ. This behaviour is best seen in Supplementary Movie 2.

Zebrafish embryogenesis
The case of zebrafish embryogenesis shows the use of adoptODE on real
experimental data. Zebrafish embryos, genetically modified to show
fluorescent nuclei, were imaged in a light-sheetmicroscope from5 to 7.5 h
after fertilisation (hpf). The lightsheet scans the whole embryo once every
180 s and generates a full 3D image from which the position of every cell
can be extracted. Afterwards, cells can be tracked from one frame to the
next usingGaussianmixturemodels implemented in the libraryTGMM98,
resulting in branching trees of trajectories, as cells do actively divide
during the time observed. The trajectories obtained in this way are not
perfect and contain noise due to the experimental setup. To apply a
continuous hydro-dynamical flow model supplemented with active
stresses, from the trajectories, a mean velocity field was approximated by
binningdifferences in cell positions between frames.The embryodevelops
on one pole of its spherical yolk cell. Around 5 hpf this cap spreads around
the yolk cell in a process called epiboly, which coincides with and is
required for the development of the germ layers99. To study the influence
of active processes on this spreading, a simplified two-dimensional
Navier–Stokes flow on a sphere is assumed for the embryo on-top of the
yolk and supplemented by a 2D time-dependent vector field of active
forces.

State: 2Dvelocityfieldon a spherical shell, representing themean tissue
movement of the embryo along the yolk (cf. Fig. 4b).

EOM: A Navier–Stokes model for the flow in curved geometry,
including a field of active forces interpolated between certain positions
and times.

Challenge: Often, there are known blanks in models, where an addi-
tional, but not precisely known effect influences the system. In an extreme
case, this effect can be varying in time and space, as the active forces gen-
erated by cells in the tissue of a zebrafish embryo in this example. The
favourable scaling of the adjoint method with large numbers of parameters
allows using a model-free, interpolation based description of such missing
effects by discretizing them in time and space. Thereby, unbiased estimates
of the additional effects can be obtained. As a consequence, the complexity
and large number of degrees of freedom introduced by this additional field
require some form of regularisation, especially if one wants to work with
experimental data and a commonproblem formany complex systems. This
is possible in the adjointmethod and the implementation in adoptODE, too,
because the loss function can be freely augmented by the required reg-
ularisation terms. In the case of the zebrafish embryo, an example for such a
term is the L2-Norm of the fitted stresses, to prevent the usage of large
stresses to fit noise in the data.

Parameters: The 2D active force vector at every position and time used
for interpolation, in this case, around 5000 parameters. Additional

Fig. 3 | Bueno–Orovio–Cherry–Fenton (BOCF) model and Rayleigh–Bénard
convection as examples for applying the adjoint method to discretized partial
differential equation (PDE) systems. Recovery of parameters (in the BOCFmodel,
a–d) and initial conditions of fields (in Rayleigh–Bénard convection, e–h).
a, b Excitation field u, value given by colour bar below (b). a Recovered BOCF field
after 1.5 s. bDifference between recovery in a and target. cMean absolute error of the
recovery using the BOCF model (blue) and the simpler Aliev–Panfilov (AP) model
(orange) on a logarithmic scale, the length of the input sequence (50 ms) used to
optimise the parameters via adoptODE is shown in blue. d Error in peak occurrence
time averaged over all pixels. See Supplementary Movie 1. e Temperature pertur-
bation. fMean absolute error between recovered and true temperature perturbation.
The length of the input sequence used to optimise the parameters via adoptODE is
shown in blue. g Difference from ground truth, see also Supplementary Movie 2.
h Pixel value of centre pixel for recovery (orange) and ground truth (green).
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parameters permeasurement allow the optimisation to rotate and time-shift
measurements with respect to each other.

Input data: Mean velocity field of 12measured zebrafish embryos with
50 time points each. All fields are aligned in order to facilitate a universal
stress tensor field describing all different measurements simultaneously.

Task: (1) infer non-observable variables from observable data, (2)
validate model assumptions, (3) extend existing models with new variables
to better fit the data to the model assumptions.

Results: In this experimental setup, where the data was collected by
Brightfieldmicroscopy (an example is shown in Fig. 4a), the ground truth is
unknown. Hence the results are compared to well-known details of zebra-
fish embryogenesis. However, the force distributions, as illustrated in
Fig. 4b), obtained from the simple model not only plausibly explain the
spreading via a strong force at the leading embryo edge (Fig. 4d) but also
suggest two known deviations from a uniform spreading: Firstly, theϕ force
shows a strong dipole where cells converge at azimuthal position ϕ = π
(Fig. 4c), yielding a thickening of the spreading embryo tissue known as
shield formation99. Secondly, the θ distribution (Fig. 4d) shows at later times
partly negative values, in contrast tomostly positive values corresponding to
a force spreading the embryo downward around the yolk. This corroborates
the established invagination of cells on the inside of the spreading
embryonic tissue sheet moving back towards the pole99. However, a model
including the missing radial dimension is necessary to conclusively resolve
the invagination.

Outlook
This tutorial is meant to provide the reader with adequate insights enabling
them to employ the adjoint method to their own scientific issues, but it also
serves as an exploration of the adjoint method, elucidating its robust,
dependable, and efficient nature in the context of multi-parameter esti-
mation for differential equations. The method, as demonstrated through
different examples, is not just a computational workhorse but also holds
significant implications for advancing scientific enquiry, as mathematical
modelling tools are increasingly applied to ever more complex systems.
There, the versatility of the adjointmethod becomes apparent in addressing
various objectives, including the inference of non-observable variables from
observable data, the validation of model assumptions, the expansion of
existing models to accommodate new variables for better alignment with
observed data, and the construction of parsimonious predictive models.

The utility of the adjoint method extends beyond mere parameter
estimation, encompassing a spectrum of applications that contribute to the
refinement and validation of mathematical models. By enabling the
extraction of non-observable variables, the method facilitates a deeper
understanding of complex systems, allowing researchers to validate the
assumptions inherent in their models. Furthermore, the incorporation of
new variables into existing models enhances their adaptability, enabling a
more nuanced representation of the intricate relationships within the data.

In the spirit of fostering accessibility and encouraging broader utili-
zation of the adjoint method, readers are encouraged to consider two

avenues of implementation.Direct implementation of the adjoint sensitivity
method for nuanced problem-solving. Alternatively, for those with a less
pronounced mathematical background, the adoptODE framework is pre-
sented as an accessible and user-friendly tool. This framework, available at
https://gitlab.gwdg.de/sherzog3/adoptODE, is meticulously designed to
cater to non-specialists, facilitating the seamless application of the adjoint
method to a diverse array of scientific problems. Additionally, the supplied
notebooks demonstrate the application of adoptODE to the examples
presented in this tutorial, and should serve as a starting point for the
adaptation to other problems.

Implicit in this discourse is the conviction that the widespread adop-
tion of the adjoint method holds the potential to enhance interdisciplinary
collaboration within the scientific community. By bridging the gap between
theoretical constructs and experimental data, this method stands poised to
elevate the synergy between theory and experimentation, thereby con-
tributing to the collective advancement of scientific knowledge.

Data availability
The experimentally obtainedflowfields for the zebrafish aswell as theplanet
trajectories taken from the NASAHorizons System88 are available in the git
repository, Supplementary Movies 1 and 2 are available on the Commu-
nication Physics website.

Code availability
All results presented in this review were obtained using the adoptODE
package. The package, notebooks with the implementation for the specific
examples, aswell as the reference data used are available in the git repository
https://gitlab.gwdg.de/sherzog3/adoptODEand the version used to produce
the results in this publication is tagged as https://gitlab.gwdg.de/sherzog3/
adoptODE/-/archive/Published/adoptODE-Published.zip.
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